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Abstract. Image cropping is a common image editing task that aims
to improve the composition as well as the aesthetics of an image by
extracting well-composed sub-regions of the original image. For choosing
the “best” autocropping method it is therefore important to consider
on which datasets this method is validated and possibly trained. In this
work we conduct a detailed analysis of the main datasets in the state
of the art in terms of statistics, diversity and coverage of the selected
sub-regions, namely the ground-truth candidate views. An analysis of
how much semantics of ground-truth candidate views is preserved with
respect to original images and a comparison among dummy autocropping
solutions and state of the art methods is also presented and discussed.
Results show that each dataset models the cropping problem differently,
and in some cases very high performance can be reached by using a
dummy autocropping strategy.
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1 Introduction

Image cropping is an important step to improve the aesthetic quality of an
image. It can be used in many applications such as efficient image transmission,
image retargeting, or photo collages [1]. For choosing the “best” image cropping
method it is important to consider on which datasets this method is validated
and possibly trained. Computer Vision (CV) researchers benchmark algorithms
using public available datasets [11]. This practice allows to achieve quantitative
performance evaluation and comparison between algorithms as well as it helps
new researchers to get, in a short time, a clear view of the state of the art
performance. The availability of benchmark datasets is increasing in all the CV
domains ranging from object tracking [15] to object recognition [7]. Although
much effort has been made to enrich the number of available datasets, in contrast,
a little effort has been made to assess the quality of the available ones. Quality
is related to two aspects: (i) how much data are representative of the domain;
(ii) how much the ground-truth is consistent with the modeled problem.
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In this paper we provide a thorough analysis of datasets that are commonly
used for the benchmark of autocropping algorithms. In the last 10 years several
benchmark datasets have been proposed by the scientific community as well as
suitable measures to rank algorithms in terms of match between ground-truth
sub-region or sub-regions with the one or ones selected by the algorithm [2,
6,21,22]. Each dataset usually consists in a set of images and corresponding
cropped sub-region or sub-regions as selected by human subjects. In order to
evaluate the characteristic and effectiveness of the datasets in the literature, in
this paper, we analyze the most used datasets in terms of: (1) statistics of the
ground-truth, namely position, size and aspect-ratio of the candidate views; (2)
diversity and coverage of each candidate views with respect to the original image;
(3) performance evaluation and comparison with the state of the art of a dummy
solution that crops regions with area ranging from 100% to 10% of the image
area; (4) semantic analysis in terms of number of times a semantic concept is
preserved in ground-truth sub-regions with respect to original images.

2 Related Works

2.1 Datasets for Image Cropping Assessment

Many databases for the evaluation of image autocropping methods have been
proposed in the literature. Table 1 summarizes the available datasets. For each
dataset we report the number of images it contains, the number of views per
image i.e. the number of crops available for each image, the source of the images,
how the crops have been determined (either by human annotation, or by an
automatic procedure), who validated the crops i.e. if the human subjects were
experts in the field or not, whether the different views are ranked by preference,
and finally the corresponding reference where the dataset has been presented for
the first time. Briefly, the characteristics of the five datasets in Table 1 are the
following.

Table 1. Comparison of publicly available image cropping databases.

Dataset Images Views Source Crops Evaluation Ranking Ref

CPC 10, 797 24 Misc(a) Generated AMT workers Yes [21]

CUHK-ICD 950 3 CUHKPQ Human Experts No [22]

FCDB 348 1 Flickr Human AMT workers No [2]

FLMS 500 10 Flickr Human Experts No [6]

XPView 992 ≤ 23 Misc(b) Generated Experts Yes [21]
(a)AVA, MS-COCO, AADB, Places
(b)FCDB, CUHK-ICD, MS-COCO,...
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Comparative Photo Composition Database. The Comparative Photo Composi-
tion (CPC) database contains 10,797 images [21]. For each image, 24 candidate
views with 4 standard aspect-ratios have been pooled among candidates auto-
matically generated by exploiting existing re-composition and cropping algo-
rithms. Finally, the aforementioned candidate views have been ranked by 6
Amazon Mechanical Turk (AMT) workers. The source of the images is quite
diverse. It consists of a combination of images taken from different benchmark
datasets in the literature: AVA [16], MS-COCO [13], AADB [10] and the Places
dataset [24]. Most of the images contain two or more principal objects.

CUHK Image Cropping Database. The CUHK Image Cropping Database
(CUHK-ICD) is a collection of 950 images gathered from the CUHKPQ dataset
[22]. It contains seven classes of images, i.e. animal, architecture, human, land-
scape, night, plant and static. A cropped region is respectively annotated for each
image by three different professional photographers. The images are taken from
an existing image quality assessment dataset, the CUHKPQ dataset [18]. The
images are of varying aesthetic quality and are of different image categories.

Flickr Cropping Database. The Flickr Cropping database (FCDB) contains 1,743
non-iconic images gathered from Flickr [2]. The cropping annotation for each
image derives from the choices of four AMT workers who evaluated several can-
didate views manually drawn. 348 out of the 1,743 images are adopted as test
set and is the dataset’s cardinality reported in Table 1. Also, since there are no
multiple views for each image, and thus no ranking of different crops, in the
table the “Ranking” attribute is set to “No” for this dataset.

FLMS Database. The FLMS database consists of 500 images crawled from Flickr
[6]. These images have been selected for their imperfect composition and have
different contents. Each image is cropped by 10 expert users on AMT who passed
a strict qualification test. There is no ranking of the views. Each view is consid-
ered separately. No further details are provided in [6] about this dataset.

eXPert View Database. The eXPert View (XPView) database is a collection
of 992 images with dense compositions [21]. This dataset has been created by
the same authors of the CPC dataset in order to test their method on another,
unrelated dataset. The origin of the XPView is mixed with the images taken
from different sources. Specifically, the MS-COCO [13], the FCDB and CUHK-
ICD datasets, and other, unspecified, sources. The candidate views have been
generated as already described for the CPC dataset but with 8 diverse aspect-
ratios. In this case, the candidate views are annotated by three experts, and a
ranking of the views is provided. From the analysis of the dataset, each image
has up to 23 views.

2.2 Image Cropping Algorithms

The problem of automatic image cropping has been traditionally tackled by
designing ad-hoc algorithms based on different visual cues that are considered
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relevant. Many methods consider salient regions to guide the selection of the
important portion of the images. For example, in [4], depending on the image
contents, different cropping attributes are used such as faces, skin, saliency and
the image category itself. Another example is [14]. Visual composition, bound-
ary simplicity and content preservation are used in [6] as features to force a
cropped image to contain a salient object. Yan et al. [22] propose a method
for learning what features are important in a good crop among color, texture,
foreground, shape complexity, sharpness, saliency maps, segmented regions, per-
spective ration, and prominent lines.

Recently, another category of cropping algorithms has emerged that incor-
porate aesthetic cues as a feature in order to select the best cropping region. For
example, a Generative Adversarial Network is used in [5] with a discriminator
that attempts to distinguish images of poor and good aesthetic quality. Aesthetic
and gradient energy maps are used in [9] to learn a compositional model for the
best crop. The View Finding Network (VFN) [3] tries to correctly rank candidate
crops according to certain photographic guidelines learned on an aesthetically
annotated database. In [19,20] candidate crops are firstly generated and then
their aesthetic is assessed to generate the cropped image. A similar approach
based on aesthetic quality classification is the CNN-based Cascaded Cropping
Regression (CCR) method [8]. Li et al. [12] propose an Aesthetic Aware Rein-
forcement Learning (A2-RL) framework to sequentially search the best cropping
windows automatically generated by applying a set of cropping actions. Finally,
a fast View Proposal Net (VPN) is presented in [21], where a teacher network,
is used to teach the VPN (i.e. the student) to output the correct score rankings
for the crops.

3 Autocropping Ground-Truth: Candidate Views
Analysis

Figure 1 shows some sample images generated from each dataset with the corre-
sponding candidate views superimposed. For the CPC and the XPView datasets,
the views are ranked so greenish colors represent the best ranked views while
the reddish colors represent the worst ranked ones. As it can be seen, the views
selected for both the CPC and XPView have a high degree of variability with
the different views covering the most part of the original image. For the CUHK-
ICD, we can see that the three views mostly overlap although in some cases they
can be quite different (as in the case of the building and the cake). The single,
favorite, candidate view of the FCDB dataset covers the relevant object in the
image. Given the presence in the image of a single relevant subject, the images
themselves seem quite simple to crop. Finally, for the FLMS dataset, again, the
ten candidate views are quite diverse. For instance, the bounding boxes have
small overlaps. This could indicate that the ten experts have different personal
opinions about image aesthetics and composition. Following the above prelimi-
nary examination, we next analyze in details the five datasets, their annotations,
and provide some observations on their use for the evaluation of automatic crop-
ping algorithms.
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CPC

CUHK-ICD

FCDB

FLMS

XPView

Fig. 1. Sample images from the five cropping datasets. Superimposed are the crop
regions. For the CPC and the XPView datasets, reddish to greenish colors represent
ranked crops from worst to best. (Color figure online)
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Fig. 2. (Best viewed magnified.) Distribution of candidate views for each considered
dataset with respect to 13 aspect-ratios commonly used in digital photography (a).
Average error between aspect-ratios of the candidate views and closest standard aspect-
ratios for each database (b).

3.1 Diversity and Coverage

For each dataset, we quantitatively analyze several properties of candidate views.
Firstly, we investigate the aspect-ratio of the candidate views to understand how
much these differ from common aspect-ratios. We categorize candidate views
aspect-ratios into 13 common classes in still camera photography, namely 1:1, 5:4,
4:3, 3:2, 5:3, 16:9, 3:1 and their complementary versions (4:5, 3:4, 2:3, 3:5, 9:16,
and 1:3) [23]. Figure 2a shows the distribution of candidate views aspect-ratios
for each database. As it can be seen, the majority of candidate views for all the
datasets has a 16:9 aspect-ratio. CPC dataset candidate views equally distribute
among 1:1, 4:3, 16:9, and 3:4 aspect-ratios. The other datasets (CUHK-ICD,
FCDB, FLMS, and XPView) have a larger variety of candidate views aspect-
ratios. Figure 2b reports the error resulting from the categorization step, that
is the average distance between candidate views aspect-ratios and the closest
standard aspect-ratios for each dataset. The small error for the CPC dataset
is motivated by the fact that candidate views were also sampled from standard
aspect-ratios as described in Sect. 2.1. Instead, the error for the other datasets
is higher because candidate views have been freely chosen by humans.

Secondly, we consider the surface of all candidate windows for estimating
their diversity and also their coverage with respect to the surface of the whole
image. We scale the size of images as well as the corresponding candidate views
to the same fixed dimension, then the value of the pixel oij of the heatmap,
which represents the probability of being part of a candidate view, is obtained
as follows:

oij =
1
N

N∑

n=1

α(xij) α =

{
val, if xij ∈ Wn

0, otherwise
(1)
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where N is the total number of candidate views for all dataset samples, Wn

is the candidate n-th view and val corresponds to 1 for datasets that do not
provide the rank of candidate views, namely CUHK-ICD, FCDB, and FLMS
dataset. For CPC and XPView datasets, whose candidate views do not have
all the same relevance, val is equal to wn, where it represents the rank of the
n-th candidate view, normalized in the interval [0,1]. In Fig. 3 we display the
heatmaps for all the datasets. The heatmaps are normalized in the range [0,1],
where pixel value close to 1 means that there is a high probability that the
corresponding pixel belongs to a candidate view. The high energy in the center
of the heatmaps for all the datasets shows that many candidate views crop the
central region of the image. Moreover, we highlight that the energy is very high
for almost the entire surface of CUHK-ICD images, while it is lower in the edges
of the other datasets, in particular, those of the CPC and XPView. This means
that most of the CUHK-ICD candidate views cover almost the total surface of
the image, while the CPC and XPView candidate views are very different from
each other and focus on image regions much smaller than the entire surface. The
previous qualitative results are validated by quantitative analysis. Precisely, we
estimate the average percentage of candidate views coverage respect to the whole
image area. The values obtained for each photographer P of the CUHK-ICD
dataset correspond respectively to: 82.07 ± 14.74 for P1, 82.69 ± 17.89 for P2,
and 80.49 ± 16.76 for P3. For FCDB dataset, it is equal to 65.55± 16.64. The
percentage coverage obtained for the candidate views of the FLMS dataset is
58.59 ± 17.41. Finally, CPC and XPView datasets have similar statistics equal
respectively to 41.82 ± 16.95 and 43.68 ± 17.07.

CPC CUHK-ICD FCDB FLMS XPView

Fig. 3. Heatmaps showing the spatial coverage of all candidate views for each dataset.

Finally, we analyze the semantic of images and how the crop of candidate view
sub-regions alter it. To this end, we exploit the Hybrid-CNN [24], a CNN trained
using 3.5 million images for 1,183 categories, obtained by merging the scenes
categories from Places database [24] and the object categories from ImageNet
[17]. The table in Fig. 4a reports the percentage of times that the semantic
concept of an image is maintained in the crop obtained by applying the candidate
views. Figure 4b presents the distribution of semantic concepts on the images of
each dataset. We can see that the distributions are very spread across all the
categories and some peaks are present in correspondence of landscape concepts
like: promontory, lakeside, and valley.
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Fig. 4. Semantic analysis. Number of times semantic concept is preserved in candidate
views for each dataset (a). Distribution on the 1,365 semantic concepts of the Hybrid-
CNN for dataset images (b).

3.2 Performance Evaluation of Autocropping Algorithms

We measure the baseline by considering a dummy solution consisting of crops
sampled in different ways with a surface that covers the image area with decreas-
ing percentages from time to time. More in detail, we estimate the performance
by cropping regions keeping from 100% to 10% of the image area, and by aver-
aging the results of 100 iterations of random crops retaining from 100% to 10%
of the image area. The evaluation metrics commonly used for cropping perfor-
mance comparison are intersection-over-union (IoU) and boundary displacement
error (BDE).

Intersection-over-Union (IoU). The intersection-over-union (IoU), also referred
to as the Jaccard index, is essentially a method to quantify the percent overlap
between the ground-truth candidate view and the predicted crop. Given the area
of the ground-truth candidate view WGT and the area of the predicted crop W ,
the IoU is defined as follows:

IoU = (WGT ∩ W )/(WGT ∪ W ) (2)

Boundary Displacement Error (BDE). The boundary displacement error com-
putes the distance between the four edges of the ground-truth candidate view
and the corresponding edges of the predicted crop. By denoting the four edges
of the ground-truth candidate view and of the predicted view respectively as
BGT(l), BGT(r), BGT(t), BGT(b), and B(l), B(r), B(t), B(b). The BDE is esti-
mated as follows:

BDE =
∑

j={l,r,u,b}
|BGT(j) − B(j)|/4, (3)
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Fig. 5. IoU and BDE obtained by comparing ground-truth candidate views with
dummy central crops covering image areas from 100% to 10%.

Table 2. Comparison in terms of IoU and BDE respectively for CUHK-ICD, FCDB
and FLMS datasets. The ΔBest row reports the absolute error between the result (in
blue) of the best method in the state of the art and the best value (in magenta) among
the various scales of the dummy solution.

Method CUHK-ICD FCDB FLMS

P1 P2 P3

IoU BDE IoU BDE IoU BDE IoU BDE IoU BDE

VFN (2017) [3] 0.749 0.071 0.729 0.075 0.732 0.074 0.675 0.086 0.747 0.067

A2-RL (2018) [12] 0.802 0.052 0.796 0.053 0.790 0.053 0.663 0.089 0.820 –

ABP-AA (2017) [19] 0.813 0.030 0.806 0.032 0.816 0.032 – 0.810 0.057

AIC (2018) [20] 0.815 0.031 0.810 0.030 0.830 0.029 0.650 0.080 0.830 0.052

CCR (2018) [8] 0.850 0.032 0.837 0.033 0.828 0.035 – –

VPN (2018) [21] – – – 0.711 0.073 0.835 0.044

VEN (2018) [21] – – – 0.735 0.072 0.836 0.041

Dummy (100%) 0.823 0.046 0.830 0.046 0.808 0.050 0.636 0.100 0.586 0.116

Dummy (95%) 0.819 0.047 0.819 0.048 0.805 0.050 0.648 0.095 0.597 0.112

Dummy (85%) 0.798 0.052 0.778 0.058 0.778 0.058 0.661 0.089 0.615 0.104

ΔBest 0.027 0.015 0.007 0.016 0.022 0.021 0.074 0.017 0.221 0.063

Results. We collect performance for all the datasets at varying crop scales both
for the center and random dummy solutions: the two dummy solutions achieved
performance that is not significantly different. Figure 5 exhibits the IoU and the
BDE at varying center crop scales for each database. As it is possible to see, the
performance for the CUHK-ICD dataset is initially very high, both in terms of
IoU and BDE, and declines in an almost linear fashion as the surface covered
by the dummy crops decreases. Achieved results for FLMS and FCDB are linear
until scale 0.5 where they go down. Finally, performance is stably low for CPC
and XPView datasets. Table 2 shows comparison, in terms of IoU and BDE,
between several algorithms in the state of the art with the dummy solution. We
include CUHK-ICD, FCDB and FLMS because they are the datasets commonly
used for benchmarking cropping algorithms. From the table is clear that CCR
[8] and AIC [20] are the best methods in terms of IoU and BDE for the CUHK-
ICD dataset. However, the best dummy solution achieves, on the same dataset,
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an IoU that is about 2.7% lower and a BDE that is about 1.5% lower than the
best in the state of the art. This behavior can be explained by looking at the
heatmap of the CUHK-ICD dataset (see Fig. 3). The heatmap shows that the
ground-truth candidate views cover quite completely all the image. VEN [21]
algorithm is the best on FCDB and FLMS datasets. In the case of FCDB, the
best dummy solution achieves a performance that is 7.4% and 1.7%, in terms
of IoU and BDE, lower than the best in the state of the art. In the case of
FLMS, the best dummy solution achieves a performance that is 22.1% and 6.3%
lower than the best in the state of the art. FLMS dataset contains ground-truth
candidate views at aspect-ratios that are quite different from the common ones
(see Fig. 2b). Moreover, Fig. 3 shows that candidate views do not cover the entire
image.

4 Conclusions

In this work we conduct a detailed analysis of the main datasets in the state of
the art for the evaluation of autocropping methods in terms of statistics, diversity
and coverage of the ground-truth crops. Results show that each dataset models
the cropping problem differently. Moreover, CPC and XPView datasets consist of
very diverse candidate views, and most of the datasets do not consist of candidate
views having standard aspect-ratios. Comparison between state of the art and
dummy solutions show that, in case of the CUHK-ICD dataset, comparable
results with the best solution in state of the art can be reached by using a
dummy autocropping strategy that does not crop anything. Results obtained on
the FCDB and FLMS show that these datasets are more challenging and diverse,
with the dummy solutions performing worse than state of the art algorithms, and
thus making them more suitable for the evaluation of autocropping algorithms.

References

1. Bianco, S., Ciocca, G.: User preferences modeling and learning for pleasing photo
collage generation. ACM TOMM 12(1), 6 (2015)

2. Chen, Y.L., Huang, T.W., Chang, K.H., Tsai, Y.C., Chen, H.T., Chen, B.Y.: Quan-
titative analysis of automatic image cropping algorithms: a dataset and compara-
tive study. In: WACV, pp. 226–234. IEEE (2017)

3. Chen, Y.L., Klopp, J., Sun, M., Chien, S.Y., Ma, K.L.: Learning to compose with
professional photographs on the web. In: ICM, pp. 37–45. ACM (2017)

4. Ciocca, G., Cusano, C., Gasparini, F., Schettini, R.: Self-adaptive image cropping
for small displays. IEEE TCE 53(4), 1622–1627 (2007)

5. Deng, Y., Loy, C.C., Tang, X.: Aesthetic-driven image enhancement by adversarial
learning. In: ICM, pp. 870–878. ACM (2018)

6. Fang, C., Lin, Z., Mech, R., Shen, X.: Automatic image cropping using visual
composition, boundary simplicity and content preservation models. In: ICM, pp.
1105–1108. ACM (2014)

7. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: The KITTI vision benchmark suite
(2015). http://www.cvlibs.net/datasets/kitti

http://www.cvlibs.net/datasets/kitti


Autocropping: A Closer Look at Benchmark Datasets 325

8. Guo, G., Wang, H., Shen, C., Yan, Y., Liao, H.Y.M.: Automatic image cropping for
visual aesthetic enhancement using deep neural networks and cascaded regression.
IEEE Trans. Multimed. 20(8), 2073–2085 (2018)

9. Kao, Y., He, R., Huang, K.: Automatic image cropping with aesthetic map and
gradient energy map. In: ICASSP, pp. 1982–1986. IEEE (2017)

10. Kong, S., Shen, X., Lin, Z., Mech, R., Fowlkes, C.: Photo aesthetics ranking network
with attributes and content adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling,
M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 662–679. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46448-0 40

11. Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets:
a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)

12. Li, D., Wu, H., Zhang, J., Huang, K.: A2-RL: aesthetics aware reinforcement learn-
ing for image cropping. In: CVPR, pp. 8193–8201. IEEE (2018)

13. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

14. Marchesotti, L., Cifarelli, C., Csurka, G.: A framework for visual saliency detection
with applications to image thumbnailing. In: ICCV, pp. 2232–2239. IEEE (2009)
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