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Abstract. An automatic framework for multiple sclerosis (MS) follow-up by
Magnetic Resonance Imaging (MRI) is presented. It is based on the identifi-
cation and segmentation of lesions by using convolutional neural network
(CNN) architecture applied to the volumes collected by different imaging
modalities and on the registration of the volumes obtained by two consecutive
examinations. The resulting binary masks obtained from the identification/
segmentation strategy on each examination are used to calculate the volume of
each lesions, their status (chronic or active) and, hence, to estimate the pro-
gression of the disease. Preliminary results are reported demonstrating that the
calculations performed by the proposed framework are capable, when the dis-
ease is stable, to gather the same information obtainable when the contrast agent
(CA) is administered to the patient.
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1 Introduction

Multiple sclerosis (MS) is a chronic and degenerative disease of the brain and spinal
cord with very heterogenous clinical presentation which can vary greatly between
patients in severity and symptoms [1]. Also the clinical course of MS is unpredictable
and most patients are initially diagnosed as having relapsing-remitting MS character-
ized by inflammatory attacks separated by variable periods of remission and recovery.
After this first phase, the majority of patients transit into a progressive phase consisting
in an unremitting and progressive accumulation of disability. Actually there is no cure
for MS and existing therapies focus on symptomatic management and prevention of
further damage, with variable effectiveness, though recent advancements are promising.
MS origins are not well understood but characteristic signs of tissue damages are
recognizable, such as white matter lesions and brain atrophy or shrinkage due to
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degeneration. These signs can be observed by MRI which has become a special tool to
follow-up MS patients with reduced invasiveness due to the usage of specific contrast
agents. In fact, focal lesions in the brain and spinal cord are primarily visible in the
white matter on structural MRI observable as hyperintensities on T2-weighted images,
proton-density images (PD), or fluid-attenuated inversion recovery images (FLAIR),
and as hypointensities, or “black holes”, on T1-wheighted images [2]. These imaging
procedures are all performed in a single MRI examination and the corresponding
images (thousands), collected both in pre and post CA administration, are all used for
MS monitoring and follow-up. Identification of the lesions affecting the white matter
and their count and volume calculation by MRI have become well established protocols
for assessing the progression of MS and treatment effect. For this reason, MRI is
currently used routinely in clinical practice, though it is not well correlated with clinical
disability progression due to the presence of different forms of disability (besides
physical impairments, also cognitive impairments could occur), to neuroplasticity and
to the effects of de-myelinization of nerves, a critical effect of MS, which is not
observed by MRI (white matter could appear normal though it has reduced myelin).
Moreover imaging markers are capable to capture volumetric changes but they are
unable to indicate brain changes and spatial dispersion of the lesions. Besides that, MS
patients routinely have MR imaging with CA every 6–12 months to assess response to
medication but, recently [3], evidence has been provided of tissue deposition of con-
trast agents questioning the long-term safety of CA. Since in [3] it has been shown that
there is no added benefit of CA over and above that of increased lesion burden, it could
be argued that, since the proportion of individuals with worsening lesion load is a small
proportion, there is no need for CA administration in those with stable disease.

In what follows, we present a framework to increase the precision and the objec-
tiveness of MRI analysis in monitoring MS by improving lesion identification and
comparison of the actual control with those collected previously in order to establish if
new lesions have occurred and if old lesions have expanded or modified. Moreover, the
framework is intended to optimize the use of CA, by eliminating it when the disease is
stable. To the best of our knowledge, the proposal of a system which merges the
advantages of an automatic MS lesion identification/segmentation strategy with those
of registering data collected at different times to perform numerical comparisons of
lesions is new.

The manuscript is structured as follows: Sect. 2 provides the related work, Sect. 3
details the proposed framework, Sect. 4 presents promising, though preliminary, results
and Sect. 5 concludes the paper.

2 Related Work

MRI is considered the gold standard between imaging modality for identification and
evaluation of MS lesions affecting white matter, thanks to its richness of imaging
parameters, which allow to highlight the shape of these lesions with respect to the
healthy tissue, to the usage of CA to establish the status of the lesions (active or
chronic) and to new perspectives offered by MRI evolutions [4]. Thousands of MRI
images composing a single examination are usually analyzed by expert radiologists: the
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operation is time consuming, subjective and difficult to be carried out without errors
due to the huge number of evaluations required for each of the identified lesions.
Moreover, additional evaluations and comparisons are required between the current
examination and data collected previously, necessary to follow-up the disease. This has
implied that both registration methods between data from different examinations and
lesion identification process were automatized.

Regarding automatic segmentation of MS lesions by MRI images segmentation,
several attempts have been done with success, though the huge variability of MS
lesions in size, shape, intensity and location make automatic and accurate identification
and segmentation really challenging [5–7]. Though classical segmentation techniques,
based on shapes, could be effective [8], a particular attention to deep neural networks is
necessary, due to their accuracy in solving computer-vision tasks with low manual
intervention with respect to other approaches. The great advantage of deep learning is
that the feature set would be no longer defined by the user but learned directly by the
system from the training images. This is a useful property because it is often difficult
for people to characterize features that best serve to separate healthy tissue from MS
lesions. From the perspective of deep learning application, the high dimensionality of
the MR images, the difficulty of obtaining reliable ground truth and the high accuracy
required for clinical practice, all contribute to make white matter lesion segmentation a
worthy test application. CNN have demonstrated breaking performance also in brain
imaging segmentation [9–11]. In particular, Yoo et al. [9] were the first to propose an
automated learning approach for MS lesion segmentation. Besides the architecture of
the used system, the interesting innovations were that 3D patches of the MRI volume
were used and that segmentation preferred combinations (co-registration) of T2-w and
PD images because they were proven to carry more information than MRI images by
other modalities and more information than T2-w or PD taken singularly. In 2015,
Vaidya et al. [10] proposed a method that used 3D CNNs to learn features by different
datasets of the same patient: T1-w, T2-w, PD and FLAIR MRIs. The method proposed
in [11] has proven to use efficiently the information carried on by different MRI
imaging modalities by reducing the number of parameters (and hence the training set)
through the usage of two CNNs in cascade, trained separately. To date, the method
presented in [11] represents for MS lesion segmentation one of the benchmark
architectures.

Regarding registration techniques, the problem has been afforded since medical
imaging moved its first steps [12] due to the necessity of matching images by different
modalities. In the following years, the problem has been refined and effectively solved
by using recently proposed learning-based deformable strategies and optimization,
suitably studied for MRI of the brain [13, 14].

3 The Proposed Framework

The framework we propose is based on the utilization of both the data collected in the
current examination and those collected in the previous examination, in turn composed
by MRI data and by its corresponding lesion identification/segmentation. The frame-
work sketch is reported in Fig. 1.
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After the acquisition of the current MRI data, lesions are identified and segmented
by using the method described below. Following lesion segmentation, data from the
current and the previous exams follow a 3D registration (also summarized below).
After volume registration, the binary images containing ones where lesions are present
and zeros elsewhere are used for binary operations to obtain resulting binary images
indicating whether a lesion was present in both examinations (chronic lesion), if a
lesion, though present in both examinations, has grown up with time (increased vol-
ume) or, finally, if a lesion is present in the actual examination and absent previously
(new and, potentially, acute and active lesion). Moreover, a lot of objective numerical
calculations are possible, such as: the number of lesions (calculated as the number of
connected classified regions); single volume calculation; global volume occupied by
lesions; calculation of the brain volume in the actual examination with respect to the
previous exam or any other modification occurring in the brain that can be calculated
numerically.

3.1 Lesion Segmentation

Being a benchmark method, we have used the supervised paradigm presented in [11]
by extending its concept to contain, besides the parallel pipeline involving T1-w, T2-w,
PD-w and FLAIR images also the linear combination T2-w + PD. The reason of using
also T2-w + PD is because this modality has more information than the others

Current
control

Lesion
identification

Registration

Lesion count

Parameters
calculation

Evaluation

Previous
control

Fig. 1. Framework description. Two temporal controls (examinations) concur to evaluate the
disease progression. The recent control is first classified for identifying lesions. Then its data are
registered with those of the previous control (also previously classified) and logically compared
with it in order to evaluate the status of the identified lesions.
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regarding MS lesions [9]. Moreover, the linear combination contains more information
than each of the singular modality (in particular, it increases the contrast of the lesions
with respect to the background). In this way, we provided a simpler segmentation task
to the system, thus increasing the segmentation accuracy while reducing the dimension
of the training, labeled, dataset. This, in MS lesion segmentation, still remains a critical
point because the number of available images with data is usually low [5]. A scheme of
the used assembly is reported in Fig. 2.

The method is based on a cascade of two CNNs. Though computer vision archi-
tectures used for object recognition in natural images usually require up to hundreds of
layers [15], the low variations of contrast in MRI images allows the use of smaller
networks, thus reducing the training set dimension. The used method consisted of a 7-
layers architecture for each of the two CNNs. Each network consisted of two stacks of
convolution and max-pooling layers with 32 and 64 filters, respectively. Convolutional
layers were followed by a fully-connected layer of size 256 and a soft-max fully
connected layer of size 2 whose output was the probability of each voxel to belong to a
lesion. For a complete specification of the used parameters, please refer to [11]. In the
proposed approach, MS lesions were calculated using 3D neighboring patch features
from the different input modalities. The used 3D patches were cubic, 11 � 11 � 11
voxels. The splitting in two different CNNs allowed to separate the training procedure
in two and this allowed a reduction of the number of parameters without reducing
accuracy. To reorder data balance for training, that is to equilibrate the number of

T1 W

T2 W

PD

CNN1

Image
Patch

Conv – pool
layers

Fully
connected

Image
Patch

Image
Patch

Flair

Image
Patch

T2 + PD

Image
Patch

CNN2

Conv – pool
layers

Fully
connected

Training
dataset

Fig. 2. Two stage CNNs architecture used for identifying and segmenting MS lesions. Input of
the system are the volume collected by different imaging modalities and by a linear combination
of some of them. Training of CNN2 is made with a separated dataset.
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“positive” patches (those containing lesions) with “negative” patches (those containing
no lesions, much greater than the other), the dataset used for training consisted of the
whole dataset of positive patches and of an equal number of randomly selected neg-
ative, healthy patches. In this way, the first network (CNN1) was trained by using the
resulting balanced dataset and then tested on the whole dataset, thus obtaining a list of
probabilities for each voxel of each patch to be “positive” (part of a lesion). After that, a
balanced dataset was created by using the previous test results and by considering as
positive all patches containing voxels whose probability was greater than 0.5. As for
the previous balanced training dataset, negative patches (those in which all voxels had
probability < 0.5), were randomly selected to be the same number of “positive” pat-
ches. The second network (CNN2) was trained from scratch with this resulting dataset.
Once the whole pipeline is trained, new unseen MRI volumes can be processed using
the same, two stage, architecture. The dataset is first decomposed in patches and, then,
all volume patches are evaluated using CNN1. CNN1 discards all voxels with low
probability (<0.5). The rest of the voxels, included into corresponding patches, are re-
evaluated by CNN2 to obtain the final probabilistic lesion mask. Resulting binary
masks (ones where lesion are present, zeros elsewhere) are computed by thresholding
the probability lesion masks (prob > 0.5 are considered lesions).

Finally, an additional false positive reduction is performed by discarding binary
connected regions with very low number of positive voxels (this number is calculated
with respect to the minimal volume of the lesions used for testing). The proposed
method, trained with the same dataset used in [11], had an average score of about 90%
(about 3% greater than the original method) without using any artificial strategy for
increasing the training dataset of patches. The improvement is probably due to the
usage, between the others, also the volume composed by T2-w + PD which simplifies
the identification/segmentation process.

4 Image Registration

Let assume that we want to compare and register two volumes composed by slices. We
have the situation that some R(x, y, z) points (actual examination) are the reference
points and some M(x, y, z) points (previous examination) are those to register with.
Then the major goal of image registration is to find a geometric transformation T such
that T(M(x, y, z)) is as close to R(x, y, z) as possible. Mathematically, the image
registration problem can be formulated as a maximization problem:

Topt ¼ arg maxT2XT S R; T Mð Þð Þ ð1Þ

where Topt denotes the optimal transformation, S is a selected similarity metric and XT

is the space of all possible transformations [16].
A conventional registration process is performed by applying the optimization (1)

after having selected a similarity metric S. One way to solve the maximization (1) is not
using the whole datasets to find the optimal T but to select a series of N fiducial
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corresponding points (landmarks, or control points) in both examinations and to search
the optimal T to best match the two point sets in the two datasets. More specifically, let
xi; yi; zið Þ; i ¼ 1; 2; . . .:;N and Xi; Yi; Zið Þ; i ¼ 1; 2; . . .:;N be the two point sets in R(x,
y, z) and in M(x, y, z), respectively. Then the task of mapping M to R becomes the
problem of finding a transformation T such that T Xi; Yi; Zið Þ are close to xi; yi; zið Þ. This
transformation can be regarded as a coordinate transformation which transform the
coordinate of the N points in M to the N points in R. By applying T on all the points of
M, we can also use it as an interpolation strategy, as used in [17, 18].

We can indicate the transformation T as its representation in homogeneous
coordinates:

T ¼
t1;1 t1;2 t1;3 t1;4
t2;1 t2;2 t2;3 t2;4
t3;1 t3;2 t3;3 t3;4
0 0 0 1

2
664

3
775 ð2Þ

The transformation T is considered to be affine because different MRI examinations
could be performed by different equipment, different imaging parameters and different
resonators that could produce, besides translations and rotations, also scale variations
and shear (scaling is produced by setting different field of view or different resolution
and shear can be produced by magnetic field inhomogeneities [19]). The optimization
problem is to find the coefficients of T that best fit M into R. The N points can be
selected manually or automatically by a computer (we used a manual selection).

The similarity metric S that we have used in our optimization (1) is the least-
squares metric:

minT2XT

Xn

i¼1
R xi; yi; zið Þ � T M Xi; Yi; Zið Þð Þ½ �2 ð3Þ

We could choose between different metrics [20] but we decided for the least
squares metric (LSM) for two reasons: the examinations we aimed at register were both
MRI of the same subject, though at different times, and, for this reason, had a high
degree of correlation; LSM is the classical, simple, and most widely employed metric.

5 Preliminary Results

The proposed framework has been tested on data collected at 4 different times (4
consecutive examinations: 2010, 2011, 2017 and 2018, compared in couples: 2010–
2011 and 2017–2018) a 55 years old male patient with a GE Healthcare Signa 1.5T
system (https://www.gehealthcare.com/en/products/magnetic-resonance-imaging/1-5t).
Some representative results are reported in Figs. 3 and 4 (2010–2011) and Figs. 5 and
6 (2017–2018).
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Fig. 3. Representation of one of the slices of the volume collected by each of the MRI imaging
modalities (columns) for the examinations collected at consecutive times (2010, first row, and
2011, second row) for the same patient. Exception is represented by the FLAIR section
representation which served to better individuate the lesions at the sagittal plane. Last column
contain the image obtained by summing T2w image and PD image (not directly collected by the
MRI equipment).
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Fig. 4. The slice corresponding to Fig. 3 after the calculation with the proposed framework
(left) and after the administration of the CA (right). Different colors (left) are used for indicating
different information. Green is used for chronic lesions, red for new lesions and blue for lesions
segmented in the previous examination but absent in the following (outliers or reabsorbed
edema). Both images are referred to the situation at the time of the second control (2011, in this
case). (Color figure online)
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In particular, Fig. 3 shows one of the slices, after registration, for the two controls
(2010 in the first row, 2011 in the second row), collected with different imaging
modalities (columns). Exception is made for the FLAIR image to better highlight the
extension of the lesions. The last column contains T2-w + PD. All the reported vol-
umes were the input of the segmentation method. Figure 4 shows the mask of the
lesions calculated by using the proposed framework from the masks obtained by the
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Fig. 5. Representation of one of the slices of the volume collected by each of the MRI imaging
modalities (columns) for the examinations collected at consecutive times (2017, first row, and
2018, second row) for the same patient. The Figure has the same significance of Fig. 3. No
exception has been made for FLAIR image because no relevance was found in the present
lesions.
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Fig. 6. The Figure has the same significance of Fig. 4. No red and blue regions are present, to
indicate the absence of new lesions (red) and of old lesions (blue) appeared in the old control but
not detected in the recent control by the classification strategy. Both images are referred to the
situation at the time of the second control (2018, in this case). (Color figure online)

Automatic Framework for Multiple Sclerosis Follow-up 375



segmentation procedure on both the controls (left) and the image obtained after CA in
the second 2011 control (right). In particular, the final mask contained the logical AND
between: the two masks (green); the second and the negative of the first (red); the first
and the negative of the second (blue). Green indicates old, chronic, lesions (present in
both examinations); red indicates new, maybe acute, lesion (present in the most recent
examination but not in the previous); blue indicates lesions present in the old exami-
nation but not in the most recent (outliers or old, reabsorbed, edema). It is important to
note that in the last image relevant information are represented by the colored regions
(the brain image was just reported for reference but it was not part of the mask). By
analyzing left image of Fig. 4, it could be deduced that some lesions occurred in the
time between the two controls. If CA was not used (right image of Fig. 4 was
unavailable), the framework could not decide regarding the status of red lesions (active
or chronic). By using also the information from the right image in Fig. 4 (T1-w CA) it
could be better defined the status of the new lesions in the red regions: that in the right
hemisphere was active, the other was not. CA was, in this case, useful to ascertain
better the disease progression. However, since new lesions occurred in between con-
trols, the framework results helped in deciding for the CA administration.

By considering the consecutive controls performed recently (Figs. 5 and 6), it could
be deduced that the diseases remained stable (just green lesions were present). In this
case, framework results (Fig. 6, left) indicate to the radiologists to avoid CA admin-
istration since nothing CA would add. In fact, the information gathered by using CA
(Fig. 6, right) allow to confirm the hypothesis suggested by our framework (CA was, in
that case, unnecessary). The usage of the proposed framework before CA adminis-
tration would have avoid CA administration in the control of 2018.

6 Conclusion

We have presented an automatic framework to analyze and evaluate the progression of
the MS disease by evaluating the status of the lesions. The framework is based on the
separate classification of data collected by using MRI, in different modalities, from two
consecutive controls, on the registration of data and on the logical comparison of the
binary masks containing lesions. The framework is capable to identify the status of the
lesions (chronic od new). Preliminary results have demonstrated that it could be pos-
sible to ascertain the relevance of the disease progression and, in case of irrelevant
disease progression, the framework is capable to avoid CA administration. Future work
will be dedicated to an extensive system evaluation and characterization to perform an
accurate quantitative analysis, to calculate other important numerical parameters and to
optimize the overall running time that could allow its usage during data acquisition for
helping radiologists to take the correct decision regarding the CA administration.
Moreover, it will be studied how to use the results of the framework to improve the
performances of the segmentation algorithm, in particular for reducing outliers.
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