
Themes Validation Tool

Everlandio Fernandes(B), Rodrigo Correia, Adriano Gil, Juliana Postal,
and Mikhail R. Gadelha

Sidia Institute of Science and Technology, Manaus, Brazil
{everlandio.fernandes,rod.correia,a.gil,j.postal,

mikhail.gadelha}@sidia.com
https://www.sidia.org.br/en/home/

Abstract. When themes for smartphones are created, several elements
can be customized. They are usually colorful and with artistic drawings
in the background. One of the main challenges in creating themes is
the validation of the color contrast between the fore- and background
elements, so people with visual impairments can perceive the difference
between them. Human validation of low visibility issues requires a lot of
effort and can generate undesirable bias. Thus, an automated bias-free
system is necessary for validation of smartphone themes. In this context,
we propose the use of a machine learning technique known as automatic
object detection to identify and classify elements with contrast issues. We
used a dataset of 1,500 artificially generated Android OS homescreens
to train a Faster-RCNN, each screen with at least ten elements (icons)
and a balanced distribution between four levels of contrast. Our tool
obtained high performance when detecting objects and high accuracy
when classifying them.

Keywords: Themes evaluation · Human computer interaction ·
Faster RCNN · Machine learning

1 Introduction

Users tend to customize the interfaces of their computer systems to provide a
personal sense of identity, e.g., a wallpaper with their family photo or a soccer
team theme. In particular in smartphones, several elements can be customized
when designing a new theme such as wallpapers, widgets, icon packs, sounds,
etc. Usually they are colorful and with artistic designs in the background. When
designers develop a new theme, this should be sent to a theme store to be
marketed, where they go through a series of validations.

One of the main challenges during the approval of smartphone themes is the
validation of the color contrast between their elements fore- and background.
This is required to comply with the “Web Content Accessibility Guidelines”
(WCAG) 2.0 recommendations [1], which covers a wide range of suggestions
to make Web content more accessible. In particular, item 1.4.3 of the WCAG
2.0 defines the recommended contrast ratio between elements, so that it can be
perceived by people with moderately low vision impairments.
c© Springer Nature Switzerland AG 2019
C. Stephanidis and M. Antona (Eds.): HCII 2019, CCIS 1088, pp. 16–22, 2019.
https://doi.org/10.1007/978-3-030-30712-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30712-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-30712-7_3


Themes Validation Tool 17

Human validation of low visibility issues requires huge efforts since hundreds
of operating system screens need to be validated. Furthermore, an unwanted
human bias on what is low contrast will be introduced in the validation. In this
context, the benefit of an automated validation system for smartphone themes is
twofold: it reduces the number of designers submitting faulty themes and helps
the store validator not approve a theme that has a contrast problem.

To solve this problem, we propose the use of a machine learning technique
known as automatic object detection. It handles the task of detecting instances
of semantic objects in digital images and videos. The automatic detection of
objects in images has improved drastically in recent years with the advent of
deep learning techniques. One of the most popular object-detection algorithms
is Faster-RCNN, which is the basis for many derived networks. Due to its high
precision, speed and simplicity, we have selected this architecture to develop our
automatic theme validation tool.

We trained our tool using an artificial data set of 1,500 screenshots of the
Android OS home screen. The home screens contain at least ten objects (icons)
and a balanced distribution between 4 (four) levels of contrast concerning the
background: very low, low, regular, and high. Our tool achieved high perfor-
mance, detecting objects, and high accuracy when classifying them, reaching a
mean Average Precision (mAp) of 79,91%.

2 Faster RCNN

Object detection, one of the most fundamental and challenging problems of com-
puter vision, seeks to locate object instances from a large number of predefined
categories in natural images; given an image or a frame of a video, the automatic
object detection aims to obtain:

– a list of bounding boxes.
– a label assigned to each bounding box.
– a probability for each label and bounding box.

Faster RCNN [2] is an architecture for object detection in images originally
presented in Twenty-ninth Conference on Neural Information Processing Sys-
tems - NIPS 2015. It is one of the most popular object detection architectures
using Convolutional Neural Networks (CNN) [3] to extract features from images
and videos.

The neurons of the convolutional layers function as the filters of the classic
image processing, i.e., an array of values representing a particular pattern that
must be searched in the image. The filter traverses the entire image searching its
pattern; the filter is fired when the pattern is detected. Activating all the filters
on a layer produces the activation map, also known as a feature map [4].

The feature map of one layer serves as input to the next layer, increasing
the level of abstraction of the patterns sought. Usually, they begin with edge
patterns in the first layer, followed by more complex patterns in deeper layers,



18 E. Fernandes et al.

Fig. 1. Edges combine into local objects such as eyes or ears, which combine into
high-level concepts such as “cat”. Image reproduced from [5]

Fig. 2. Faster RCNN. Image reproduced from [6]

e.g., a cat’s eye is identified in the intermediate layers while the cat’s face is
identified in a deeper layer, as shown in Fig. 1, reproduced from [5].

The architecture of the Faster RCNN, as shown in Fig. 2, consists of three
modules. The input images are represented as tensors height × width × chan-
nels (multidimensional arrays), which are passed by a CNN to produce feature
maps. These feature maps are consumed by a Region Proposal Network (RPN)
[2]. RPN uses the feature maps to find a predefined number of regions which
are highly likely to contain objects. Finally, the classification module uses the
features extracted by the CNN, and the bounding boxes with relevant objects
produced by the RPN to classify the image, and to predict the offset values for
the bounding boxes.

3 Related Work

Nguyen et al. [7] propose a method to infer UI elements hierarchy in screenshots
of mobile application screens and to generate working computer code. Authors



Themes Validation Tool 19

use border detection techniques like Canny Edges [8] and Edges Dilatation to
identify elements of interest in the given screenshots, find their contours, compute
their bounding boxes, and use heuristics to estimate which UI component are
each one based on its features. Mozgovoy et al. [9] address the challenge of hand-
drawn user interface elements detection to improve GUI tests automation, and
use mobile games as case of study. The experiments consisted of using several
image pattern matching algorithms to compare their precision in recognizing
elements of interest, and to suggest which algorithm should be used to analyse a
given game screen with its particular features. Chen et al. [10] present a method
that generates a GUI skeleton code from UI design images. Differently from [7],
however, neural networks are used identify the visual elements in the UI images.
The authors use Convolutional Neural Networks (CNN) [3] to learn features from
images and a Recurrent Neural Network (RCNN) [11] to infer spatial layouts,
which are used to produce GUI skeleton code. Similar to these works, our tool
is aimed to find visual elements in a screenshot, but we are mainly interested in
classify the elements’ contrast ratio. Similar to Chen et al. [10], we use a neural
network to identify and classify the elements but we are using the Faster RCNN
instead.

4 Experiments

In this section, we describe the methodology used to build and train our tool.
First, we describe how the dataset of Android OS Home screens was generated in
Sect. 4.1, followed by the description of the parameters and configurations used
by the Faster RCNN in Sect. 4.2.

4.1 Dataset

In order to have a very diversified dataset of Android OS home screen, we decided
on artificially generation of images instead of an extensive and laborious manual
screenshot gathering. Each synthetic image simulates a screenshot from Home
Screens of Android OS. We picked a resolution of 1440 × 2960, which is used in
last flagship smartphones, Samsung S9.

We are targetting only Home screens because of the high variance of its user
interface (UI) elements, i.e, its background image, icons, labels exhibit a higher
intraclass difference.

Our synthetic-based dataset generation algorithm generates a screenshot
from a set of overlayed images: the full-screen wallpaper, the applications icons,
and the application labels. This implementation is written in python and makes
use of OpenCV [12] to read and blend the set of overlayed images. Further-
more, we induce 4-level contrast errors by hue shifting icon images to white col-
ors, and ensuring that their luminance channel are proportional to background
luminance. A greater proportional difference means a high contrast while a low
difference means low contrast. Figure 3 shows an example of a generated home
screen.



20 E. Fernandes et al.

Fig. 3. Example of a synthetic home screen with icons at different levels of contrast and
their labels as classified by our tool. Tags: Very Low Contrast (VLC), Low Contrast
(LC), Normal Contrast (NC), and High Contrast (HC).

4.2 Faster RCNN

We used the configuration of the Faster RCNN1 as suggest by the authors in
the paper where it was first presented [2], except for the neural network that
generates the feature maps: where the authors use a pre-trained VGG16 [13], we
use a ResNet [14] trained from scratch for our problem.

Currently, ResNet architectures have replaced VGG as primary networks to
extract features in many situations. The main advantages of ResNet over VGG
is that it facilitates the training of deep models with the use of residual connec-
tions and batch normalization features not presented in the VGG architecture.
Furthermore, ResNet is larger then VGG, so it has more ability to learn what is
needed.

For the training, we defined the quantity of 100 epochs, each with 100 cycles.
The training took place on a GeForce GTX 1080 GPU installed on a desktop
device running Windows 10 Enterprise 64-bit, and had training time of approx-
imately 26 h.

5 Results

As previously stated, we used the 1500 artificially generated screen shots to train
our theme validation tool. We create the images with a balanced number of icons

1 Keras implementation of Faster R-CNN. Available on https://github.com/yhenon/
keras-frcnn/.

https://github.com/yhenon/keras-frcnn/
https://github.com/yhenon/keras-frcnn/


Themes Validation Tool 21

in 4 levels of contrast and with their respective markings (bounding boxes). The
training was performed with 100 epochs, each with 100 cycles. After the training,
we generated a new dataset of 300 screen shots to perform the tool tests. The
images were generated with the same characteristics of the training images, in
number of objects and contrast levels.

As evaluation metric, we have used mean Average Precision (mAP) [15].
This metric performs an acceptable balance between the errors of the detected
bounding boxes and the classification of the object present in each bounding
box. Then it is widely used in works related to object detection in images.

Our tool achieved a mAP of 79.91% in the test set. The Average Precision
for very low contrast icons was 81.14%, 71.00% for low contrast icons, 73.62% for
normal contrast and 93.87% for high contrast icons. This result indicates that
our tool has high performance for identifying and classifying objects from low
to high contrast.

6 Conclusion and Future Works

In this paper, we presented our tool for validation of smartphone themes based
on a machine learning technique known as object detection. This tool was used
to validate the visual problems of contrast between elements of new themes. Our
tool uses Faster RCNN method to locate icons in screenshots of the Android OS
Home screen, and classifies them into one of the four (4) pre-defined contrast
level categories (very low, low, regular, and high). We plan to extend our tool
so that it also identifies contrast problems in texts and videos that are part of
customization on themes for smartphones.

References

1. Web content accessibility guidelines (WCAG) 2.0. web, December 2008
2. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks. In: NIPS, pp. 91–99 (2015)
3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-

volutional neural networks. In Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105.
Curran Associates, Inc. (2012)

4. Mueller, J.P., Massaron, L.: Machine Learning for Dummies, 1st edn. For Dummies
(2016)

5. Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications Co., Green-
wich (2017)

6. Liu, L., et al.: Deep learning for generic object detection: a survey. CoRR
abs/1809.02165 (2018)

7. Nguyen, T.A., Csallner, C.: Reverse engineering mobile application user interfaces
with REMAUI (T). In: 2015 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 248–259. IEEE (2015)

8. Canny, J.F.: Finding edges and lines in images. Technical report, Massachusetts
Inst of Tech Cambridge Artificial Intelligence Lab (1983)



22 E. Fernandes et al.

9. Mozgovoy, M., Pyshkin, E.: Using image recognition for testing hand-drawn graphic
user interfaces. In: 11th International Conference on Mobile Ubiquitous Comput-
ing, Systems, Services and Technologies (UBICOMM 2017) (2017)

10. Chen, C., Su, T., Meng, G., Xing, Z., Liu, Y.: From UI design image to GUI
skeleton: a neural machine translator to bootstrap mobile GUI implementation.
In: Proceedings of the 40th International Conference on Software Engineering, pp.
665–676. ACM (2018)

11. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015

12. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 25, 120–125 (2000)
13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: International Conference on Learning Representations
(2015)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

15. Liu, L., Özsu, M.T. (eds.): Mean Average Precision, pp. 1703–1703. Springer,
Boston (2009). https://doi.org/10.1007/978-0-387-39940-9

https://doi.org/10.1007/978-0-387-39940-9

	Themes Validation Tool
	1 Introduction
	2 Faster RCNN
	3 Related Work
	4 Experiments
	4.1 Dataset
	4.2 Faster RCNN

	5 Results
	6 Conclusion and Future Works
	References




