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Abstract. The availability of large-scale data sets is an essential pre-
requisite for deep learning based semantic segmentation schemes. Since
obtaining pixel-level labels is extremely expensive, supervising deep
semantic segmentation networks using low-cost weak annotations has
been an attractive research problem in recent years. In this work, we
explore the potential of Constrained Dominant Sets (CDS) for generat-
ing multi-labeled full mask predictions to train a fully convolutional net-
work (FCN) for semantic segmentation. Our experimental results show
that using CDS’s yields higher-quality mask predictions compared to
methods that have been adopted in the literature for the same purpose.
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1 Introduction

Semantic segmentation is one of the most well-studied research problems in com-
puter vision. The goal is to achieve pixel-level classification, i.e., to label each
pixel in a given input image with the class of the object or region that cov-
ers it. Predicting the class of each pixel yields to complete scene understanding
which is the main problem of a wide range of computer vision applications,
e.g. autonomous driving [7], human-computer interaction [15], earth observa-
tion [3], biomedical applications [27], dietary assessment systems [2], etc. Stun-
ning performances of DCNNs (Deep Convolutional Neural Networks) at image
classification tasks have encouraged researchers to employ them for pixel-level
classification as well. Outstanding methods in well-known benchmarks, e.g. PAS-
CAL VOC 2012, train some fully convolutional networks (FCN) with supervision
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of fully-annotated ground-truth masks. However, obtaining such precise fully-
annotated masks is extremely expensive and this limits the availability of large-
scale annotated training sets for deep learning architectures. In order to address
the aforementioned issue, recent works explored supervision of DCNN archi-
tectures for semantic segmentation using low-cost annotations like image-level
labels [11], point tags [4], bounding box [8,12,16] and scribbles [13,21,23,26],
that are weaker than the pixel-level labels.

Creating weak annotations is much easier than creating full annotations
which helps to obtain large training sets for semantic segmentation. However,
these annotations are not as precise as full annotations and their quality depends
on the decisions made by the users, which degrades their reliability. Hence, lit-
erature works proposed different strategies for weakly-supervised semantic seg-
mentation to deal with these issues. While a number of works [21,23] proposed
to employ a genuine cost function to get into account only the initially given true
weak annotations at the training stage, another and the most common approach
[8,12,13,16,26] has been supervising DCNN architectures by predicted full mask
annotations which are obtained by post-processing the weak-annotations.

Among these two strategies, we follow the second one and propose to generate
full mask annotations from scribbles by an interactive segmentation technique
which has proven to be extremely effective in a variety of computer vision prob-
lems including image and video segmentation [18,28]. For the same purpose, lit-
erature works have used a number of shallow interactive segmentation methods,
e.g. variants of GrabCut [20] are used in [12,16] for propagating bounding box
annotations to supervise a convolutional network. In order to propagate bound-
ing box annotations, [8] proposed to perform iterative optimization between
generating full mask approximations and training the network. Using a similar
iterative scheme, [13] propagated scribble annotations by superpixels via opti-
mizing a multi-label graph cuts model of [5]. [26] proposed a random-walk based
label propagation mechanism to propagate scribble annotations.

In this paper, we aim to explore the potential of Constrained Dominant Sets
(CDS ) [28,29] for generating predicted full annotations to be used in supervi-
sion of a convolutional neural network for semantic segmentation. Representing
images in an edge-weighted graph structure, main idea in constrained segmen-
tation approach in [28] is finding the collection of dominant set clusters on the
graph that are constrained to contain the components of a given annotation.
CDS approach is applied for co-segmentation and interactive segmentation using
modalities of bounding box or scribble and superiority of it over the state of the
art segmentation techniques like Graph Cut, Lazy Snapping, Geodesic Segmenta-
tion, Random Walker, Transduction, Geodesic Graph Cut, Constrained Random
Walker is proved in [28]. Motivated by the reported performance achievements
for single cluster extraction (i.e. foreground extraction) in [28], we used CDS
for multiple cluster extraction involving multi-label scribbles for the PASCAL
VOC 2012 dataset. Since our goal is mainly exploring the performance of CDS
in full mask prediction for weakly-supervised semantic segmentation, we trained
a basic segmentation network, namely Fully Convolutional Network (FCN-8s) of



Weakly Supervised Semantic Segmentation Using CDS’s 427

[14] based on VGG16 architecture, and compared our performance with other
full mask prediction schemes in the literature that supervise the same type of
deep learning architecture. Our experimental results on the standard dataset
PASCAL VOC 2012 show the effectiveness of our approach compared to exist-
ing algorithms.

2 Constrained Dominant Sets

Dominant Set Framework. In the dominant-set clustering framework [17,18], an
input image is represented as an undirected edge-weighted graph with no self-
loops G = (V,E,w), where V = {1, ..., n} is the set of vertices that correspond
to image points (pixels or superpixels), E ⊆ V × V is the set of edges that
represent the neighborhood relations between vertices, and w = E → R∗

+ is
the (positive) weight function that represent the similarity between linked node
pairs. A symmetric affinity (or similarity) matrix is constructed to represent the
graph G that is denoted by A = (aij)n×n where aij = w(i, j), if (i, j) ∈ E and
aij = 0 otherwise.

Next, a weight wS(i), which is (recursively) defined as Eq. 1, is assigned to
each vertex i ∈ S,

wS(i) =

{
1 if |S| = 1,∑

j∈S\{i} φS\{i}(j, i)wS\{i}(j), otherwise.
(1)

where φS(i, j) denotes the (relative) similarity between nodes j (j /∈ S) and i,
with respect to the average similarity between node i and its neighbours in S
(defined by φS(i, j) = aij − 1

|S|
∑

k∈S aik).
A positive wS(i) indicates that adding i into its neighbours in S will increase

the internal coherence of the set, while when it is negative overall coherence gets
decreased. Based on aforementioned definitions, a non-empty subset of vertices
S ⊆ V such that

∑
i∈T wT (i) > 0 for any non-empty T ⊆ S, is said to be

dominant set if it is a maximally coherent data set, i.e. satisfying two basic
properties of a cluster that are internal coherence (wS(i) > 0, for all i ∈ S) and
external incoherence (wS∩{i} < 0, for all i /∈ S).

Consider the following linearly-constrained quadratic optimization problem,

maximize f(x) = x′Ax

subject to x ∈ Δ
(2)

where x′ is the transposition of the vector x and Δ is the standard simplex of
Rn, defined as Δ = {x ∈ Rn :

∑n
i=1 xi = 1, and xi ≥ 0 for all i = 1...n}. With

the assumption of affinity matrix A is symmetric, it is shown by [17] that if S
is an dominant set, then its weighted characteristic vector xS ∈ Δ defined as in
Eq. 3 is the strict local solution of the Standard Quadratic Program in Eq. 2.

xS
i =

{
wS(i)∑

j∈S wS(j) , i ∈ S

0, otherwise
(3)
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Conversely, if x∗ is a strict local solution to Eq. 2, then its support σ(x∗) =
{i ∈ V : xi > 0} is a dominant set of A. Thus, a dominant set can be found by
localizing a solution of Eq. 2 by a continuous optimization technique and gather-
ing the support set of the found solution. Notice that the value of a component in
the found xS ∈ Δ provides a measure of how strong that component contributes
to the cohesiveness of the cluster.

Constrained Dominant Set Framework. In [28,29] the notion of a constrained
dominant set is introduced, which aims at finding a dominant set constrained to
contain vertices from a given seed set S ⊆ V . Based on the edge-weighted graph
definition with affinity matrix A, a parameterized family of quadratic programs
is defined as in Eq. 4 [28] for the set S and a parameter α > 0,

maximize fα
S (x) = x′(A − αÎS)x

subject to x ∈ Δ
(4)

where ÎS is the n × n diagonal matrix whose elements are set to 1 if the corre-
sponding vertices are in V \ S and to 0 otherwise. It is theoretically proven, and
empirically illustrated for interactive image segmentation [28], that if S is the set
of vertices selected by the user, by setting α > λmax(AV \S) it is guaranteed that
all local solutions of (4) will have a support that necessarily contains at least
one element of S. Here, λmax is the largest eigenvalue of the principal submatrix
of A indexed by elements of V \ S.

In order to find constrained dominant sets by solving the aforementioned
quadratic optimization problem (4), [28] used Replicator Dynamics that is devel-
oped and studied in evolutionary game theory [17]. In this work we use Infection
and Immunization Dynamics (InImDyn) [19] which proved to be a faster and as
accurate alternative to it.

3 Proposed Approach

We propose to generate full mask predictions (to be used for supervising a
semantic segmentation network) by post-processing weak annotations, i.e. scrib-
ble annotations, using CDS. Moreover, we propose to use CDS for multiclass
clustering of pixels, i.e. semantic segmentation, while previously CDS has been
used only for interactive foreground segmentation [28,29].

3.1 Preprocessing Step for CDS

Superpixel Generation. A common approach followed by image segmentation
works has been using superpixels as input entities instead of image pixels. A
superpixel is a group of pixels with similar colors and using superpixels not
only provides reduced computational complexity, but also yields computing fea-
tures on meaningful regions. Among a variety of techniques, i.e. SLIC, Oriented
Watershed Transform (OWT), we have preferred to use the method developed
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by Felzenszwalb and Huttenlocher [9] similar to [24] which is a fast and publicly
available algorithm. Method of Felzenszwalb and Huttenlocher [9] has also been
used in another weakly-supervised semantic segmentation framework [13] exper-
imenting on the same dataset with us. Proposed method in [9] is a graph-based
segmentation scheme where a graph is constructed for an image such that each
element to be segmented represents a vertex of the graph and dissimilarity, i.e.
color differences, between two vertices constitutes a weighted edge. The vertices
(or subgraphs) are started to be merged regarding to a merging criteria given
in Eq. 5, where eij is the edge between two subgraphs Ci and Cj , w(e) is the
weight on edge e and MST(Cx) be the minimum spanning tree of Cx.

w(eij) ≤ min
x∈{i,j}

(
max

e∈MST(Cx)
w(e) +

k

|Cx|
)

(5)

Here, k
|Cx| is a threshold function in which k is decided by the user, i.e. high

values of k yield to lower number of (large) segments, and vice-versa. Another
parameter given by the user is the smoothing factor (we denote by σFH) of the
Gaussian kernel that is used to smooth the image at the preprocessing step.

Feature Extraction. Once the superpixels are generated on the image, a feature
vector is computed for each superpixel. In the application of CDS model for
interactive image segmentation in [28], median of the color of all pixels in RGB,
HSV, and L*a*b* color spaces and Leung-Malik (LM) Filter Bank are concate-
nated in the feature extraction process. Differently from [28], we compute the
same feature types with ScribbleSup [13], which has experimented on the same
dataset with us, that are color and texture histograms denoted by hc(.) and ht(.)
in Eq. 6. More specifically, hc(xi) is a histogram computed on the color space
using 25 bins and ht(xi) is a histogram of gradients at the horizontal and vertical
orientations where 10 bins are used for each orientation for the superpixel xi.

3.2 Application of CDS for Full Mask Predictions

In order to generate full mask predictions using the CDS model, an input image
is represented as a graph G where vertices depict the superpixels of the image and
edge-weights between vertices reflect the similarity between corresponding super-
pixels. We use scribbles as the given weak annotations in this work which serve
as constraints in the CDS implementation. Previously, CDS has been applied for
interactive foreground segmentation [28] where dominant set clusters covering
a set of given nodes S for a single object class were explored. In this work our
problem demand for multiclass clustering of pixels. Hence, here Sc represents the
manually selected pixels of the class c where c ∈ {1, ..., C} and C is the number
of classes in the dataset, e.g. C = 21 for PASCAL VOC 2012.

Accordingly, for each class of scribbles that exist in a given image, by ignor-
ing the existence of the remaining classes in the image we perform foreground
segmentation, i.e. 2-class clustering of image pixels, as in [28] by computing
its CDS’s. Thus, for the class c the union of the extracted dominant sets, i.e.
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UDSc = D1 ∪ D2 ∪ ...DL if L dominant sets are extracted which contain the
set Sc, represents the segmented regions of object in class c. We then repeat
this process for every class that exist in the image using the corresponding Sc

information. If a node, i.e. superpixel, is found in more than one class of UDSc,
we assign it to the one having the highest value in its weighted characteristic
vector xSc ∈ Δ which is found by solving the quadratic program in Eq. 4 by
InImDyn (see Sect. 2).

Computation of the Affinity Matrix. Before computing the CDS clusters, the
affinity (or similarity) between superpixels should be computed to construct the
matrix A in Eq. 4. In [28], dissimilarity measurements are transformed to affinity
space by using the Gaussian kernel Aσ

ij = �i�=j exp
( ||fi−fj ||2

2σ2

)
, where fi is the

feature vector of the superpixel i, σ is the scale parameter for the Gaussian
kernel and �P = 1 if P is true, 0 otherwise. Differently from [28], we use the
Gaussian kernel in Eq. 6 where different σ values are used for different feature
types. The kernel in Eq. 6 is also adopted in [13] which experiments on the same
dataset and uses the same feature types with us.

Aσc,σt

ij = �i�=j exp
(

−||hc(xi) − hc(xj)||22
σ2

c

− ||ht(xi) − ht(xj)||22
σ2

t

)
(6)

Using Different Color Spaces. Quality of generated superpixels effects the per-
formance of the segmentation algorithm directly and a number of segmentation
works (examples include but not limited to [1,24]) have emphasized that higher
segmentation performances can be obtained by using different color transforma-
tions of the input image to deal with different scene and lighting conditions.
Motivated by the related literature studies [1,24], we compute superpixels in
a variety of color spaces with a range of invariance properties. Specifically, we
use five color spaces, that were also used in [24] for determining high quality
object locations by employing segmentation as a selective search strategy, that
are Intensity (grey-scale image), Lab, rgI which denotes rg channels of normal-
ized RGB plus intensity, HSV , H that denotes the Hue channel of HSV . We
generate superpixels and compute mask predictions using CDS model for each
color space of the input image, then we decide the final label for a pixel based on
most frequently occurred class label, i.e. by using the scheme of majority voting.
In addition to using different color spaces we also vary the threshold parameter
k (in Eq. 5) to get benefit from a large set of diversification as recommended in
[24].

4 Experiments

Dataset and Evaluation. We trained the models on the 10582 augmented PAS-
CAL VOC training set [10] and evaluated them on the 1449 validation set. We
used the scribble annotations published in [13]. In what follows accuracy is evalu-
ated using pixel accuracy (

∑
i nii/

∑
i ti), mean accuracy ((1/ncl)

∑
i nii/

∑
i ti)
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and mean Intersection over Union ((1/ncl)
∑

i nii/(ti +
∑

j nji − nii) as in [14],
where nij is the number of pixels of class i predicted to belong to class j, ncl is
the number of different classes, and ti =

∑
j nij be the total number of pixels of

class i.

Implementation Details. We used the VGG16-based FCN-8s network [14] of the
MatConvNet-FCN toolbox [25] which we initialized by ImageNet pretrained
model, i.e. VGG-VD-16 in [25]. We trained by SGD with momentum and, sim-
ilar to [14], we used momentum 0.9, weight decay of 5−4, mini batch size of
20 images and learning rate of 10−3. With these selected hyperparameters we
observed that the pixel accuracy is being converged on the validation set.

Performance of CDS is sensitive to the selection of the σ parameter of the
Gaussian kernel (see Sect. 3.2) and in [28] three different results are reported
for different selections of σ: (1) CDSBestSigma, where best σ is selected sep-
arately for every image; (2) CDSSingleSigma, by searching in a fixed range,
i.e. 0.05 and 0.2; (3) CDSSelfTuning, where σ2 is replaced by σi × σj , where
σi = mean(KNN(fi)), i.e. the mean of the K-NearestNeighbor of the sample
fi, K is fixed to 7. To decide values of the σc and σt parameters (in Eq. 6) we
followed CDSBestSigma strategy in [28]. Additionally, in the graph structure we
cut the edges between vertices correspond to non-adjacent superpixels vertices
by setting the corresponding items to zero in the affinity matrix A like has been
done in [13], which has provided better segmentation maps. We then min-max
normalized the matrix A to be scaled in the range of [0, 1] and symmetrized it.

Performance Evaluation. We first explored the performance using different color
spaces on the predicted full annotations of 10582 images (denoted by PredSet
to mention “Predicted Set” in Table 1), before training the network with them.
Then, by training the network with the Predicted Sets we report performance
on the Test Set, i.e. PASCAL VOC 2012 Val set. In the implementation of the
superpixel generation of [9] we used smoothing factor of σFH = 0.8 (FH stands
for Felzenszwalb and Huttenloche [9]) in the experiments of Table 1. For each
color space we performed majority voting (denoted by MV both in Tables 1 and
2) over obtained maps with k = {225, 250, 300, 400} (in Eq. 5).

We see at Table 1 that using different color spaces affects the quality of
the predicted full annotations (PredSet) and highest quality mask predictions
in terms of mIoU are obtained when we use the Intensity (66.51%). Perform-
ing majority voting over maps obtained in all color spaces provided highest
quality mask predictions for both CDS (73.28%) and GraphCut (63.51%). We
then trained the network with the predicted sets of CDS-Intensity, CDS-MV,
GraphCut-MV and published full mask annotations and present their perfor-
mance on the test set in Table 1. We see that by using CDS-MV in training
we outperform GraphCut (which was employed in [13]) significantly and we are
quiet approaching to the performance of fully-annotated mask training (59.2%
vs. 61.6%).

Comparison with Other Full-Mask Prediction Methods. There is a large variety
of interactive segmentation algorithms that can be used for full mask prediction
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Table 1. Quality of obtained mask predictions (PredSet) and using them in network
training performance on the PASCAL VOC 2012 Val set (TestSet) (MV: Majority
Voting, (∗) implementation of GraphCut in our framework.)

Color space mean IoU Pixel Acc. mean Acc.

PredSet-CDS-Intensity 66.51 89.05 75.95

PredSet-CDS-Lab 65.47 88.36 76.15

PredSet-CDS-rgI 64.70 88.13 75.29

PredSet-CDS-HSV 66.49 89.27 74.60

PredSet-CDS-H 57.16 85.12 68.21

PredSet-CDS-MV 73.28 91.47 82.05

PredSet-GraphCut(∗)-MV 63.51 86.48 81.83

TestSet-CDS-Intensity 57.41 89.01 70.56

TestSet-CDS-MV 59.20 89.59 73.05

TestSet-GraphCut(∗)-MV 52.25 85.80 72.43

TestSet-With Full Masks 61.60 90.27 78.95

to train a semantic segmentation network. To be as fair as possible we make
comparison with the reported performances of the methods that are carried on
in similar conditions with us, e.g. the ones which employ scribbles as weak anno-
tations, achieve network training using cross entropy loss computed over all pixel
predictions but not only on given weak annotations, and do not iterate between
the shallow segmentation method and network training with the obtained mask
predictions as in ScribbleSup [13]. On the other hand, we performed the Graph
Cut algorithm employed in ScribbleSup [13] in our framework by using the pub-
lished code1 referred in [13] and present its performance. In fact, our approach
can be considered as the first iteration step of such an iterative scheme, and
it can be extended to be used in further iterations by updating initial scribble
annotations by considering network scores obtained with high confidence.

Considering the above issues we compare with the methods whose accuracy
on the test set is reported when their mask predictions are used to train a segmen-
tation network. Specifically, we refer to the performance results of the popular
methods GrabCut [20], NormalizedCut [21], and KernelCut [22] reported in [21].
It is mentioned in [21,22] that for each image pixel, RGB (color) and XY (loca-
tion) features are concatenated to be used in these algorithms. Then, segmen-
tation proposals generated by them are used to train a VGG16-based DeepLab-
Msc-largeFOV network [6]. It is reported in [6] that DeepLab-Msc-largeFOV,
which employs atrous convolution and multiscale prediction, outperforms FCN-
8s by around 9% (71.6% vs. 62.2%) at PASCAL VOC 2012 validation set when
trained by full mask annotations, which provides an advantage at comparative
works. On the other hand, we also present the performance gap between weak
and full mask training to provide a more fair comparison in Table 2. In Table 2,

1 mouse.cs.uwaterloo.ca/code/gco-v3.0.zip.

http://mouse.cs.uwaterloo.ca/code/gco-v3.0.zip
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the performance results of full mask training (64.1 %), GrabCut [20], Normal-
izedCut [21], and KernelCut [22] are acquired from [21].

Table 2. Performance comparison on PASCAL VOC 2012 val set.

Method mIoU Gap between full and
weak supervision

With Full Masks [21] 64.1

GrabCut [20] 55.5 8.6

NormalizedCut [21] 58.7 5.4

KernelCut [22] 59.8 4.3

With Full Masks 61.6

GraphCut(∗)-MV(σFH=0.8) 52.25 9.35

CDS-MV(σFH=0.8) 59.20 2.40

CDS-MV(σFHBest) 60.22 1.38

For CDS, we train with mask predictions generated by two different selections
of σFH: (i) σFH = 0.8 (corresponding to PredSet-CDS-MV in Table 1); and (ii)
σFHBest, where we selected the best among σFH = 0.7 and σFH = 0.8 for each
image. It can be seen at the segmentation performances on the val set given in
Table 2 that we outperform the literature works at σFHBest (60.22%), and we
are superior at both parameter selections in terms of performance gap between
full and weak supervision, i.e. we approach to the performance of our full mask
training (61.6%) by 2.4% and 1.38% at selection of σFH = 0.8 and σFHBest,
respectively. Two example images from the generated set, i.e. PredSet, of σFHBest

are presented in Fig. 1. Figure 2 shows examples from testing on the val set when
it is trained by PredSet-CDS-MV σFHBest . It can be seen in Figs. 1 and 2 that our
results are the ones most closest to the ground truth of input images.

scribbles ground truth GrabCut [16] Normalized Cut [17] Kernel Cut [18] CDS

Fig. 1. Generated mask predictions (Images for GrabCut [20], Normalized Cut [21],
and KernelCut [22] are acquired from [21])
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ground truth GrabCut+FCN NC+FCN KernelCut +FCN CDS + FCNimage full supervision

Fig. 2. Testing on PASCAL VOC 2012 val set. (Images for GrabCut [20], Normalized
Cut [21], and KernelCut [22] are acquired from [21])

5 Conclusions

In this paper we have proposed to apply Constrained Dominant Set (CDS)
model, which is proved to be an effective method compared to state-of-the-art
interactive segmentation algorithms, for propagating weak scribble annotations
of a given set of images to obtain the multi-labeled full mask predictions of
them. Achieved mask predictions are then used to train a Fully Convolutional
Network for semantic segmentation. While CDS has been applied for pixelwise
binary classification problem, it has not been explored for semantic segmentation
before and this paper presents our work in this direction. Experimental results
showed that proposed approach generates higher quality full mask predictions
than the existing methods that have been adopted for weakly-supervised seman-
tic segmentation in literature works.
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