
N-Docker: A NVM-HDD Hybrid Docker
Storage Framework to Improve

Docker Performance

Lin Gu1, Qizhi Tang1, Song Wu1(B), Hai Jin1, Yingxi Zhang2, Guoqiang Shi2,
Tingyu Lin2, and Jia Rao3

1 National Engineering Research Center for Big Data Technology and System
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China

wusong@hust.edu.cn
2 State Key Laboratory of Intelligent Manufacturing System Technology,

Beijing 100854, China
3 The University of Texas at Arlington, Arlington, TX 76019, USA

Abstract. Docker has been widely adopted in production environment,
but unfortunately deployment and cold-start of container are limited by
the low speed of disk. The emerging non-volatile memory (NVM) tech-
nology, which has high speed and can store data permanently, brings
a new chance to accelerate the deployment and cold-start of container.
However, it is expensive to replace the whole hard disk driver (HDD)
with NVM. To achieve the fastest deployment and cold-start with low-
est cost, we conduct in-depth analysis on the Top-134 images in Docker
Hub and obtain two main insights as: (1) the storing latency of layered
image has become the bottleneck of container deployment; (2) only a
few image layers are required for container cold-start. Based on these
two findings, we propose a NVM-HDD hybrid docker storage frame-
work as N-Docker. It can effectively accelerate container cold-start by
detecting the bottleneck layers as well as cold-start required layers and
storing them into NVM for faster container startup with limited NVM
capacity. Experimental results show that N-Docker can accelerate the
container deployment by 1.21X and cold-start by 2.96X. Compared to
NVM-Docker, which stores all images into NVM, N-Docker achieves the
same performance improvements while reducing the usage of NVM by
88.22%.

Keywords: Container deployment · Container cold-start · Docker ·
Image · NVM

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
X. Tang et al. (Eds.): NPC 2019, LNCS 11783, pp. 182–194, 2019.
https://doi.org/10.1007/978-3-030-30709-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30709-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-30709-7_15


N-Docker 183

1 Introduction

Docker [2] is a lightweight virtualization system, with the advantages of con-
tinuous integration, version control, portability and fast migration, which has
been widely used in industry. Different from virtual machines [5], containers
share the operating system kernel with the underlying host, which enables rapid
deployment with low performance overhead. Docker packages everything needed
by an application as an image, including runtime tools, system tools, and sys-
tem dependencies. Images are layered and read-only, and adopt copy-on-write to
reduce the usage of storage space. Despite being lightweight, container’s startup
is much slower in practice due to deploying image and file-system provisioning
bottlenecks. The startup of non-local containers includes two processes: deploy-
ment and cold-start.

The non-local containers images must be first downloaded from remote reg-
istry, then stored in local disk [9]. Note that the image downloading latency
is usually determined by the image size, network dynamics and available
bandwidth. To cope with slow downloading, a method based on peer-to-peer
is adopted by some cluster management systems (such as Tupperware [12],
Borg [15] etc.) to accelerate the distribution of package. Slacker [10] acceler-
ates container deployment by lazily pulling image data when needed. Unfortu-
nately, these pioneer work all focus on reducing the downloading latency, but
fail to take the image storing latency into consideration. When the image layers
are downloaded, they must be stored layer by layer sequentially into local disk.
Note that the upper layer downloading may complete first but still have to wait
for the lower ones, leading to a long storing latency after the network download
is completed. Our analysis shows that with a network speed of 100 Mbps, image
storing accounts for at least 23.5% of container deployment latency, and should
be carefully analysed and studied to improve the overall deployment latency.

After successful deployed in local disks, the containers are ready to be
launched to provide certain services with a cold-start latency. It widely agrees
that containers are usually short-lived and dynamically activated/deactivated
according to real time service demands such as serverless computing, hence the
long cold-start latency severely hinders the service quality [7]. Moreover, the
cold-start latency of launching multiple container simultaneously increases sig-
nificantly with the container number. For example, launching 20 containers is
about 7 times slower than launching 1 container [16]. According to the stud-
ies conducted by Google Borg [15], the median task cold-start latency is 25 s,
and above 80% of the latency is caused by the slow I/O speed of local disk. To
mitigate this problem, Akkus et al. [7] try to lower the function instances from
container to separate process to share libraries with other functions of an appli-
cation. Oakes et al. [13] create a cache of pre-warmed Python interpreters to
speed-up the I/O process. However, they either weaken the function isolation by
sharing libraries or are designed for specialized system with limited application
scenarios.



184 L. Gu et al.

Facing the above problems, it is desired to design a container acceleration
framework to speed up both deploying and cold-start without loss of gener-
ality. Recently, the development of new hardware, i.e. non-volatile memory
(NVM) [17], brings a new opportunity. NVM shows excellent characteristics of
non-volatility, byte addressing, and superior reading performance. However, due
to the high cost of NVM, its size is usually limited, which makes it impossible
to store all images in NVM. To make full use of the limited NVM resource, and
accelerate the deployment and cold-start of container, we should carefully select
the image layers and schedule the NVM resource accordingly.

To address this issue, we conduct an in-depth analysis on bottlenecks of
container deployment and cold-start on the Top-134 images downloaded more
than 1 million times on the Docker Hub [3]. Based on our analysis, we propose
a N-Docker framework to optimize the deployment and cold-start of container
with limited NVM resource. The main contributions of this paper are as follows:

– We analysis the deployment and cold-start on the Top-134 images and find
two key issues of container startup: (1) container deployment latency can be
greatly reduced by improving the image layer storing; (2) container cold-start
only requires a small part of files in the image. Based on these two findings, we
discuss the opportunity and challenges of adapting NVM to speedup container
startup.

– A N-Docker framework is designed to improve container deployment and cold-
start. We focus on the storing layers and leverage NVM to accelerate its
storing. Furthermore, we detect and write the hot image files required by
container cold-start to NVM in order to reduce cold-start latency.

– We implement N-Docker, a NVM-HDD hybrid docker storage framework.
The experimental results demonstrate that N-Docker achieves the same per-
formance as NVM-Docker. Moreover, N-Docker can reduce the size usage of
NVM by 88.22%. Compared to traditional Docker which stores all images in
hard disk, N-Docker can speed up the deployment and cold-start of containers
by 1.21X and 2.96X separately.

The rest of this paper is organized as follows. We discuss the design and
implementation of N-Docker in Sect. 2. In Sect. 3 we evaluate the effectiveness of
N-Docker as well as the overhead. In Sect. 4 we discuss the related work. Finally,
Sect. 5 concludes this paper.

2 Design and Implementation

2.1 Opportunities and Challenges from Emerging NVM

Container technique has been widely used in the industry during the past few
years [12,15]. In this section, we introduce the deployment and cold-start of
container in detail and discuss the opportunities of NVM.

Time-Consuming Image Deploying. Before a container can be started up,
its image has to be downloaded and stored from the Internet first. In detail,



N-Docker 185

the data downloaded from the Internet is just some compressed files, which will
be decompressed and stored as layered image later. We do a lot of research on
the Top-134 images downloaded more than 1 million times on the Docker Hub
and find that the average deployment latency of the Top-134 images is about
20.7 s, and find that storing latency accounts for 23.4% of deploying time. As a
result, the storing latency should also be considered during container deployment
acceleration.

Slow Container Cold-Start. Similarly, container cold-start is also slower in
practical cases due to the poor performance of local disk I/O. We do comprehen-
sive analysis and research on the Top-134 images and find out only a few base
files in the large image, called Hot Image File (HIF), are required during the
cold-start for different types of containers. The HIF usually includes bin files,
system dependencies, application files, and execution engines, and will be access
when a container is launched.

Now the server platform supports NVM in the form of NVDIMMs [6]. How-
ever, naively store the whole image into the NVM is not realistic in practical
cases, since the price of NVM devices is relatively high. To this end, we must
take the characteristics of container into consideration to accelerate container
startup with limited NVM resource. Through the above analysis and discussion,
we conclude that the deployment and cold-start of container are the main bottle-
neck of container startup. In this section, we introduce N-Docker, a NVM-HDD
hybrid docker storage framework, to speed up its deployment and cold-start.

Disk NVM

Layer-aware
Storage Strategy

HIF-baesd cold-start
Acceleration

Registry

Instance

Instance

LBL LAL
Hot Image Files

Container Instance 

Pull

Optimization One

Optimization Two

 Cold Image Files

Instance

Instance

Run

Fig. 1. N-Docker overview

2.2 Overview

According to the previous researches of the process on container deployment,
analysis of the files used for container cold-start and the characteristics of NVM,
we design N-Docker based on the following three objectives:



186 L. Gu et al.

– Container deployment acceleration: In general, we can accelerate the
container deployment by storing the images in NVM. However, considering
the capacity limitation of NVM devices, we design a container deployment
strategy to store the bottleneck layers in NVM instead of the entire images
in NVM during the process of container deployment.

– Container cold-start improvement: Similarly, to improve the container
cold-start via NVM, we also need detect and store the HIF in NVM, achieving
fast container cold-start and high NVM resource utility at the same time.

– Generality and transparency: In terms of generality, N-Docker should
support a wide range of workflows to accelerate deployment and cold-start. As
for transparency, N-Docker should support these workflows without modifying
the application or weaken the isolation.

Figure 1 describes the overview of the N-Docker architecture. It is clear that N-
Docker has two core components. According to the finding that storing image is
one of the reasons for the slow deployment of containers, we design Layer-aware
Storage Strategy (LASS) to store partial image in NVM during the deployment
of container. Based on the finding that the cold-start of container only needs
Hot Image Files, we propose the HIF-based Cold-start Acceleration (HBCSA)
method to acquire HIF, store them in NVM, and write other cold image files
back to hard disk.

2.3 Layer-Aware Storage Strategy

To achieve container deployment acceleration, we design LASS which speeds up
the deployment of container while reducing the space usage of NVM. The latency
of container deployment is mainly resulted from the download image and storing
image. In order to speed up container deployment, we take NVM instead of the
traditional disks to store the images. However, the capacity of NVM is usually
limited, since it is more expensive in the price. So it is not economical to store
all images in NVM. Our goal is to minimize usage of NVM while enabling rapid
container deployment.

During the image deployment, there are three threads downloading different
layers of one image parallelly. A ChainID is attached to each downloaded layer
to identify a layer, and its value is calculated by sha256 algorithm according
to layer’s diffID and its parent chainID. Therefore, image layers must be stored
layer by layer sequentially into local disk. The different layer sizes usually lead
to different download latency. That is, one layer may still in download while
the others have finished. We refer to the layer being downloaded lastly as Last
Downloading Layer (LDL), which is usually the largest layer. As shown in Fig. 3,
the lower image layers of LDL is called layers below LDL (LBL) and its status
is Pull complete, which has already been downloaded and stored in the hard
disk. The higher image layer above LDL is called Layers above LDL (LAL)
and its status is Download Complete, which has been downloaded while not yet
stored in the hard disk. The storing of LAL will be postponed until LDL has
been downloaded and stored due to layer sequential storing. Once the LDL is



N-Docker 187

downloaded, LAL and LDL will be stored together, which may lead to high
latency of intensive writes after the network download is completed. To address
this issue, we design LASS which can identify LDL and only store LDL and LAL
in NVM.

Layer-Aware Storage Strategy Design. To take advantages of fast I/O
speed of NVM with a constrained capacity, we need design LASS to determine
the layers that should be stored in NVM and disk, towards the goal of fastest
storing and fewest NVM usage. Hereafter, we investigate different schemes and
find the optimal strategy. To answer this question, we use a Boundary Layer
(BL) to divide the layers of one image into two parts, namely Ln (above BL)
and Ld (below BL) with the sizes of Sn and Sd, to be stored in NVM and local
disk, respectively. BL stores in NVM and its size is Sbl. We suppose that an
image has N layers, LDL is the Kth layer and BL is the Mth layer. In order to
find the optimal layer aware storage strategy, we introduce two indicators as the
criteria to evaluate the performance of different strategies, namely TTotal (the
total latency of container deployment) and UTotal (the total NVM usage of con-
tainer deployment). TTotal and UTotal are calculated according to the equations
as follows.

TTotal = TD + TDisk + TNVM (1)

As shown in Eq. 1, TTotal consists of three parts. TD represents the latency
caused by the download image. TDisk and TNVM are the latencies storing image
in hard disk and storing image in NVM after the network download is completed,
separately.

TDisk =
{

0 M ≤ K
α ∗ (SLDL + SLAL − Sn − Sbl) M > K

(2)

TDisk is equal to the total image size written to the hard disk after the network
download is finished divided by the hard disk write speed. As shown in Eq. 2,
α is the reciprocal of the hard disk write speed. When the network download is
completed, LBL has been stored. Therefore, if BL is LBL or LDL, TDisk is 0. If
BL is LAL, layers between LDL and BL store in disk after network download is
completed.

TNVM =
{

β ∗ (SLDL + SLAL) M ≤ K
β ∗ (Sbl + Sn) M > K

(3)

TNVM is equal to the total image size written to NVM after the network
download is completed divided by the NVM write speed. As shown in Eq. 3, β
is the reciprocal of NVM write speed. After network download is completed, if
BL is LBL or LDL, layers between LDL and the highest layer store in NVM. If
BL is LAL, layers between BL and the highest layer store in NVM.

TTotal =
{

TD + β ∗ (SLDL + SLAL) M ≤ K
TD + α ∗ (SLDL + SLAL − Sbl − Sn) + β ∗ (Sbl + Sn) M > K

(4)

UTotal = Sbl + Sn (5)



188 L. Gu et al.

Combining 1, 2, and 3, we can easily get Eq. 4. Since the write speed of
NVM is several orders of magnitude faster than that of hard disks, it is assumed
that α � β. Equation 5 shows that UTotal is the space usage of NVM, which is
another performance indicator. Because we only care about latency caused by
storing image, we set TD as a constant. Our goal is to minimize UTotal on the
premise of minimizing TTotal. According to the location of boundary layers, we
design the following three strategies as shown in Fig. 2.

Strategy 1 set the Boundary Layer as the LBL. At this time, M < K and
SLDL + SLAL < Sbl + Sn. The result is shown in Eq. 6. TT otal is the sum of TD

and the latency caused by storing SLAL to NVM, and UTotal is Sn.{
TTotal = TD + β ∗ (SLDL + SLAL)
UTotal = Sbl + Sn

(6)

Strategy 2 takes LAL as the Boundary Layer. At this time, M > K. The
result is shown in Eq. 7. Because α � β, the delay TTotal of strategy 2 is higher
than that of strategy 1, so strategy 1 is better than strategy 2.{

TTotal = TD + α ∗ (SLDL + SLAL − Sbl − Sn) + β ∗ (Sbl + Sn)
UTotal = Sbl + Sn

(7)

Strategy 3 selects the LDL as the Boundary Layer. At this time, M = K,
Sbl +Sn = SLDL +SLAL. The result is shown in Eq. 8. The strategy 3’s TTotal is
the same as the strategy 1. In strategy 1, SLDL+SLAL < Sbl+Sn. So the UTotal

of strategy 3 is smaller than strategy 1, strategy 3 is better than strategy 1.{
TTotal = TD + β ∗ (SLDL + SLAL)
UTotal = SLDL + SLAL

(8)

It is easy to conclude that strategy 3 is the best choice with the lowest latency.
On the premise of enabling rapid deployment of containers, the usage of NVM
is minimized. Therefore, we adopt strategy 3 and set the Boundary Layer as
LDL, as shown in Fig. 3. While LBL are storing, other image layers are also
being downloaded from the network. We chose to store LBL in disk to reduce
the usage of NVM. When LAL and LDL are being stored, the network download
process has ended. At this time, the latency of container deployment depends
entirely on the storing LDL and LAL. We store LDL and LAL in NVM. As a
result, containers deployment is significantly accelerated.

Disk

NVM

Layer1

Layer2

LayerK-1(BL)

LayerK(LDL)

LayerK+1

LayerN-1

LayerN

LBL

LAL

 Ld

 Ln

Disk

NVM

Layer1

Layer2

LayerK-1

LayerK(LDL)

LayerK+1(BL)

LayerN-1

LayerN

LBL

LAL

 Ld

 Ln

Disk

NVM

Layer1

Layer2

LayerK-1

LayerK(LDL-BL)

LayerK+1

LayerN-1

LayerN

LBL

LAL

 Ld

 Ln

Strategy 1 Strategy 2 Strategy 3

Fig. 2. Strategy overview

Disk NVM

Layer1(Pull Complete)

Layer2(Pull Complete)

Layer3(Pull Complete)

Layer4(Downloading-LDL)

Layer5(Download Complete)

Layer6(Download Complete)

Layer7(Download Complete)

LBL

LAL

Store

Store

Fig. 3. Image storage



N-Docker 189

2.4 HIF-Based Cold-Start Acceleration

To achieve fast cold-start, we propose HBCSA to speed up the cold-start of
containers while reducing the usage of NVM. Note that containers cold-start
only requires HIFs, hence only storing the HIFs in NVM devices during cold-
start can speedup the cold-start. To accelerate the cold-start of container for the
first time, we execute static analysis to identify image layers including HIFs, and
store them in NVM during the deployment of container. The other is dynamic
analysis. HIFs obtained by static analysis are redundant. Therefore, we execute
dynamic analysis to obtain accurate HIFs during the cold-start of container.
Static and dynamic analysis are detailed separately as follows.

Static Analysis. In the process of deploying the image, if the layer contains
HIFs, the whole layer will be stored in NVM to obtain some HIFs initially.
Dockerfile consists of a series of commands which can be obtained by a simple
“string parsing” method. From Sect. 2.1, we can know that the HIFs include Bin
files, system dependencies, application files, and execution engines. Bin files and
system dependencies account for a small proportion of the total HIFs. And the
image layers containing bin files or system dependencies are generally large. So an
image layer that contains only bin files or system dependencies is stored in Disk
without wasting NVM resources. For an image layer containing the execution
engine or application files, we choose to store it in NVM as a coarse-grained
HIFs.

Dynamic Analysis. Once the container cold-start is finished, the application
files in need will be loaded into memory. Dynamic analysis mainly analyzes
the necessary files and file dependencies in the image by tracking system calls,
changes of files or directories, and running of processes. These files are HIFs.
In order to improve the utilization rate of NVM, we only store HIFs in NVM,
with other image files brushed back to the hard disk. In this way, the utilization
rate of NVM is greatly improved, and the cold-start speed of the container is
also accelerated. Compared with the traditional architecture, HIFs will not be
replaced back to disk due to memory collection in the multi-container scenario
with the same host. In this way, container running reduce the disk I/O overhead
caused by missing page interruptions. When a container is suspended for a period
of time or restarted, it can start running faster by reducing I/O latency caused
by page missing interruptions.

3 Evaluation

We implement N-Docker, a NVM-HDD Hybrid Docker Storage Framework to
accelerate container deployment and cold-start. In order to evaluate the perfor-
mance of N-Docker, we conduct a comparative experiment between N-Docker
and native Docker, and a comparative experiment between N-Docker and NVM-
Docker. Our experiments are based on 134 images in Docker hub, which are
downloaded more than 1 million times.



190 L. Gu et al.

3.1 Experiment Setup

Environment. Table 1 provides a detailed description of memory configuration.
We simulate NVM as a fast block device [4] and install ext4 with DAX (direct
access) [1] on it. The machines interconnect with each other in 1 Gbps network.
We implement N-Docker based on Ubuntu 16.04 and Docker 18.06-ce.

Table 1. Memory configuration

DRAM NVM

Capacity 4G 4G

Channels 1 2

Bandwidth 8 GB/s 3.6 GB/s (Read)

1.3 GB/s (Write)

Read/Write Latency (Normalized to DRAM) 1 4.4x (Read)

1 12x (Write)

3.2 Deployment

N-Docker divides the image into two parts, one of which is stored in NVM
and the other is stored in Disk. In this section, to compare the performance
of N-Docker with that of NVM-Docker, we deploy Top-134 containers through
N-Docker and NVM-Docker respectively. The experimental results of container
deployment latency are shown in Fig. 4. As can be seen from the figure, the
deployment latency of NVM-Docker container in each category is larger than
that of N-Docker by more than 97%. Therefore, it can be concluded that N-
Docker divides the image into two parts without incurring additional latency.
The space usages of NVM of N-Docker and NVM-Docker are shown in Fig. 5.
With regards to the category of distro, N-docker uses the same space size of
NVM as NVM-Docker. The main reason is that the distro category is the basic
image, and the only one layer or the first layer accounts for most of the entire
image size. In this case, we store the entire image in NVM. The category of web
fwk, which has the most decrease in NVM usage, has a 38.5% decrease in NVM
usage. The reason for it is that the LDL of this category of image is located
further back in the image layer, and more image layers are stored in DISK. In
addition, N-Docker’s container deployment is almost as fast as NVM-Docker.
On average, N-Docker’s NVM usage is 28.53% less than NVM-Docker.

In Sect. 2, we have seen the latency of various container deployments, with
downloading latency accounting for 76.6% and storing latency accounting for
23.4%. In this section, we evaluate the performance of N-Docker in container
deployment by deploying Top-134 containers separately through N-Docker and
Docker. Experimental results are shown in Fig. 4. The most significant drop in
container deployment latency is 26.7% for the category of distro, as the entire



N-Docker 191

image of distro is stored in NVM. The percentage of image layer stored in NVM
is the highest in all categories, and the benefits brought by accelerating con-
tainer deployment through NVM is the largest. The lowest reduction in container
deployment latency is 19.3% for the category of web fwk, since the percentage
of image layer stored in NVM by web fwk is the lowest in all categories, and
the benefits of accelerating container deployment through NVM is the least. On
average, N-Docker’s container deployment latency is 21.14% lower than Docker’s.
We speed up the entire container deployment process by reducing the latency of
storing images. So we evaluate the latency caused by NVM-Docker, N-Docker
and Docker in the process of storing images. The results are shown in Fig. 6.
On average, the latency of the N-Docker storing image after the network down-
load is finished is reduced by 90.3% compared to Docker, and is comparable to
NVM-Docker.

0
10
20
30
40

Ti
m

e 
(s

)

Categories of Images

NVM-Docker N-Docker Docker

Fig. 4. Deployment time

0
200
400
600
800

Si
ze

 (M
)

Categories of Images

N-Docker NVM-Docker

Fig. 5. NVM usage in docker
deployment

0
2
4
6
8

Ti
m

e 
(s

)

Categories of Images

NVM-Docker N-Docker Docker

Fig. 6. Storing image time

3.3 Cold-Start

We store Hot Image Files in NVM to speed up the cold-start of the container.
In order to verify that the Hot Image Files selected by our scheme is indeed the
file necessary for container cold-start, we conduct the experiments on the Top-
134 containers’s cold-start through N-Docker and NVM-Docker. The result of
cold-start latency is shown in Fig. 7, which demonstrates that N-Docker’s cold-
start latency is only 2% slower than NVM-Docker. The space usage of NVM is
shown in Fig. 8. As can be seen from the figure, the largest reduction in NVM
usage is 97.12 % for the category of distro, as the distro class is the basic image.
The vast majority of such images are auxiliary tools, package managers, and
dependencies. The files needed for by the category of distro are very few. The
minimum reduction in NVM usage is 70.12% for the category of web server.
This type of container contains more executable files, configuration files and the
underlying execution engine. Taking the JVM as an example of execution engine,
common versions of JVM exceed 100M, which makes Hot Image File larger. In
summary, the Hot Image File used by N-Docker contains almost all the files
necessary for container cold-start, and the NVM’s usage of N-Docker is 88.22%
less than NVM-Docker.

In order to evaluate the cold-start performance of N-Docker, we compare the
cold-start latency of containers by N-Docker and Docker. As shown in Fig. 7,
the maximum reduction of cold-start delay is 76.1% for distro container. The



192 L. Gu et al.

reason for it is that containers of the distro category are the simplest, which
requires only a small number of files and then builds an independent execution
environment. The cold-start latency of containers in the distro category is mainly
resulted from the overhead of I/O. Containers of the distro category get higher
promotion by using NVM to store Hot Image Files to speed up container cold-
start. The minimum reduction in container cold-start latency is 62.6% in the
category of web server, as containers in the category of web servers are the most
complex. Such containers’s cold-start requires not only building an independent
execution environment, but also starting the server’s daemon process. Therefore,
accelerating container cold-start by taking NVM devices to store Hot Image
Files gets the least benefits. On average, N-Docker can reduce the latency of the
containers’s cold-start by 33.8%, compared to that of Docker.

0.
11 2.
3

0.
66 1.
46

14
.9

3.
37

2.
22

0.
11 2.
3

0.
68 1.
49

15

3.
44

2.
27

0.
46 6.

5

2.
3 3.
98

43

9.
8

6.
57

0
5

10
15
20
25
30
35
40
45
50

distro db language web
server

web fwk other all

Ti
m

e 
(s

)

Categories of Images

NVM-Docker N-Docker Docker

Fig. 7. Cold-start time

5.
04 59

.0
7

51
.4

7 14
1.

4

26
.9

5

96
.5

8

57
.4

717
4.

95 32
6.

32

70
7

47
3.

17

70
6

49
8.

2

48
7.

57

0
100
200
300
400
500
600
700
800

distro db language web
server

web fwk other all

Si
ze

 (M
)

Categories of Images

N-Docker NVM-Docker

Fig. 8. NVM usage

4 Related Work

This research work is to accelerate container deployment and cold-start based
on emerging NVM. The slow deployment and cold-start of containers has also
been widely discussed by other researchers.

Deployment: Some cluster management systems, such as Tupperware [12],
Borg [15], use peer-to-peer technique to reduce the load on the central repository
and speed up packet distribution. However, they are not applicable to Docker
images. Slacker [10] accelerates container deployment by reducing network I/O,
which lazily pulls image data when needed. However, slacker needs a longer time
to build image and a greater demand for storage in the registry. Cider [9] changes
the working node’s local Docker storage to an all-nodes-sharing network storage,
allowing image data to be loaded on demand when deploying containers.

Cold-start: CNTR [14] divides the traditional image into two parts: the “fat”
image contains complete functions, while the “slim” image contains only the
core files needed by common user-case. CNTR reduces image size, which makes
Docker lighter. However, CNTR incurs overhead for some benchmarks. Uniker-
nel [11] uses the library OS [8] to screen out the required operating system
components to construct a lighter-weight executable application operating sys-
tem. But Unikernels cannot debug and require static linking tools in the library



N-Docker 193

OS. SAND [7] weakens the function instances from container-level isolation to
separate process-level to share libraries, which only require to be loaded into
container once, with other functions of an application. SOCK [13] create a cache
of pre-warmed Python interpreters to avoid that Python runtime is initialized
repeatedly.

Existing work does not consider storing image during container deployment,
weaken function’s isolation or cannot be applied to general containers for cold-
start acceleration.

5 Conclusion

Rapid deployment and cold-start of container are very important, such as in the
serverless computing scenario. To achieve this goal, we leverage the emerging
NVM device and design N-Docker, a NVM-HDD hybrid docker storage frame-
work. N-Docker stores LAL and LDL in NVM during container deployment and
Hot Image Files in NVM during container cold-start. Through extensive exper-
iments, we validate the efficiency of N-Docker by the fact that it can accelerate
the median container deployment by 1.21X and cold-start by 2.96X with very
few NVM. Compared to NVM-Docker, which stores all images in NVM, the pro-
posed N-Docker achieves the same performance improvements while reducing
the usage of NVM by 88.22%.

References

1. Add support for NV-DIMMs to ext4. https://lwn.net/Articles/613384/
2. Docker. https://www.docker.com/
3. Docker hub. https://hub.docker.com/u/library/
4. Emulate persistent memory. http://pmem.io/2016/02/22/pm-emulation.html
5. Linux kernel virtual machine. https://www.linux-kvm.org/page/MainPage
6. Nvdimm. https://www.micron.com/products/dram-modules/nvdimm
7. Akkus, I.E., et al.: SAND: towards high-performance serverless computing. In:

Proceedings of the 2018 USENIX Annual Technical Conference, pp. 923–935 (2018)
8. Belay, A., Bittau, A., Mashtizadeh, A.J., Terei, D., Mazières, D., Kozyrakis, C.:

Dune: Safe user-level access to privileged CPU features. In: Proceedings of the
10th USENIX Symposium on Operating Systems Design and Implementation, pp.
335–348. USENIX Association (2012)

9. Du, L., Wo, T., Yang, R., Hu, C.: Cider: a rapid docker container deployment
system through sharing network storage. In: Proceedings of 19th International
Conference on High Performance Computing and Communications, pp. 332–339.
IEEE (2017)

10. Harter, T., Salmon, B., Liu, R., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.:
Slacker: fast distribution with lazy docker containers. In: Proceedings of the 14th
USENIX Conference on File and Storage Technologies, pp. 181–195. USENIX Asso-
ciation (2016)

11. Madhavapeddy, A., Scott, D.J.: Unikernels: the rise of the virtual library operating
system. Commun. ACM 57(1), 61–69 (2014)

12. Narayanan, A.: Tupperware: containerized deployment at facebook (2014)

https://lwn.net/Articles/613384/
https://www.docker.com/
https://hub.docker.com/u/library/
http://pmem.io/2016/02/22/pm-emulation.html
https://www.linux-kvm.org/page/MainPage
https://www.micron.com/products/dram-modules/nvdimm


194 L. Gu et al.

13. Oakes, E., et al.: Sock: rapid task provisioning with serverless-optimized containers.
In: Proceedings of the 2018 USENIX Annual Technical Conference, pp. 57–70.
USENIX Association (2018)

14. Thalheim, J., Bhatotia, P., Fonseca, P., Kasikci, B.: CNTR: lightweight OS con-
tainers. In: Proceedings of the 2018 USENIX Annual Technical Conference, pp.
199–212. USENIX Association (2018)

15. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: Proceedings of the 10th
European Conference on Computer Systems, p. 18. ACM (2015)

16. Wang, L., Li, M., Zhang, Y., Ristenpart, T., Swift, M.: Peeking behind the curtains
of serverless platforms. In: Proceedings of the 2018 USENIX Annual Technical
Conference, pp. 133–146. USENIX Association (2018)

17. Xu, J., et al.: NOVA-fortis: a fault-tolerant non-volatile main memory file system.
In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 478–
496. ACM (2017)


	N-Docker: A NVM-HDD Hybrid Docker Storage Framework to Improve Docker Performance
	1 Introduction
	2 Design and Implementation
	2.1 Opportunities and Challenges from Emerging NVM
	2.2 Overview
	2.3 Layer-Aware Storage Strategy
	2.4 HIF-Based Cold-Start Acceleration

	3 Evaluation
	3.1 Experiment Setup
	3.2 Deployment
	3.3 Cold-Start

	4 Related Work
	5 Conclusion
	References




