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Abstract. The small amount of public available medical images hinders
the use of deep learning techniques for mammogram automatic diagno-
sis. Deep learning methods require large annotated training sets to be
effective, however medical datasets are costly to obtain and suffer from
large variability. In this work, a lightweight deep learning pipeline to
detect, segment and classify anomalies in mammogram images is pre-
sented. First, data augmentation using the ground-truth annotation is
performed and used by a cascade segmentation and classification meth-
ods.

Results are obtained using the INbreast public database in the context
of lesion detection and BI-RADS classification. Moreover, a pre-trained
Convolutional Neural Network using ResNet50 is modified to generate
the lesion regions proposals followed by a false positive reduction and
contour refinement stages while a pre-trained VGG16 network is fine-
tuned to classify mammograms.

The detection and segmentation stage results show that the cascade
configuration achieves a DICE of 0.83 without massive training while the
multi-class classification exhibits an MAE of 0.58 with data augmenta-
tion.

Keywords: Lesion detection · Segmentation · Classification ·
Deep learning

1 Introduction

Breast cancer is considered a massive health problem worldwide being account-
able for 15% of cancer deaths among females between 40 and 55 years of age.
Despite this fact, the most effective form to reduce the mortality rate its early
diagnosis [7]. The majority of the early diagnoses are still manual, achieving a
sensitivity of 84% and sensibility of 91% [6]. To improve the accuracy of this
manual interpretation, a double reading by another clinical expert or Com-
puter Aided Detection (CAD) system is put in place. CAD systems are useful in
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the detection, segmentation, and classification of lesions. Mammograms lesions
namely breast masses commonly exhibit low signal-to-noise ratio, inconsistent
appearance, and irregular shape, hampering its correct segmentation and classi-
fication [11]. The major drawback of CAD systems are the large number of False
Positives (FP), while missing large portions of True Positives (TP) [9]. Recently,
Deep Learning (DL) based strategies increased segmentation and classification
performance. A particular advantage of DL models is their ability to automati-
cally learn a rich hierarchy of key representative features automatically, enabled
to aid the expert interpretation of the breast mammogram images. Neverthe-
less, DL models are trained on datasets, and need to be adapted to work in the
imaging domain where the number of annotated datasets is much smaller.

Mammogram diagnosis commonly encompasses lesion detection, segmenta-
tion and classification steps. Robust lesion segmentation plays a vital in mam-
mogram diagnosis, due to the association between the lesion shape irregularities
and the probability of cancer [6]. Ground Truth (GT) annotations tend to be
limited among the different databases, making the design of a robust mass seg-
mentation algorithm challenging. To address this problematic, a large number
of methods have been proposed, ranging from level set approaches [10], up to
ones based in Shortest Path (SP) [3] procedures. Concerning DL models, Dhun-
gel in [4] makes use of Convolutional Neural Networks (CNN) and deep belief
networks as potential functions in structured prediction models to segment and
classify breast masses. The work is based on multi-scale Deep Belief Nets (m-
DBN) and Gaussian Mixture Model (GMM) for candidate generation followed
by a FP reduction step, based on the features provided by two CNN, and used
by an SVM classifier finalized with a Random Forest (RF) for final candidate
selection. Dhungel in [5] extends his previous work by adding a hypothesis refine-
ment based on Bayesian Optimization and Level Set method for final contour
refinement, while for mass classification, a CNN model trained in two stages is
used to determine mass malignancy.

With the goal to obtain a lightweight deep learning pipeline to robustly
detect, segment and classify mammogram image anomalies, we evaluate the
potentialities of transfer learning techniques by reusing pre-trained DL models
to facilitate training and circumvent the small annotated datasets problematic.
CNN has the advantage of automatically learn representative features, contrary
to the hand-crafted ones that may be less representative. For the task, an aug-
mentation, segmentation, and classification techniques are proposed and eval-
uated on INbreast dataset [8]. The segmentation component consists in a cas-
cade of methods for semantic segmentation, formed by an initial region proposal
stage, a CNN classifier, for FP reduction, and a final graph-based segmenta-
tion method, for lesion contour refinement. Regarding multi-class classification,
a pre-trained CNN is employed with the last layers reconfigured and fine-tuned
to our training data to predict the Breast Imaging Reporting And Data System
(BI-RADS) level. The accuracy of the segmentation and BI-RADS classification
methods are compared against GT annotations using the following measures:
True Positive rate (TPr), FP for detection, Dice Coefficient (DC) for segmenta-
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tion and Mean Absolute Error (MAE) for classification. The results show that
the system correlates well with the GT annotations and is able to detect 85% of
the masses at three FP, with a DC of 83%, achieving an final MAE of 0.524 for
classification without extensive training.

2 Proposed Framework and Experiments

The proposed work is divided into three main stages: first the dataset con-
struction and corresponding data augmentation techniques, secondly the cas-
cade segmentation procedure and third the mammogram malignancy prediction.
Common data augmentation consist in images rotations and mirroring during
training. In order to increase the robustness of the models, we encompass image
transformation by the use of affine transformations, enabling a training set with
n images be increased to n × (n − 1) images by applying a single affine trans-
formation. The dataset is constructed by cropping breast regions from original
mammograms and images are zero padding until the 211×211 size. Translations,
rotations, shear and zoom transformations where employed to increase train-
ing set. Considering that BI-RADS 6 that corresponds to biopsied cases with
fewer examples and BI-RADS 5 to highly suggestive of malignancy with a lower
number of cases, we merged both classes into a single one (56). Dataset augmen-
tation, encompasses only rotations, mirroring, and affine transformation with an
maximum of 20% of deformation to maintain lesion contour appearance. Table 1
summarizes the training set with examples in Fig. 1.

To tune the ResNet50 for the segmentation task, the training set encompasses
40 patch samples from mass region box with a 0.9 overlap and 40 from breast
region. The main objective is for models to learn the difference between masses
and background. All initial images are subject to background removal and breast
region is cropped and scaled until it reaches one of the minor axis length (xory)
of the original image. After this process images are then resized to 1/4 enabling
to encompass the largest mass lesions inside a 224 × 224 box size to fit network
input (Fig. 2), with the smaller mass lesion contour occupying a minimum 35×35
pixels box, crucial to maintaining relevant lesion features. Final dataset contains
44800 patch images from both classes.

Table 1. Dataset size for BI-RADS classification.

Data 1 2 3 4 56 Total

Original 67 220 23 43 57 410

Train 75% 50 165 17 32 43 307

Test 25% 17 55 6 10 15 101

Train Aug (A) 250 825 85 160 215 1535

Train Aug (A+T) 750 2475 255 480 645 4605

Train Aug (A+Af+R+T+M+Z) 19800 2040 3840 4440 2200 32320

A - Angle, Af - Affine, T - Translation, M - Mirror, R - Rotation, Z - Zoom
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Original Shear Shear H

Fig. 1. Example of the constructed dataset (without mirroring).

For mass detection and segmentation, the first stage (Resnet) corresponds to
the generation of the initial region candidates (Fig. 2), accomplished by the reuse
a pre-existing CNN architecture trained in Imagenet1, namely a ResNet50 with
the final layer modified for to distinguish between mass/background images.
The model is then re-trained on our sampled images patches. The choice of
ResNet50 relies on the fact is composed of convolutional layers and a final global
averaging pool layer, making this network suitable to compute Class Activation
Maps (CAM)2 directly without further training. The final model is then used to
generate the region’s proposals by sliding the image input model on larger images
and attain the CAM. Regions similar to mass lesions exhibit higher activation’s
values, suggesting that the particular area may correspond to a Region of Interest
(ROI). From CAM, square mass images candidates are taken from regions that
present a CAM above the threshold T .

Since a higher number of regions may correspond to background areas, a
second stage, the FP reduction consisting in a CNN classifier using a VGG
architecture is trained using the same patch lesion/background dataset to clas-
sify the initial region’s proposals as mass/background, enabling to discard FP
detection’s while attaining TP ones.

The third and final module of the segmentation component, the contour
refinement (Ref), operates only on positively identified regions. This stage con-
sists of a SP operating in Cartesian Coordinates proposed by [3] to determine
the outside boundary of convex objects. SP operating in the Cartesian Coor-
dinates benefit from the fact that the graph is generated from the image on
its original form, avoiding deformations associated with image transformations.
An inverse cost function centered on the object is modulated to avoid small

1 https://image-net.org/.
2 https://jacobgil.github.io/deeplearning/class-activation-maps.

https://image-net.org/
https://jacobgil.github.io/deeplearning/class-activation-maps
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inner paths collapsing over the seed point being naturally favored when using
Cartesian Coordinates.

Fig. 2. Region proposal + FP reduction + contour refinement.

For BI-RADS determination, a pre-trained CNN is used, namely the VGG16
architecture trained on Imagenet. This choice is supported by the simplicity
of VGG16 combined with good performance in medical context images. Since
VGG16 has an input size of 224 × 224 with 3 channels being able to identify
1000 different classes, we resize our images dataset and replicate gray image
channel among the 3 channels to fit network input and redefine to output layer
to our 5 BI-RADS class problem. Table 1 summarizes the constructed dataset.
Lower classes correspond to the normal cases that are the most common the
population.

Both segmentation and classification performance is evaluated on INbreast [8]
database. All the models are trained using two non-overlapping subsets with a
75% random split for training and testing. 5-fold cross-validation was used to
determine the best parameters.

The initial region proposal (Resnet), the ResNet50 learning rate was
set to α = 3 × 10−3, λ = 4 × 10−4 and ADAM was the selected optimizer
with (β1 = 0.9, β2 = 0.995 and ε = 10−6, trained for 30 epochs using the
lesion/background images setting the batch size to 32. Only the new added layers
are fine-tuned in the initial phase. Then, different parts of the network, deeper,
middle and shallow layers where unfrozen individually and retrained during 10
epochs each, with learning rates set to 4 × 10−3 for deeper layers, 3 × 10−4 for
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middle layers and 3 × 10−5 for shallow layers. This retrain strategy relies in the
fact that low level features do not vary as much as high level features among
different datasets.

After training, CAMs layer is included and due to memory constrains the
model is slided over the whole image with a stride of l = 5 to generate image
CAM. Regions that present CAM values above the threshold T are set to be
candidates. Two distinct thresholds are evaluated for candidate generation, T =
0.6 and 0.8. Square image patches above the threshold are then evaluated by the
FP reduction stage.

Concerning the FP reduction (FP), three different VGG architectures
where trained and evaluated during 40 epochs, with the best model achieving a
final accuracy in the patch test set of 0.915, with the parameters α = 2 × 10−5,
λ = 3 × 10−4 and ADAM optimizer with (β1 = 0.9, β2 = 0.997 and ε = 10−6).

For final contour refinement (Ref), a SP operating in Cartesian Coordi-
nates is employed with the cost function corresponding the inverse of the radial
distance combined with an exponential law for weight generation expressed as
f̂(g) = fl +(fh − fl)

exp ((255−g)·β)−1
exp (255·β)−1 , with fh, fl, β ∈ R set to be constant values

(fh = 30, fl = 2, β = 0.025), with g being the minimum of the gradient on the
two incident pixels. Results are evaluated using DC.

For BI-RADS class assessment, the VGG16 architecture pre-trained on
Imagenet was used, with the new fully connected layers fine-tuned using our
training data composed full breast images resized to fit network input. Initial
training parameters where α = 2 × 10−2, λ = 1 × 10−4 and ADAM as the
optimizer with (β1 = 0.9, β2 = 0.995 and ε = 10−6). After training the final
layer, we employ the same strategy used in the ResNet50 to retrain the deeper,
middle and shallow layers of the network during 10 epochs also. The learning
rates for deeper layers was set to 4×10−3, 4×10−4 for middle layers and 4×10−5

for shallow layers. Results are evaluated using the MAE.

3 Results

Results are divided into two main components: segmentation and classification.
Results on each stage of the segmentation cascade are compared with a State-of-
the-art (SotA) method proposed by [5], that uses a Conditional Random Field
(CRF) model with active contour refinement, and a manual approach proposed
by Brake [1], listed in Table 2. The method column lists SotA works and the
stages of the segmentation cascade, with a example of the segmentation stages
exhibited on Fig. 3.

Several observations can be drawn from the segmentation stage:

– Effect of the threshold T : The region proposal stage presented an higher
FP number and sensitivity of 10(1.8) and 0.85(0.1) respectively) when using
a lower T .

– Effect of the FP Reduction: Some of the TP where rejected due to center
shift initial detection, misleading the classifier.
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Table 2. Performance evaluation of lesion region proposal+ classifier + contour refine-
ment. Results mean(std).

Method # FP TPr DICE

Dhungel [5] 1.00(-) 0.90(-) 0.85(0.02)

ResNet (T = 0.6) 10(1.8) 0.86(0.09) 0.72(0.08)

ResNet (T = 0.8) 8(1.7) 0.83(0.10) 0.68(0.07)

Res.+FP+Ref (T = 0.6) 3(0.20) 0.85(0.07) 0.83(0.10)

Res.+FP+Ref (T = 0.8) 2(0.11) 0.76(0.07) 0.70(0.13)

Brake [1] (Man) 0.820(-)

Example Heat Contour

Fig. 3. Pairwise comparison between mammogram image and heatmaps (Blue - GT,
Red - Detection). SP operate only on positive identified patches. (Color figure online)

– Contour Refinement: The SP exhibited similar accuracy when compared
with the original work due to the similarities on the datasets Full Field Digital
Mammography (FFDM).

Concerning the BI-RADS classifier, results are summarized in Table 3. The
listed SotA method consist in Maximal-Coupled Learning using the GT anno-
tation masks to extract features for BI-RADS classification [2].

Table 3. Attained accuracy in the test set, mean(std).

Data MAE

SotA - (Manual) Max. Coupled Learn. [2] 0.190(-)

Using Train Aug (A) 1.343(0.503)

Using Train Aug (A+Af+R+T+M+Z) 0.584(0.011)
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Several observations can be drawn from the classification stage:

– Effect of the data augmentation: The affine data augmentation technique
outperformed the simple rotation and mirroring of the images.

– Effect of the image resizing: Small calcifications that are associated with
high malignancy level cannot be detected by the model and mislead the final
BI-RADS level prediction.

– Effect of pre-trained networks: The use of pre-trained networks enabled
to reuse the convolutional layers as robust feature extractor to generate a
robust model without massive training data.

4 Conclusions and Future Work

The present work concerns the creation of a lightweight DL pipeline easily trained
for detection, segmentation and classification of mammogram images.

Data augmentation without altering lesion shape appearance proved to be
vital, enabling to generate a vast dataset improving model generalization. Only
affine transformations such as zoom, shear with a maximum of 20%, translation,
and rotation were considered. Shear with larger percentages and elastic deforma-
tion must be considered and asses their impact in classifier performance. Crop-
ping and scaling enabled to create a dataset suitable to fit pre-trained network
input without losing to much detail on smaller mass lesions.

Concerning the segmentation stage, the formulation of a cascade configura-
tion enabled to train models separately and fine-tune individual stage parame-
ters. The selection of segmentation threshold T proved to be the main bottleneck,
with higher T values leading to a rejection of some of TP lesions that exhibited
lower probability. Integrating both stages into a single one by using a Faster
R-CNN architecture and fine-tune to our dataset can attenuate this problem.
Contour refinement enabled to refine the lesion segmentation in great detail.

The BI-RADS level classification benefit from the use of a pre-trained net-
work, enabling to obtain a robust classifier without extensive data and training
time. However, BI-RADS report to the higher level must be carefully analyzed.
While our approach does not beat the SotA, its prediction uses only images
without using any GT contour annotation for feature extraction. Overhall, the
reuse of pre-trained models enabled the creation of a well performing pipeline
without extensive data and training.
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