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Abstract. Conventional approaches to object instance re-identification
rely on matching appearances of the target objects among a set of frames.
However, learning appearances of the objects alone might fail when there
are multiple objects with similar appearance or multiple instances of
same object class present in the scene. This paper proposes that partial
observations of the background can be utilized to aid in the object re-
identification task for a rigid scene, especially a rigid environment with
a lot of reoccurring identical models of objects. Using an extension to
the Mask R-CNN architecture, we learn to encode the important and
distinct information in the background jointly with the foreground rele-
vant to rigid real-world scenarios such as an indoor environment where
objects are static and the camera moves around the scene. We demon-
strate the effectiveness of our joint visual feature in the re-identification
of objects in the ScanNet dataset and show a relative improvement of
around 28.25% in the rank-1 accuracy over the deepSort method.

Keywords: Re-identification · Object detection · Multi-view ·
Triplet loss

1 Introduction

Multiple object matching and association are classical problems in many impor-
tant tasks such as video surveillance, semantic scene understanding and also,
Simultaneous Localization And Mapping (SLAM). Given an indoor scene, where
the environment is frequently cluttered with several near-identical objects, it is
challenging to identify and track a particular instance of an object among a
number of objects present in the scene, e.g. see Fig. 1. The problem is even more
challenging when there is a wide baseline among multiple views (or temporally
disjoint). It is complex to re-identify a vast variety of objects based on appear-
ance only. There are many challenges for the association problem i.e. occlu-
sions, motion blur, mis-detections, etc. Conventional methods use two major
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approaches to build a re-ID system - appearance-based and motion-based. Most
methods use an appearance-based approach because motion prediction based
systems try to localize each object instance based on a motion model, however,
due to the possibility of huge unpredictable trajectories across the frames, these
methods tend to fail when the same object instance reappear after a long time.

Fig. 1. Similar looking objects in rigid, indoor scenes from ScanNet dataset. Multiple
instances of the same object class, chair, in this case, are hard to differentiate with
each other. In such cases, background can be highly useful to re-identify a particular
instance in multiple views.

Many previous studies focus on person re-identification where the goal is to
assign a correct ID of an instance of a specific class (i.e. a pedestrian) across
multiple-views obtained from cameras with possibly non-overlapping views. In
general, these methods try to learn discriminative features based on person’s
face [18], clothing [14] or symmetry-driven local features [9] to re-ID people. In
contrast, the problem of associating an unique ID to instances of objects is often
solved as the association of multiple unknown objects between views [16]. This
problem is closely related to person re-ID and often evaluated in the pedestrian
(person) scenario with early work on PET2009 [5].

However, the specific task of re-identifying multiple near-identical objects in
a rigid scene presents a different challenge, we refer to as re-OBJ, a specific case
of re-ID. In this paper, we consider a static indoor video dataset where large dis-
placement in the camera motion is unlikely and so the background of an instance
cannot undergo a sudden drastic change. Therefore, we propose to jointly learn
the foreground and the background to build a robust object re-identification
system at the instance level. We propose not only to learn the appearance of
an object but also the background that can provide a lot of useful information
regarding the surroundings of an instance which is unique to that instance at
any given viewpoint. Consider a scene of an office room with multiple chairs
and tables present. To re-identify a particular object instance across multiple
images, it is important to be able to distinguish it from other instances of the
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same object class. Intuitively, if we can observe and encode the surroundings of
that particular instance within a stream of images, we can be confident to an
extent that the object instance in consideration has been seen before and it is
different from other instances of the same class because the environment around
it is unique at any given point of time even when other instances have similar
appearance (see Fig. 1).

2 Related Work

There is a vast literature for object re-identification that is mostly focused on
person re-identification. The ability to re-identify objects in the images heavily
relies on finding a similar set of images for a given image of the target object,
possibly with multiple instances, using visual search to retrieve similar images
to the given query image. Some works in the literature like [2,9] exploit the
knowledge that the same individual is been detected in consecutive frames and
then learning an appearance-based transfer function for a robust re-identification
system. Additionally, in [9], they extract features from three different comple-
mentary modalities: the chromatic content, spatial arrangement of colors and
local motifs derived from different parts of the human body to accumulate local
features. Other deep learning models learn the category-level similarity [20] that
mainly involves semantic similarity. The study highlights the effect of significant
visual variability within a category although the semantic and visual similarities
are generally quite consistent across different categories. Thus, applications that
involve the computation of image similarity like re-identification, image retrieval,
search-by-example require learning a fine-grained image similarity that can also
distinguish the differences between different images of the same category. Rel-
ative attribute [17] learns image attribute ranking among the images with the
same attributes. OASIS [4] performs local distance learning [10] learn image
similarity ranking models on top of the hand-crafted features. Such appearance-
based approaches are good at distinguishing intra-class variation, in contrast, we
focus on the objects’ relationship to the background to jointly learn a foreground
and background discriminative appearance feature.

Many image similarity models [3,4,20] simply extract features like Gabor
filters, SIFT [15], HOG [7] features to learn similarity between images. How-
ever, the representation of the hand-crafted features limits the performance of
these methods. Some deep learning-based models popular in image classification
tasks [13] have shown great success in learning features from the images but these
models cannot directly fit similar image ranking especially the fine-grained dis-
tinction between similar images. Thus, in order to learn the fine-grained image
similarity deep ranking model has been proposed by [21]. Pairwise ranking model
is a widely used learning-to-rank formulation. It is used to learn image ranking
models in [4,10,17]. Generating good triplet samples is a crucial aspect of learn-
ing pairwise ranking model. FaceNet [18] showed that the triplet loss is a suitable
loss function for the verification, recognition and clustering than the verification
loss [19]. The difference is that the verification loss minimizes the L2-distance
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between objects of the same identity and enforces a margin between the distance
of objects of different identities whereas the triplet loss also encourages a rela-
tive distance constraint and thus, enhancing the ability to discriminate between
dissimilar identities. In [4] and [17], the triplet sampling algorithms assume that
we can load the whole dataset into memory, which is impractical for a large
dataset. Our work is built upon the deep ranking model proposed by [21] with
an efficient triplet sampling algorithm that does not require loading the whole
dataset into the memory.

3 Object Instance Separation Encoding

For a robust object re-identification system for a rigid scenario, we hypothesize
that the background information is useful in order to discriminate between mul-
tiple instances of the same semantic class and also the objects that have a similar
appearance as shown intuitively in Fig. 1. To include the background informa-
tion, the first step in our approach is to use an off-the-shelf object detector, i.e.
Mask-RCNN (Sect. 3.1), and obtain foreground masks of the objects with the
bounding boxes that are expanded (see Sect. 4) in order to include a substantial
background around the object within the bounding boxes. Encodings from the
separated masked foregrounds and the masked backgrounds are extracted using
ResNet50 (Sect. 3.2), which are concatenated to obtain joint embeddings. These
embeddings then are sampled into triplets {positive, negative, anchor} and fed
to a triplet-based network architecture consisting of three identical ConvNets
(see Figs. 3 and 4) with the pairwise ranking model to learn image similarity for
a triple-based ranking loss function.

3.1 Object Detection

Our approach relies on previous work, Mask-RCNN [11] which uses region-based
object detector like Faster R-CNN to detect objects. It does not only provide
a bounding box around an object but also performs image segmentation and
provides a mask representing a set of pixels belonging to the same object. A
Region Proposal Network (RPN) is used to generate a number of region proposals
followed by a position-sensitive RoI pooling layer to warp them into a fixed
dimension. Finally, it is fed into fully-connected layers to produce class scores
and the bounding box predictions. A parallel branch of two additional fully-
connected layers provides the mask. Using the output from the Mask-RCNN,
we extract each bounding box including masks as separate images and resize
them into images of a fixed size in order to train our network to learn a visual
encoding of the objects’ mask and the background surrounding them within the
bounding boxes (see first column, Fig. 2).

3.2 Object Visual Encoding

For each object of the input images, we create two sets of images F = {If , Ib}.
Using the detections obtained from Mask-RCNN, one set is created by extract-
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Fig. 2. As input, our network takes expanded bounding boxes (see Sect. 3.2) which
construct a pair of images for masked foreground and masked background (seen on
left of image). Each of the pair of images is passed through a ResNet50 where we
take an intermediary representation 7 × 7 × 512 providing spatial information, which
is concatenated to provide a joint representation of 7 × 7 × 1024.

ing masks representing objects in the foreground (If ). The other set only con-
tains the background with the subtracted foreground (Ib). As shown in Fig. 2,
a pair of images is taken from each set to pass through two identical streams
to learn an encoding between the masked foreground and the background. Each
of the images, the masked background and the masked foreground is input to
a ResNet50 [12] deep model pre-trained on ImageNet [8] dataset to extract
the features. We take from an intermediary layer of the network providing
I(.) ∈ R

7×7×512 representation of the two images retaining spatial context, the
tensors are then concatenated to provide an embedding F ∈ R

7×7×1024.

3.3 Triplet Loss

An effective algorithm for object instance re-identification should be able to
distinguish not only between the images of different objects but also between
different instances of the same object class. Especially, in the indoor scenes
where multiple instances of the same object category are present, i.e. an office
with multiple tables and chairs; it is highly challenging to re-identify a particular
object instance amongst others.

A triplet of images has three kinds of images: an anchor which acts like a
query template, a positive and a negative image. In order to ensure an effective
re-identification at the instance level, it is important to also consider the intra-
class variations and different instances of the same object as negative examples.
For example, a backpack and a chair are definitely an example of anchor-negative
pairs but two different instances of the same chair (with a different background)
should also be considered an anchor-negative pair. We use a triplet-based net-
work architecture with the pairwise ranking model to learn image similarity for
the triple-based ranking loss function, inspired from [21]. If we have a set of
F = f1, ....fF images and si,j = s(fi, fj) that gives the pairwise similarity score
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between the images fi and fj . The score s is higher for more similar images and
is lower for more dissimilar images. If we have a triplet ti = (fiA, fiP , fiN ) where
fiA, fiP and fiN are the anchor, positive and negative images, respectively. The
goal of the training is to learn an embedding function such that:

D(fiA, fiP ) < D(fiA, fiN ), s(fiA, fiP ) > s(fiA, fiN ) (1)

where D(.) is the squared Euclidean distance in the embeddings space. A triplet
incorporates a relative ranking based on the similarity between the anchor, pos-
itive and the negative images.

Fig. 3. Triplet of input tensors corresponding to images. Each tensor contains an
embeddings of the anchor image A, positive image P and a negative Image N which
are fed into three identical deep neural networks independently with shared weights
where the triplet loss is optimized.

Fig. 4. Our ConvBlock takes in the encoding from Fig. 2. The ConvBlock consists of
a network of convolutional and maxpooling layers, which pool the spatial information
and merge the foreground and background encodings to obtain final embeddings.
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The triplet ranking loss function is given as:

l(fiA, fiP , fiN ) = max{0,M + D(fiA, fiP ) − D(fiA, fiN )} (2)

where M is a parameter called margin that regulates the gap between the pair-
wise distance: (fiA, fiP ) and (fiA, fiN ). The model learns to minimize the dis-
tance between more similar images and maximize the distance between the dis-
similar ones. Our model is based on the work proposed in [21] with the difference
that the input image triplets we use are the concatenated embeddings of the
masked foregrounds and backgrounds.

4 Experiments

Training Data. We use ScanNet dataset [6] for our experiments which consists
of 1500 indoor RGBD scans annotated with 3D camera poses, surface recon-
structions, and mesh segmentation related to several object categories. These
annotations allowed us to evaluate the accuracy of Mask-RCNN on the ScanNet
images to be used in the proposed pipeline. To generate our training data, we ran
Mask-RCNN over a subset of 863 scenes randomly selected from the whole Scan-
Net dataset. In total, the Mask-RCNN provided 646, 156 object detections with
masks belonging to 29 object classes (see Table 1). Since not all the objects in the
dataset are annotated, we computed the bounding box overlap ratio between the
ground truth (GT) bounding boxes and the detections provided by Mask-RCNN
to select only the valid detections. If the overlap ratio was higher than 60% and
the label of the detected object matches with the GT label, it was considered a
valid detection.

After mapping each detection obtained from the Mask-RCNN with the corre-
sponding 2D ground truth (GT), we found 9.11% of the total, i.e. around 58876
detections to be considered fit for the experiments. The regions indicated by the
bounding boxes were extended by an additional 10 pixels-wide border in order to
allow loosely-fitted bounding boxes around the objects and thus, allowing a more
significant background around each object’s mask within the bounding boxes.
These regions were then extracted out of the full images, resized to 224 × 224
and categorically stored based on the object’s class and it’s observed instances.
Finally, for each object image, the foreground masks and the background masks
were extracted and stored as separate images. The data is split into a 3-fold
cross-validation manner with 39250 images for training and 19626 images for
test over 1701 instances of objects.

We performed our experiments in three different setups. In all the experi-
mental setups, we used pre-trained ResNet50 [12] on the ImageNet [8] dataset
as the backbone model to extract features from the images of the objects. no-
train: In this setup, the features extracted from full images were matched against
each other by using an L2 distance-based metric, without any training. full: In
another setup, our model is trained on the embeddings obtained using the full
images without extracting separate foreground and background masks. concat:
The third type of experimental setup is the approach proposed in this paper
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Table 1. Number of views after mapping with GT for valid detections, selected based
on object’s label and the bounding box overlap ratio and the number of unique instances
for each object category.

No. of views and unique instances per object class

Class No. of views No. of instances Class No. of views No. of instances

Bicycle 110 6 Toilet 1755 103

Bench 27 4 Tv 562 46

Backpack 1563 117 Laptop 600 41

Handbag 486 32 Mouse 59 6

Suitcase 377 30 Keyboard 1879 67

Sports ball 379 21 Microwave 667 61

Bottle 903 27 Oven 72 6

Cup 278 25 Toaster 11 4

Chair 38203 508 Sink 2694 157

Couch 1371 75 Refrigerator 60 11

Potted plant 1294 55 Book 3124 65

Bed 83 17 Clock 25 6

Bowl 121 8 Person 260 8

Dining table 1853 185 Teddy bear 47 8

Vase 13 2 - − −

where the model is trained on the embeddings obtained by concatenating the
features from masked foregrounds and the backgrounds. In concat setup, the
model learns to minimize the difference between the anchor fiA and the positive
fiP images while also learning to maximize the difference between the anchor
fiA and the negative fiN images by employing the triplet-loss based training.

Evaluation Metrics. Most re-ID algorithms use Cumulative Matching Charac-
teristic (CMC) curve as a standard metric to measure their performance which
compares the identification rate vs rank. The proportions of good matches of
the probe image with the set of images in rank-1 would indicate a good or bad
performance of the algorithm. A CMC curve is computed for all these individual
ranks. In our evaluation procedure, however, we compare with the deepSort [22]
tracking algorithm which is used here as a rank-1 re-ID method, which is why
we cannot compare with a CMC curve. Also, it will not be fair to compare recall
and precision values between the deepSort and our method. Thus, we compute
the rank-1 accuracy by measuring the percentage of correctly identified objects.

Analysis. Evaluated using the aforementioned experimental setup, the proposed
method achieves the best performance on the ScanNet dataset in regards to
both the rank-1 accuracy as shown in Table 2. Figure 5 shows that the proposed
method, concat was able to find the best match with the probe image. In the
bottom row, no-train and full tried to match with an image which either had
an object of the same color or the shape. However, the proposed method, concat
could not always correctly identify the images and was performing occasionally
poor as can be seen in Fig. 6. Overall, the results from Table 2 show that the
concat method was able to improve the rank-1 accuracy by 22.19% and 17.1%
against no-train and full, respectively.
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Table 2. Scores on our ScanNet validation data split with Rank-1, -5, -20 and -50
accuracy values. The best performing type of setups is highlighted in bold.

Type Rank-1 (%) Rank-5 (%) Rank-20 (%) Rank-50 (%)

no-train 55.66 66.67 77.46 89.67

full 60.75 69.61 80.90 95.21

concat 77.85 91.55 98.36 99.80

Fig. 5. The visualizations show some examples of the matches found in no-train, full
and concat setups. The right matches with the probe image are highlighted in green
color. (Color figure online)

Fig. 6. Examples of the matches found in no-train, full and concat setups. The right
matches with the probe image are highlighted in green color. (Color figure online)
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Comparison with deepSort. deepSort [22] is an open-source implementation
of the original SORT [1] algorithm which employs deep appearance descriptors
to improve the performance in multiple object tracking. deepSort learns discrim-
inative feature embeddings offline in order to obtain a deep association metric
for a person re-identification dataset in the original work. For our experiments,
we provided two random sets of image pairs obtained from the ScanNet scenes
to the algorithm to identify multiple objects ensuring that an image pair is not
consisting of images from two different scenes. We computed the performance
by measuring the percentage of matched object instances across all the image
pairs. Figure 7 shows the possible problems that standard object matching or
tracking algorithms might face in re-identifying objects. The figure shows that
the deepSort was able to match an object (in yellow bounding box) in multi-
ple frames but lost an object (in red bounding box) when the camera revisits
a similar view later. deepSort achieved a rank-1 accuracy of 49.60% against the
rank-1 accuracy of 77.85% obtained with our method.

Fig. 7. An example object being matched by the deepSort algorithm inside the yellow
bounding box and the lost object in the red bounding box. (Color figure online)

5 Conclusion

The contribution of this paper was to explore the intuition that the informa-
tion obtained from the background surrounding the detected target objects in
a rigid scene could be highly useful in discriminating two near-identical objects
or two instances of the same object class. The discriminative features learned
from the explicit concatenated foreground and background can be utilized to
re-identify objects at the instance-level throughout the dataset. Our experi-
ments have shown that the proposed method performs well even in the case of
highly cluttered rigid environments like the indoor scenes obtained from Scan-
Net dataset. In future, we plan to explore if the temporal information obtained
from multiple views in a video dataset can be integrated with our object instance
re-identification system for a robust multiple object tracking algorithm in case
of rigid and static scenes.
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