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Abstract. Deep neural networks (DNNs) have been considered to be the
state-of-the-art artificial intelligence methods in a very broad range of
applications. However, DNNs are compute intensive and memory inten-
sive which are difficult to be employed in practical scenarios. Due to
their favorable parallel computing ability, a series of DNN accelerators
have been proposed. However, the improvement of on-chip computing
capacity and the increasing number of parameters in the neural net-
works make access to memory a bottleneck. In this paper, we analyze
the existing DNN algorithms. We observe that the special structure of
neural networks makes it have two useful characteristics, which are uni-
lateral directivity and local independence. Based on these characteris-
tics, we propose a general software scheduling method to reduce memory
access cost. Based on the experimental results, our method can reduce
32% memory access cost and achieve a speedup of 1.6x in average on our
experiment platform and the best result is in ResNet-50, which is up to
56% and 2.62x.
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1 Introduction

Deep neural networks (DNNs) are ubiquitous in a very broad range of applica-
tions, such as speech recognition [1], object detection [2,3], semantic segmenta-
tion [4] and so on. With the continuous development of DNNs both the number
of neurons and synapsis increases exponentially. As a result, the operations of
computing and memory accessing will grow far beyond the hardware processing
capability especially for the embedded systems. A large number of solutions have
been proposed by the researchers to address this limitation, such as pruning [5],
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data compressing [6], low-precision quantization [7], etc. However, the existing
general processor platforms (such as CPU, FPGA, DSP, etc.) are still difficult
to fully meet the requirements of practical applications.

Some researchers considered the general characteristics of DNN algorithms
and designed neural network accelerators [11–13]. DianNao [8] is a dedicated
accelerator which makes advantages of the data locality and computational prop-
erties of DNNs. DaDianNao [9] adopts time-division multiplexing of neurons to
acquire high performance. EIE [10] utilizes sparse data to speed up the process of
computation. Generally, DNN accelerators prefer to add private on-chip memory
for performance improvement. Data is loaded from DRAM to on-chip memory
and then the results are stored back to DRAM after computation. However, for
most of the neural network accelerators, a large increase in the computational
resources will aggravates the shortage of memory bandwidth and resource con-
tention of on-chip network. The data transmission latency between internal and
external storage will make up a large portion in the program execution time.

In this work, we propose a general software scheduling method to optimize the
memory access by making advantages of both unidirectional data transportation
and local data independence. Besides, we propose an on-chip memory reuse
method to expand the on-chip memory size.

The paper is organized as follows. In Sect. 2, we show the bottleneck that
we face of memory access and the optimization potential of DNNs. In Sect. 3,
we introduce the details of our method. The experimental methodology and
experimental results are presented in Sect. 4. Section 5 makes a conclusion at
last.

2 Motivation

2.1 Memory Access Bottleneck

Most DNN algorithms are computational and memory intensive. A number of
accelerators which can offer high compute capability have been proposed to solve
the computationally intensive problem. As a matter fact, the current mainstream
neural network accelerators have TFLOPS-level operation capability which is far
beyond the bandwidth of the current external memory. However, most of these
work assume away the question of memory access. To illustrate this problem,
we analyze the amount of computation and memory access for all layers in
ResNet-18 [21].

As shown in Fig. 1, the ratio of computation to memory access for each
layer is different in ResNet-18 which need different requirement for bandwidth
and compute capability. Taking the element-wise layer as example, we need a
bandwidth of 12 GB/s if our compute capability is 1 GFLOPS. Meanwhile, the
requirement of bandwidth is only 10 MB/s for convolution layers with the same
compute capability of 1 GFLOPS. Although the hardware architecture of neu-
ral network accelerators is well-designed to make a balance between memory
bandwidth and computation capability, they will never reach their full potential
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without software optimization. We further statistics the proportion of compu-
tation and memory access for each layer in the whole ResNet-18. As shown in
Table 1, more than 95% of data transmission account is in certain layers includ-
ing convolution layers, BatchNorm layers, scale layers, ReLU layers and eltwise
layers. However, the computation amount of these layers is small except convo-
lution layers, which is less than 1% in the whole network. Thus, the bottleneck
of memory access is serious in these layers.
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Fig. 1. Compute-to-global-memory-access ratio for each layer in ResNet-18

2.2 Potential of Optimization

To solve this bottleneck, we further analyze the characteristics of DNN algo-
rithms. We can neutralize the inhomogeneity between memory access and com-
putation of different layers by fusing multiple layers together because of the
important characteristic of unilateral directivity in DNN algorithms. Since the
dataflow of DNNs is unilateral, multiple layers can be computed together. Neu-
rons are stored on-chip and are considered as input neurons for one hidden layer.
The output neurons are still stored on-chip and are used as input neurons for
next hidden layers. Besides, we can obviate a large number of data transmission
from DRAM to on-chip memory or on-chip memory to DRAM. We observe that
more than 99.6% data transmission can be reduced in ResNet-18 if all layers can
be fused together.

However, it is almost unavailable to fuse all layers in real neural networks.
Among the reasons for this state of affairs, one may cite the mismatch between
the size of on-chip memory and neurons, the small on-chip memory size limited
by the hardware overhead and the vast on-chip memory size needed to cache the
intermediate data of the fused layers. Another important characteristic of DNN
algorithms to relieve this problem is local independence. Each point of output
neurons in one layer only depends on a defined region of input neurons. Hence, the
neurons can be tiled into pieces and we can compute each piece separately. Thus,
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Table 1. Proportion of computation and memory access for each layer in ResNet-18

Layer Computation amount Memory accessing amount

Convolution 99.55% 45.59%

BatchNorm 0.15% 15.27%

Scale 0.15% 15.24%

ReLU 0.06% 13.10%

Pooling 0.05% 2.92%

Eltwise 0.02% 6.41%

InnerProduct 0.03% 1.46%

SoftMax 0.00% 0.01%

we can fuse more layer with the same on-chip memory size. And combining the
aforementioned features, we further propose an on-chip memory reuse method.
We will present the detail of our method in the following section.

2.3 Existing Works

Some works which fuse the active layers after the convolution layers have been
done in some mainstream machine learning frameworks, including MXNet [14]
and Tensorflow [15,16]. However, the compute capacity is much higher than
bandwidth in most accelerators. The ratio in GPU V100 is 10x and it is much
greater in other accelerators. Thus, it is meaningful to fuse more layers. Manoj
Alwani et al. [17] proposed a method to fuse multiple convolution layers, but
it aims at hardware implementation. As a result, it is not general and flexi-
ble enough. Thus, a general software scheduling method with deeper fusion is
important to solve the bottleneck of memory access.

3 Optimization Method

In this section, we propose a software scheduling method on neural network
accelerators. The method consists of two mainly parts. One is layer fusion by
software which can greatly reduce the demand of memory access. The other is
on-chip memory reuse method, which can solve the large memory space required
by layer fusion and the limitation of on-chip memory size in the accelerators.
We will tile the data of each layer into pieces, then for each calculation, we get
a piece of output from corresponding pieces of input, as shown in Fig. 2. We will
describe our method in detail in this section.

3.1 Layer Fusion

At first, we show the details of the software scheduling method. To make the
program of software more flexible, we decoupled the fusion process into two
phases. One phase is operational-related shape deduction (SD) and the other
phase is operational-independent shape transfer (ST).
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Fig. 2. An example for layer fusion process

SD. Shape deduction is to get the coordinate relationship between input data
and output data. Most of layers in DNNs have four dimensions including batch,
height, width and channel. In this subsection, for simplicity, we use the shape
deduction between height dimension and width dimension as an example. For
other dimension or dimensions greater than four, the method is almost the same.
Besides, we prefer to infer shape from output shape to input shape, because
sometimes there is redundant data for input data which will affect the shape
deduction.

We use Range(W ) to represent an interval and W ∈ [wb, we). Similarly, we
can use Range(X,Y ) to represent a range on a two-dimensional plane. Hence,
we can use the following expressions to represent the process of shape deduction.

Range(Wi,Hi) = kernel(Wo,Ho)

Where kernel(·) is the function of shape deduction, Range(Xi, Yi) is coordi-
nate range of input data and Range(Xo, Yo) is the coordinate range of output
data. The shape deduction is related to the operators of each layer. For differ-
ent layers, the deduction formulas are different. We take some typical layers as
examples and we use xxx kernel to distinct different kernel functions. Here xxx
is usually an abbreviation of layer name.

Convolution/Pool. Convolution and pool are the most typical layers in DNNs.
There are some basic parameters in these operators, such as kernel size, stride,
etc. We use kh, kw, sh and sw as abbreviations.
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Range(Wi,Hi) = cvpl kernel(Range(Wo,Ho)) :
(Wib ,Wie) = (Wob ∗ sw,Woe ∗ sw + kw)
(Hib ,Hie) = (Hob ∗ sh,Hoe ∗ sh + kh)

Pad. Pad operator generally occurs in convolution or pooling layers. However,
pad operator will change the shape of data, thus we make it as a separate layer.

Range(Wi, Hi) = pad kernel(Range(Wo, Ho)) :

Wib (Wie ) =

⎧
⎪⎨

⎪⎩

0 if Wob (Woe ) < pad left

Wob (Woe ) − pad left if pad left ≤ Wob (Woe ) ≤ W + pad left

W if Wob (Woe ) > W + pad left

Hib (Hie ) =

⎧
⎪⎨

⎪⎩

0 if Hob (Hoe ) < pad up

Hob (Hoe ) − pad up if pdf up ≤ Hob (Hoe ) ≤ H + pad up

H if Hob (Hoe ) > H + pad up

BatchNorm/Scale/Active. For these layers, they will not change the shape of
data, thus it makes shape deduction directly.

Range(Wi,Hi) = elt kernel(Range(Wo,Ho)) :
(Wib ,Wie) = (Wob ,Woe)
(Hib ,Hie) = (Hob ,Hoe)

ST. In shape deduction phase, each layer only focuses on the coordinate of
output data and returns the coordinate of the input data. In shape transfer
phase, it will call the kernel function defined in shape deduction phase. The
coordinate of output data will be set as input to the kernel function of current
layer and the result of kernel function will be passed to the kernel function of
the previous layer. Thus, we will get all coordinate information of all layer be
fused after we go through all these layers. The pseudocode is shown in Fig. 3.

ShapeTransfer (Range (Xo ,Yo ) ) :
Coordinates [ FusionLayerNum ] = Range ( xo ,Yo)
For ( LayerIndex=FusionLayerNum−1; LayerIndex>=0; LayerIndex−−):

Coordinates [ LayerIndex ]= ke rne l ( Coordinates [ LayerIndex+1])
Return coo rd ina t e s ;

Fig. 3. Pseudocode for shape transfer
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3.2 On-Chip Memory Reuse

Although layer fusion can greatly reduce the requirements of memory access, it is
limited by the size of on-chip memory. In this part, we analyze the characteristics
of DNN at first, and then introduce the on-chip memory reuse method which
makes use of the characteristics to break the memory limitation.

Base on the characteristic of unilateral directivity for DNNs, once the input
data of one layer has been used and this data does not need by other layers,
the memory space of this data can be reused. Besides, the shape of data can be
gotten in advance in most of inference phase, which makes data reused on-chip
is available.

The process of data distribution can be represented in a simplified sequence.
Here, we only care about the point when the memory usage status changes, and
we define the equivalent life time of each data from the allocate point to the free
point. To illustrate this process more clearly, an example sequence is shown in
left side of Fig. 4.

Ram A

Ram B

Ad
dr

es
s

Ram C

Alloc A

Alloc B

Alloc C

Free A

Free B

Free C

life me

max memory usage

Fig. 4. The left side shows an example of memory distribution sequence. The right
side shows a possible memory distribution result.

Figure 4 also shows an intuitive memory reuse method. We consider two data
dependent if there is overlap between the life times of these two data. Otherwise,
the memory space can be shared by these two data. As what we show in Fig. 4,
ram A and ram B are dependent, and ram B and ram C are dependent too. But
for ram A and ram C, they are independent, thus they share the same memory
space.

The intuitive memory reuse method can save a large number of space, but
it is limited by the data size. Once the size of input data or the size of output
data is larger than on-chip memory size, we cannot fuse more layers.

To make these cases can be fused, we propose a deep memory reuse method.
Base on the characteristics of local independence, when a local part of input
data has been used to get a local part of output data, the memory space of this
local part can reused. Thus, even if the life time of input data and output data
has overlap, the output data can reuse part of memory space of the input space.
The most special case is some element wise layers, such as add, BatchNorm,
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scale, etc. The input data and output data of these layers have the same size
and can share the same memory space.

To illustrate the point more clearly for general cases, we take a concrete
example of convolution layer which is shown in Fig. 5.

The horizontal axis in Fig. 5 is the growth of output data in H and W
dimension. Here, we consider the multiplication of height and width as one
dimension. For the calculation of each point, we get the address of first point
in the piece of data we need and the address of current output point. Then, we
join these points into two lines, as shown in Fig. 5. For each point, the memory
space for those input data whose address is below the input address line can be
reused, because these data have been used to calculate the output data before
current point.
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Fig. 5. The height, width and channel of input data and output data for this con-
volution is [8, 64, 3] and [3, 31, 16] and the sizes of kernel and stride are 4 × 4 and
2 × 2.

Even the life time of output data and input data is overlapped, they can still
share a part of memory space. As shown in Fig. 5, the address range of input
data is from 2096 (bytes) to 8240 (byte) and that of output data is from 0 (byte)
to 5952 (byte). Thus, we reduce 31% memory usage in this case.

3.3 Fusion Method

Combining the methods above, we will show the implementation of our fusion
method in this part. Figure 6 is an executive flow chart of our method. For each
fusion, we first tile output data of the last layer into pieces. Then we do shape
transfer for each piece and in the phase of shape transfer, it will call the kernel
functions defined by each fused layer to do shape deduction. We then allocate
memory space for all data. If the memory distribution is well-done, we can try
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to fuse the next layer. Otherwise, we shrink the tiled size and try to do shape
transfer and memory distribution again. If the tiled size is the smallest tiled size,
it means the current layer cannot be fused and returns the already fused layer
list.

This process can be done before networks execution and we can get the
coordinate and memory address for each piece of data. According to these infor-
mation, we can execute the entire network through the specific instruction set or
opcodes provided by the accelerators. The pseudocode is shown in Fig. 7. The in
and out are the first input data and last output data for current fused list. The
compute function is defined by each layer according to their own algorithms.
The input data is loaded from DRAM and all middle data is stored on-chip. The
output data is stored back to DRAM when we get a piece of final results.

Tile Output

Shape Transfer

Memory Distribu on

Fuse Next Layer

Shrink Tile Size

success

Cannot Fuse

Return Fused List

Y

N

Y

N

Fig. 6. Flowchart of layer fusion method

Execution ( in , out ) :
For ( i = 0 ; i < PiecesNum ; i ++):

mid data = Load ( in [ i ] )
For ( j = 0 ; j < FusionLayerNum ; j ++):

mid data = compute<i>(mid data )
out [ i ] = mid data

s t o r e ( out [ i ] )

Fig. 7. Pseudocode for execution
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4 Experiment

4.1 Experiment Methodology

We design a prototype accelerator as our experiment platform. The structure of
the prototype refers to the design of DaDianNao [9]. In our experiment platform,
we limit the bandwidth between DRAM and on-chip memory to 1.5 GB/s. the
compute capability of the prototype accelerator is 200 GFLOPS and we set 768
KB size of on-chip memory.

We choose five typical NN models as the benchmarks to evaluate our method,
i.e. VGG-19 [18], GoogLeNet [19], InceptionV3 [20], ResNet-18 [21] and ResNet-
50 [21]. Besides, we evaluate our optimization in the prototype accelerator, and
compare the result of the memory access reduction and execution time improve-
ment between the method without optimization, with only layer fusion and with
both layer fusion and on-chip memory reuse.

4.2 Layer Fusion Result

We take the results of the method without optimization as the baseline. Then we
test two methods with only layer fusion and with both layer fusion and on-chip
memory reuse. The results are presented in Figs. 8 and 9.
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Fig. 8. Ratio of memory access reduction w.r.t the baseline.

Figure 8 shows the result of memory access reduction rate compared with
baseline. We get more than 15% reduction of memory access in our bench-
marks, especially for ResNet-50 which acquires 56% reduction. The performance
improvement of execution time has similar tendency as shown in Fig. 9. We get
at least 1.26x performance improvement in VGG-19 and at most 2.62x perfor-
mance improvement in ResNet-50. Besides, we can get a better effect which is
more than 5% improvement in average for both memory access reduction and
performance by using on-chip memory reuse in addition.
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Fig. 9. Speedup w.r.t. the baseline (execution time).

We find that the result in VGG-19 is not much better than other networks.
Then we further analyze the fusion status in VGG-19. We observe that the most
layers in VGG-19 is convolution layers and the kernel size of all these layers is
3x3 which result in a large synapse data size. However, synapse is shared by all
input data in convolution layers. Thus, if we tile input data into pieces, each
piece of data need the same synapse data and these synapse data will take up
an independent memory space. The memory space is run out of soon if we fuse
more convolution layers. If we have much more on-chip memory space, we can
layer out more synapse data or we can reuse the space of synapse data if the
input data is not tiled into pieces. However, it is a tradeoff between performance
and the area of accelerators.

5 Conclusion

The development of neural network accelerators makes DNNs run faster and
faster, but the slowly development of bandwidth for DRAM makes accelerators
stuck in a memory access bottleneck. It is very important to solve this problem
to utilize accelerators more effective.

In this paper, we propose a new software scheduling method to optimize
memory access. It mainly consists of two parts, one is layer fusion and the other
is on-chip memory reuse. They utilize the properties of DNNs. That is unilat-
eral directivity and local independence. Based on the experimental results, our
method achieves 32% memory access reduction and 1.6x speedup in average. To
get a better performance, we can expand the amount of space on chip, however,
it is a tradeoff between performance and the area of accelerators.
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