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Abstract. Analysis of dynamic functional connectivity allows for studying the
time variant behavior of brain connectivity during specific tasks or at rest. There
is, however, a debate around the significance of studies analyzing the dynamic
connectivity, as it is usually estimated using short subsequences of the entire
time-series. Therefore, a question that naturally arises is whether the dynamic
connectivity information is robust enough to compare connectivity matrices. In
this paper we investigate the importance of the choice of metric on the space of
graphs to answer this question, using a dataset of twins under the assumption
that twins connectivity is more similar than in any other pair of unrelated
subjects. Specifically, the problem was formulated as a classification task
between twin and non-twin pairs. The approach described in the paper relies on
geodesic clustering of dynamic connectivity matrices to find a subset of brain
states, which were then used to encode the pairwise connectivity similarities
between subjects. Experiments were performed to compare the use of Euclidean
distance in a vectorial space and a geodesic distance in the Riemannian space of
symmetric positive definite matrices. We showed that the geodesic distance
provided a better classification of twins subjects, suggesting this use of this
distance can robustly compare dynamic connectivity matrices.
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1 Introduction

Connectomics is a relatively recent field of research in neuroimaging, which allows
neuroscientists to inspect the association between different regions in the brain.
Analysis of functional connectivity (FC) using time series extracted from functional
magnetic resonance imaging (fMRI) has allowed new advances in the understanding of
the connectivity organization of the human brain. In recent decades, FC has been
widely used to examine the functional organization of brain network in many psy-
chiatric and neurodegenerative diseases. In most cases, FC is defined as temporal
covariance or correlation of BOLD activity between different brain regions [1].
Dynamic functional connectivity (DFC) is a new approach allowing studying how
brain connectivity is modulated in time. Analysis of DFC is usually based on the study
of a time series of connectivity matrices obtained with a sliding window approach, in
which the overall time-series signal is divided into overlapping segments, which are
used to estimate the time-dependent correlation/covariance of brain activity [2, 3].
Recent studies suggest that uncontrolled but reoccurring patterns of brain connectivity
among intrinsic network can be captured during task or rest by examining the dynamic
behavior of FC [2, 4]

Many methods have been proposed to examine DFC. In [5, 6] authors proposed an
approach based on singular value decomposition and dictionary learning to investigate
the DFC patterns. In [5], estimation of eigen-connectivity and extraction of its temporal
weights has been proposed. Clustering of DFC matrices with k-means and independent
component analysis have been proposed in [2] suggesting that clusters are brain states
representing specific patterns of brain connectivity. In [7], a framework similar to [2]
using temporal independent component analysis (TICA) instead of clustering is pro-
posed to compute the states, which are maximally mutually temporally independent.
Moreover, as suggested by [8, 9] states can also be computed by clustering dynamically
derived graph metrics or some higher-level information e.g. computing similarity
vectors between different independent vector analysis (IVA) components [10] instead
of DFC matrices.

Almost all MRI studies on DFC are based on resting state fMRI. In this paper, on
the contrary, we have investigated task-based fMRI, which encourages the identifica-
tion of integration mechanism between specific task-related brain regions and is useful
to identify task-related networks in brain connectivity [11, 12]. Specifically, we used a
task-based fMRI dataset acquired on twins [13], to investigate the effect of genetic
heritability on the dynamics of functional brain networks. The main purpose of this
study is to evaluate if there are DFC patterns shared among twins, allowing discrim-
inating twin pairs from unrelated pairs. In our previous study [13], we have shown that
differentiation between two groups was measurable when using the graph Laplacian
representation of non-dynamic FC matrices, which transforms the representation of
data into the smoothed space of positive semi-definite matrices [14]. A Fréchet metric
on this space was then used to measure the similarity between networks [13]. In [15]
we have further extended the use of graph Laplacian and Fréchet metric to classify
between MZ & DZ twin pairs using DFC matrices. To this aim we computed the
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distance between each pair of DFC matrices and the vector representation of the
sequence of distances was then used by a linear SVM for classification.

In this paper, we want to investigate the DFC analysis exploiting the concept of
brain states. To perform this investigation, we exploited the similarity of DFC patterns
associated with the brain states of the two groups (twins and non-twins). To this aim,
we clustered the DFC matrices into reference states and then we used a compact
representation to perform a classification.

Some recent approaches suggest similar FC analysis, e.g., in [16] SVMs were used
to discriminate traumatic brain injury after encoding DFC with k-means clustering.
Similarly, in [17] enhanced FC variability was used to classify autism spectrum dis-
order from healthy controls. All above methods, exploiting clustering to generate a set
of reference states, are based on similarities computed in a vectorial space. Using
metrics on the vectorial space – like the Euclidean distance frequently used in k-means
– is sub-optimal [15]. We know however, that FC matrices can be managed to form a
manifold of positive definite matrices, and a more appropriate choice of similarity is to
use a geodesic metric defined on the smooth manifold. Therefore, in our approach we
used a geodesic metric both to cluster the matrices with k-means and to extract the
features to be used by the classifier.

We made some experiments both using the Euclidean metric in a vectorial space
and a geodesic metric (Log Euclidean distance) on the Riemannian space of symmetric
positive definite matrices. The results suggest that using a proper geodesic distance is
much more valuable in describing the similarity between graphs, allowing a better
clustering of graphs and, for our specific task, resulting in a much higher classification
accuracy when compared to a method based on simple Euclidean distance.

In the following Sect. 2 we will describe the data and the processing methods used
to estimate the DFC with graphical LASSO, to cluster the graphs using geodesic metric
within k-means, and to encode the subject pairs building the features with the geodesic
metric. In Sect. 3 we will provide the results of all experiments, and a brief discussion
with some concluding remarks will be given in Sect. 4.

2 Materials and Methods

2.1 Data Acquisition and Pre-processing

A total of 26 subjects, corresponding to 13 twin pairs (7 monozygotic, 6 dizygotic,)
were recruited from the population-based Italian Twin Registry. fMRI data was
acquired on a 3-Tesla MR imaging unit Siemens Allegra system (Siemens, Erlangen,
Germany) with a standard head coil. T2*-weighted images were acquired using a
gradient-echo EPI-BOLD pulse sequence (TR: 2000 ms; TE: 30 ms; flip angle 75°;
FOV: 92 � 192; 31 axial slices; thickness: 3 mm; in-plane: 3 mm2; matrix: 64 � 64).
High-resolution MPRAGE T1-weighted structural images were acquired in the same
session (TR: 2300 ms; TE: 3.93 ms; flip angle 12°; FOV: 256 � 256; 160 axial slices;
slice thickness: 1 mm; matrix 256 � 256). In our experiment, fMRI data were col-
lected with right and left hand consecutively in two separate scans by using traditional
Poffenberger paradigm [18], the task protocol was well synchronized for all subjects,
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allowing the comparison of BOLD signal across different subjects. fMRI pre-
processing was done including realignment, time slice correction, motion correction
and normalization. Mean time-series of each region, defined using the Automated
Anatomical Labeling atlas [19] (90 ROI Cerebrum only), were then extracted from
processed fMRI. For further details of the processing pipeline refers to [13].

2.2 Dynamic Functional Connectivity Estimation

Given N the number of regions in the atlas (in our case AAL is made by N ¼ 90) we
estimated the N � N covariance matrices

P
i wð Þ, for all subject i ¼ 1 . . .M, (M is total

number of subjects) and for all sliding windows w ¼ 1 . . .W over the fMRI time-series
(W is the total number of windows). In our experiments we used a sliding window of
size Dt ¼ 30 TR (60 s) and a step size of 4 TR (8 s) [14]. This resulted inW ¼ 83 DFC
matrices

P
i describing the modulation of connectivity along the entire recorded

sequence. Due to the relatively small windows size, the estimation of the covariance
matrices might be unstable and heavily affected by the limited amount of information.
To overcome this issue a more robust estimate of the covariance with small data can be
obtained from the estimate of a sparse version of the inverse of the covariance matrixP�1

i wð Þ [20–22]. This sparse precision matrix can be obtained regularizing the esti-
mated parameters with the graphical LASSO as described in [23]. This method has
proven to be very effective when there are limited number of observations at each node
[2, 24], such as in our case where we have small intervals of fMRI scan.

The covariance matrices are always guaranteed to be symmetric positive semi-
definite, however, in real applications they are frequently also symmetric positive
definite (SPD). If some matrices are not SPD we can apply a small regularization
ðPi ¼

P
i þ kIÞ making them SPD. In this way they form a Riemannian manifold of

SPD matrices [24] which enable us to analyze the DFC matrices on the manifold
instead of using the vector space [13, 25]. To take full advantage of the manifold
structure of SPD matrices, it is essential to consider a geodesic distance, which measure
the shortest path between two points (two matrices in our case) along the smooth and
curved manifold [13]. There are some possible alternative geodesic distances on the
Riemannian manifold of SPD matrices [25, 26], we decided to adopt the Log-Euclidean
distance, which is simple, and fast to compute:

dL Ri;Rj
� � ¼ jj logðRiÞ � logðRjÞjj; ð1Þ

where
P

i

P
j are two DFC matrices.

As described in our previous work [13], there is no effect of task (left and right
hand) between the two groups. So, for each subject we averaged the DFC matrices
across tasks by using geodesic mean (see Eq. 2) [27] so that the geometric nature of
matrices is maintained.
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2.3 Dynamic States and Geodesic Clustering Analysis

In order to define a set of states describing intrinsic brain network patterns, we have
used geodesic k-means clustering on SPD matrices [28] to associate a state to each
cluster. To initialize the cluster centroids, we first selected a set of exemplar matrices
[2] from the data (8 matrices per subject in our case) maximizing the distance from the
rest of the exemplars of the same subject. The geodesic k-means was then applied on
the set of exemplars to obtain the initial centroids, which were then refined running
again the geodesic k-means on all DFC matrices of all subjects. In order to run the
geodesic k-means, we used the Log-Euclidean distance [25] as defined in Eq. (1) for
which the mean of multiple covariance matrices can be computed in a closed form:

RL ¼ expfarg infR
Xn
i¼1

log Ri � logRk k2g ¼ exp
1
n

Xn
i¼1

log Ri

( )
; ð2Þ

In order to choose the optimal number K of clusters we used two criteria. The first
criterion was based on the minimization of the Sum of Squared Error (SSE):

SSE ¼
XK
i¼1

X
R2Ci

d2 mi;Rð Þ ð3Þ

where R is a DFC matrix associated to cluster Ci and mi is the corresponding centroid.
The second criterion was based on the necessity of having in any cluster some

matrices for all subjects, due to the encoding framework explained below. We,
therefore, computed the SSE by using Eq. (3) ranging over a number of clusters
K ¼ 2 . . . 10ð Þ. In our case the best solution fulfilling with the two criteria resulted to
be with K ¼ 2. This result also supports the hypothesis that in a task-based fMRI there
appears at least two macro states, one is a task-related state and the second one is a no-
task state.

2.4 Feature Extraction and Classification

The working hypothesis is that dynamic connectivity between twin pairs would be
more similar than between un-related pairs, and based on this we can classify pairs
either as twins or as unrelated. Therefore, we need to encode the subject’s similarity
taking into account the brain state. To this aim, subjects’ representatives were com-
puted for all clusters. More specifically, the subset of all DFC matrices of a subject
associated to a cluster were averaged with a geodesic mean creating a subject repre-
sentative for that cluster. In this way, a subject has a representative for each cluster.

At this point, we could compute the features characterizing the similarity between
the subjects. For each pair of subjects we measured the inter-subject geodesic distance
between the two subject representatives of each cluster. In addition, we computed the
geodesic distance of each subject representative from the cluster centroids. Therefore,
for each pair of subjects (twins or unrelated) there are 3 distances per cluster (features)
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and in our experiments the data representation included a total of 6 features because we
have K = 2 clusters.

In our data set, we have 13 twin pairs, corresponding to 26 subjects that can be
recombined to form 312 unrelated pairs. In short, we have a dataset composed of 13
samples from the twin’s class and 312 samples from the unrelated class. Due to the
high unbalanced dataset, we opted to use the weighted SVM [29] with three cross-fold
validation. To this aim, we divided our data into 3 chunks randomly selecting the
samples while maintaining the proportion between the classes (each fold was composed
by 104 samples from the unrelated pairs and 4 from twin’s pairs). For statistical
purpose, we repeated 100 times this cross-validation procedure with the randomized
selection of folds. We evaluated the results in terms of average accuracy, precision,
recall, F1 score and confusion matrix.

In all our experiments, all distances between graphs and means of graphs were
computed using the Log-Euclidean distance Eq. (1) and the corresponding geodesic
mean Eq. (2) respectively. However, for the sake of comparison we performed iden-
tical experiments using the Euclidean distance and the corresponding Euclidian mean.

3 Results

Figure 1 shows the results of classification with the weighted SVM when using the
Log-Euclidean distance (blue bars) and the Euclidean distance (red bars). It can be
observed that using the geodesic metric to describe the data considerably boosts the
performance during classification, i.e., during the exploitation of the encodings. In
particular, the accuracy with “geodesic encoding”, 87.21%, is much higher than the
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Fig. 1. Comparison of average performance of classification with weighted linear SVM
classifier with Log-Euclidean distance (blue bars) and with Euclidean distance (orange bars).
(Color figure online)
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“Euclidean encoding” accuracy, 66.35%. Similar differences can be observed for the
precision (88.35% versus 67.42%) and F1 score (92.92% versus 79.14%). Higher and
similar recall for both metrics could be due to the higher unbalance in the classes. The
embed table in Fig. 1 summarizes these results.

The mean confusion matrix for both distance metrics is given in Table 1. It can be
observed that when using geodesic distance during the data encoding the rate of correctly
classified pairs is much better than using Euclidean distance. These results strongly
support the fact that the use of Euclideanmetric on symmetric positive definite matrices is
suboptimal. Hence, a better way to compare and process the undirected weighted graphs
described by SPD is to use a geodesic distance on the Riemannian space.

4 Discussion and Conclusion

In this paper, we have presented a novel computational framework, which allows
distinguishing between twins and unrelated pairs of subjects using their dynamic
functional brain connectivity. To this aim, we designed a specific encoding of graphs
into subjects’ similarities, exploiting the concept of geodesic metric on the Riemannian
manifold of SPD matrices.

In particular, for the encoding of data we derived a subject-wise graph similarity
representation exploiting a geodesic k-means clustering. Indeed, the algorithm uses the
Log-Euclidean metric on the space of functional brain graphs. Once the clusters were
generated, the Log-Euclidean metric was also used to calculate the similarity of two
subjects in terms of distance between subjects and distance from cluster centroid. These
distances were used as features for the data representation. Due to the highly unbal-
anced dataset to solve the classification task we used the weighted SVM.

In order to evaluate whether, beyond having a good estimation of covariance
matrices, it is important to use metrics working on the space of data, we made an
identical experiment using the Euclidean distance in place of the geodesic distance. The
results of our study clearly demonstrate that use of Euclidean distance is not the best
choice, as it is not properly managing the complex structure of graphs, indeed the
classification performance is boosted when using the geodesic distance.

Table 1. Average confusion matrix showing the performance of classification when using the
Log-Euclidean distance or the Euclidean distance

Log-Euclidean Distance Confu-
sion Matrix

Euclidean Distance Confu-
sion Matrix

Predicted Class Predicted Class
Non-

Twin Pair
Twin 
Pair

Non-Twin 
Pair

Twin Pair

Actual 
Class

Non-Twin 
Pair 275 37 210 102

Twin
Pair 4 9 8 5 
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This study also reveals that a careful encoding of the dynamic functional con-
nectivity allows a clear distinction of twin pairs from non-twin pairs.

Acknowledgement. The authors acknowledge Cigdem Beyan and Muhammad Shahid for the
helpful discussions.
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