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Abstract. In the past few years, various datasets for semantic segmen-
tation have been presented. However, dense per-pixel groundtruths are
difficult and expensive to obtain, therefore every single dataset contains
only a subset of the semantic classes required to fully understand outdoor
environments for real-world applications, e.g. autonomous or assisted
driving. In this work, we investigate a simple approach to modify seman-
tic segmentation CNNs in order to train them on multiple datasets with
heterogeneous groundtruths. We trained and tested six efficient Deep
CNN models on three datasets with different types of annotations such
as generic objects, traffic signs and lane markings. Experiments show that
the networks are trainable with the implemented method even though it
highlights the limit of current efficient architectures when dealing with
heterogeneous and large datasets.
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1 Introduction

CNN architectures for semantic segmentation can be classified in two categories:
accuracy-oriented and efficiency-oriented methods. Former methods achieve high
accuracy with very high computational costs whereas latter methods attain
very high inference speed and low memory footprint with evident loss in accu-
racy. Most efficiency-oriented methods are fast enough to run in real-time on
recent embedded devices [7,9–11]. This enables novel applications in fields like
autonomous or assisted driving where a complete scene understanding is of
paramount importance. In such scenarios the perception model should be able
to deal with a high number of heterogeneous classes in order to approach the
real-world complexity. However, efficiency-oriented CNNs in literature are usu-
ally benchmarked on small datasets with a limited set of classes. In this work
we modify six efficient Deep CNN models in order to enable them to deal with
multiple datasets during training. We tested the networks on three datasets:
Cityscapes, GTSDB and Vistas. GTSDB in particular has only bounding-box
annotations, thus we investigate an approach, inspired by [12], to train seman-
tic segmentation networks on dense per-pixel groundtruth along with bounding
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boxes. We assess the performance of efficient CNN models focusing on three
aspects: tracking model behavior when it deals with an increasing number of
datasets; assessing the impact of decoder structure; and quantify the influence
of pretraining.

2 Datasets

In the following sections we describe the datasets and metrics adopted to carry
out our experiments (Fig. 1).

a) Cityscapes b) GTSDB c) Mapillary Vistas

Fig. 1. Sample images from Cityscapes, GTSDB and Mapillary Vistas together with
their associated groundtruth maps. GTSDB annotations are very sparse and include
traffic signs only. Mapillary Vistas exhibit a richer classes set compared to Cityscapes,
e.g. including lane markings.

Cityscapes [2] is a dataset of urban scenes images with semantic pixelwise
annotations. It consists of 5000 finely annotated high-resolution images (2048 ×
1024) of which 2975, 500, and 1525 belong to train, validation and test sets
respectively. Annotations include 30 different object classes but only 19 are used
to train and evaluate models. With its basic classes hierarchy, Cityscapes it is not
fully comprehensive of important annotations like lane markings or the different
traffic signs. Such categories are instead annotated on other datasets presented
in this Section.

German Traffic Sign Recognition Benchmark [5] (GTSDB) is a dataset for
traffic sign localization and classification. It contains 900 images of street scenes
acquired with different illumination and weather conditions. 43 classes of pole
traffic signs are annotated with bounding-boxes. To our knowledge there is no
publicly available dataset with per-pixel dense semantic segmentation annota-
tions of traffic signs. GTSDB contains bounding-box annotations for traffic signs
and no other annotations for different objects in the scene. In the next Section
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we introduce a technique, inspired by [12], to modify all the architectures in
order to deal with bounding-box annotations.

Mapillary Vistas [13]. It is one of the biggest datasets for urban scene under-
standing publicly available to date. It is composed of 25000 images from different
locations all over the world. It contains 18000, 2000 and 5000 images for train-
ing, validation and test respectively. Images have been acquired with a high
variability of light and weather conditions. Annotations consist of 66 finely-
annotated semantic classes. Since this dataset contains a large number of object
categories, we employ it in two different settings: In the first setting we utilize
only four classes relatives to lane markings (road, lane markings, crosswalk plain
and crosswalk). In the following Sections, we will call it Lane Markings dataset,
even though it is actually a subset of the Vistas dataset. In the second setting,
we will make use of all the classes included in the dataset naming it Vistas in
the next Sections.

2.1 Evaluation Metrics

Semantic segmentation quality has been evaluated by means of the mean of
class-wise Intersection over Union (mIoU) which is computed, following [4], as
the class-wise mean of the intersection over union measure. Models’ speed is
computed in Frame Per Second (FPS), defined as the inverse of time needed for
our network to perform a single forward pass on a single NVidia Titan Xp GPU.

3 Efficient Semantic Segmentation Networks

In this Section, we introduce and describe the efficient models for semantic seg-
mentation considered in this work. We outline a brief overview of the peculiar
characteristics of each architecture:

ENet [14] adopts an encoder-decoder design with 28 stacked bottleneck layers.
Its efficiency is due to different factors, mainly the use of asymmetric convolu-
tions. Different works investigated the use of asymmetric convolutions both from
a theoretical point-of-view [1,17] and in a practical setting [18,19]. The main
idea is to spatially decompose 3 × 3 convolutional filters into 3 × 1 followed by
1 × 3 filters. ENet introduced other design patterns that have become common
in other efficient architectures: e.g. early downsampling and dilated convolutions
[20].
GUNet [8] makes use of a multi-resolution encoder to exploit at the same time
low-resolution structures and high-resolution details. The two resolutions are
processed by different branches of the network which shares the same weights.
Multi-resolution features are fused by means of a Fusion Module. The decoder
part consists of a Guided Upsampling Module to efficiently output the prediction
map improving the predictions near objects’ boundaries.
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ERFNet [15] employs an encoder-decoder structure inspired by ENet where the
main building block is modified to increase model accuracy. It introduces a new
block called Non-Bottleneck-1D and a fast downsampling strategy where the
inner activations are spatially downsampled in the earlier part of the network
to keep the majority of the computational burden for the deepest stages.
iGUM-Net [10] is an encoder-only architecture. In [10] is introduced an
improved version of the GUM module, first presented in [8], that allows remov-
ing the decoder part of the network without any loss in segmentation quality.
The encoder is inspired by ERFNet [15] with early downsampling and a modified
Non-Bottleneck-1D Module.
Edanet [7] is heavily based on ERFNet. It makes use of asymmetric convo-
lutions and dilated residual blocks. Subsampling is performed with ENet [14]
downsampling blocks. The main difference with other architectures is the adop-
tion of dense connectivity patterns between residual blocks. Like [10], Edanet
is an encoder-only architecture but without any refinement module to improve
high-resolution boundaries.
ESPNet [11] is an encoder-decoder architecture with concatenated skip con-
nections similar to U-Net [16]. The peculiar trait of ESPNet is the introduction
of the Efficient Spatial Pyramid (ESP) module. It consists in a reduce-split-
transform-merge pattern. It is composed of point-wise convolutions to project
features to a low-dimensional space, a pyramid of dilated convolutions to per-
form large receptive-field operations and point-wise convolutions to merge the
computational paths (Fig. 2).
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Fig. 2. Schematic view of the considered efficient CNN architectures. Light blue blocks
represent encoders whereas darker blocks represents models’ decoders. (Color figure
online)
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4 A Simple Method to Train on Heterogeneous Datasets

We modified each network in order to handle multiple heterogeneous datasets
simultaneously during training. Our setup is inspired by [12] but presents some
differences. We address the problem in a straightforward way, adopting one
encoder and multiple decoders: one for each dataset. This is referred as flat
classification in [12]. The main advantage of adopting such architectural choice
is that we do not have to take care of the relations between the different dataset
hierarchies. Each decoder is trained with an independent softmax on that spe-
cific dataset’s classes, whereas the encoder is trained jointly. We made only one
experiment towards modifying this general structure. We tested two different
configurations modifying the network layers trained on the specific dataset: the
whole decoder vs only a single final convolution. All the details of these experi-
ments are described in Sect. 5.2.

Dealing with Bounding Boxes Annotations. All models considered in our
evaluation have been conceived to produce a dense per-pixel prediction map of
scene semantic segmentation. They are designed to be trained and tested with
dense per-pixel annotations. However, the GTSDB dataset has only bounding
boxes annotations. To overcome this issue we implemented a training setup,
inspired by [12], that allows training semantic segmentation models with GTSDB
annotations. A schematic view of the whole pipeline is depicted in Fig. 3. A per-
pixel groundtruth is shaped in two steps: first, the GTSDB bounding-boxes are
converted into pseudo per-pixel groundtruths, i.e. squared areas corresponding
to the bounding box size and location. As a second step, they are merged with
the prediction from the Cityscapes branch corresponding to the generic traffic
sign class. The obtained groundtruth is then employed in the usual way to train
the network branch with a per-pixel cross entropy loss.

Dealing with Heterogeneous Cardinalities. Each dataset adopted in our
experiments has very different cardinality from each other. In order to balance
the impact of each dataset when training CNNs, we replicate the datasets with
lower dimension to the cardinality of the dataset with the maximum number
of images, see Sect. 2 for details. We set the number of training iterations to a
fixed number, corresponding to 150 Cityscapes epochs, to make the network see
the same number of images independently of the dataset choice. Furthermore,
to balance the information gain from each dataset, we weight the loss generated
by each model branch with a learned variable parameter.

Architecture Alternatives. Many networks considered in this work have a
complex decoder composed of multiple Conv-Batchnorm-Relu blocks followed
by upsampling or transposed convolution operators. Duplicating the decoder
part leads in computationally heavier models. For this reason, we also evaluate
an alternative architectural choice in which only the last convolutional layer is
repeated for each dataset instead of the whole decoder.

Training Recipe. We trained all models minimizing the cross entropy loss
between the ground-truth and the predicted classes for each pixel. We employed
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Fig. 3. Overview of the training setup to train models on multiple datasets simulta-
neously. Every model has been modified to follow this general architecture. The online
ground truth modifier allows to train the GTSDB decoder with bounding box annota-
tions.

ADAM as stochastic optimizer [6] with a base learning rate of 5 × 10−4. We
adopted a polynomial decay learning rate policy defined as follows: LR(epoch) =(
1 − (epoch/total epochs)0.9

)
∗ LR0 where epoch is the 0-based index of the

actual epoch, LR0 is the initial learning rate, and total epochs is the total num-
ber of epochs for the training process. The batch size is set to six for all the
experiments. Furthermore, we employed early stopping technique against over-
fitting, analyzing the mean intersection over union on the validation set for every
epoch. The only preprocessing step consists in normalizing the input image by
subtracting the mean and dividing by the standard deviation computed on Ima-
genet [3].

Data Augmentation. We adopted classical augmentation techniques during
training. In particular, since images from different datasets have different sizes,
we scale input images such as the longest axis is 1024 for the width or 512 for the
height. We apply random scale augmentation sampling the scaling factor from
a uniform distribution with interval [0.5, 2].

5 Experiments

In order to assess the behaviour of the considered models on multiple heteroge-
neous datasets, we investigated three research directions that led to three related
sets of experiments. In the first set, we benchmark CNN models and track their
behaviour when dealing with an increasing number of datasets. In the second
and third set of experiments, we evaluate respectively the impact of the decoder
structure and the influence of pretraining.
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5.1 Scaling up with Dataset Complexity

We evaluate each model in four experimental settings. In each set a dataset is
added to the training set with new images and the set of object categories is
extended:

1. Baseline. The baseline experiment consists of training on Cityscapes dataset:
it comprises 19 semantic classes. CNN architectures have been evaluated on
this dataset with no modification to the original structure. Unique images:
2975. We adopt this dataset as our baseline for two main reasons: first,
Cityscapes is a well-known benchmark dataset for semantic segmentation
methods and it is widely adopted in literature. The performance of all meth-
ods considered in this work has been evaluated on Cityscapes in the original
papers. Second, it includes only the basic classes to perform a complete scene
understanding on urban environments whereas the other datasets consist of
a superset of Cityscapes i.e. Vistas, or they include only a specific subset of
classes with finer annotations i.e. traffic signs or lane markings.

2. Cityscapes+ GTSDB. In this experiment, models have to predict simulta-
neously Cityscapes and GTSDB classes for a total of 62 classes (i.e. 19 from
Cityscapes + 43 from GTSDB). In this case, the architectures have been mod-
ified to include two decoders. Unique images: 3490. We included this dataset
before Lane Markings or Vistas for reasons bound to the specific application.
Traffic signs are a fundamental element when dealing with scene perception
for autonomous driving.

3. Cityscapes+ GTSDB+ Lane Markings. In this setup CNN models pre-
dict 62 classes plus 4 classes form Lane Markings dataset. The number of
decoders for each architecture in this setting is three. Unique images: 21490.

4. Cityscapes+ GTSDB+ Vistas. In this experiment, the models are
required to predict all the 104 classes from all datasets. The number of
decoders is three (since Vistas includes Lane Markings). Unique images:
21490.

In Fig. 4 is reported a plot of the mean Intersection over Union versus the num-
ber of datasets. With this visualization, we want to track the mean performance
of each model when dealing with increasing images and/or classes cardinality.
The general tendency is a degradation of the overall performance as the prob-
lem complexity increases. The considered models are not designed for highly
complex problems, and since their limited number of parameters, their capacity
is presumably close to saturation. Models behaviour with respect to the Lane
Markings dataset seems a counter example to the general trend. This behaviour
is plausible since the visual appearance of lane markings is very distinguishable
from other semantic classes.

The same set of experiments can be visualized in Fig. 5 from a different point
of view. It represents the mIoU computed on the Cityscapes validation set with
Cityscapes classes only. By looking from this perspective we want to assess mod-
els behaviour on the original dataset when trained with additional images and
extra classes. Interestingly the considered models exhibit better performance on
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Fig. 4. Average mIoU measured on the joint datasets. On the x axis the datasets
considered to train and test the models along with the resulting number of classes and
unique images.

Fig. 5. mIoU on the Cityscape validation dataset versus the datasets employed in
training along with the resulting number of classes and unique images.

Cityscapes + GTSDB + Vistas experiment than in previous experiments. Even
if it is more complex with higher number of classes, this behaviour is plausible
since the Vistas dataset includes a large superset of the Cityscapes class set.

In Table 1 we report the comprehensive set of results of the experiments
introduced in this Section and shown in Figs. 4 and 5. We also included results
from [12] which is the only work in the state of the art that experimented with a
similar setup, main differences are: their network structure is specifically tailored
to handle the classes hierarchy of the joint datasets; there is a difference in
the cardinality of Cityscapes and Vistas classes. For Cityscapes they use more
than 19 classes. For Vistas they report performance over all classes while our
performance regards only the additional classes w.r.t Cityscapes.
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Table 1. Benchmarks of different models trained and tested on different datasets
(* number of classes is higher)

mIoU

Tested on Cityscapes Cityscapes GTSDB Cityscapes GTSDB Lane

markings

Cityscapes GTSDB Vistas

# Classes 19 19 43 19 43 4 19 43 48

Meletis et al. N/A N/A N/A N/A N/A N/A 57.3* 41.5 31.9*

GUNet 64.8 61 51.7 53.2 43.6 54.7 57.2 48.5 14.4

iGUM-Net 64.1 56.3 38.4 56 49 47.6 60 50.6 16.8

Enet 47.3 44.9 28.2 45.4 30.2 41.9 47.3 27.4 11.4

ESPNet 48.2 48.4 35.7 45.6 31.7 39.5 48.4 27.3 12.4

ERFNet 59.2 55.7 41.2 47.5 34.5 46.1 56.1 24.3 10.6

Edanet 61.5 56.5 37.9 50.7 43 44.9 54.6 41.7 15.2

Trained on Cityscapes Cityscapes+GTSDB Cityscapes+GTSDB+Vistas Cityscapes+GTSDB+Vistas

5.2 Multiple vs Single Decoder

Figure 6 shows a comparison of mIoU versus model complexity, expressed in
Parameters and FPS, tested on Cityscapes and GTSDB datasets. All models
benefit in term of speed from the adoption of a single decoder whereas the
number of parameters does not visibly decrease. Enet is the only model that
take advantage even in terms of accuracy from this architectural design. Some
models are represented by a single point in Fig. 6 i.e. GUNet, iGUM-Net and
Edanet. They have been conceived, in their original structure, with a lightweight
decoder design composed by only a convolutional layer.

Fig. 6. Multiple decoders (solid colors) vs single decoder (transparent colors): compar-
ison between accuracy in terms of mean intersection over union and frame per second.
Models have been trained jointly on Cityscapes and GTSDB and separately tested.
Circle dimension reflects the number of model parameter.

5.3 Impact of Pretraining

It is well known from semantic segmentation literature that the overall model
performance improves by adopting a pretrained encoder on Imagenet [8,10,15].
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Fig. 7. mIoU on different combinations train and test datasets. Lower bars represent
the non-pretrained baseline. Higher bars express the absolute gain when pretraining.

Input GUNet iGUM-Net Enet ESPNet ERFNet Edanet GT

Fig. 8. Sample images from Cityscapes (first row), GTSDB (second row) and Mapillary
Vistas (third row) datasets, together with their groundtruths.

For this reason, we want to investigate the impact of pretrained encoders on
our experimental setup. In Fig. 7 we show a comparison on the use of a pre-
trained encoder. As delineated in Fig. 7, the benefit obtained using the pre-
trained encoder is effective only in the experiments trained solely on Cityscapes
with an average increment in accuracy of 7%. On the contrary, models trained
on both the Cityscapes and GTDSB improve on average by 0.2 on Cityscapes
but decrease by −0.2 on GTSDB (Fig. 8).

6 Conclusions

We investigated a simple approach to train semantic segmentation CNNs on mul-
tiple datasets with heterogeneous groundtruths. We assessed the performance of
six efficient semantic segmentation networks trained with such approach. We
tracked the behavior of all models across different experiments with increased
training datasets. Experimental results shows that, by training on increasingly
large and diverse datasets, performance of all models decreases as a general
trend. These results show that, actual efficient models, are probably not able to
deal with more complex datasets and classes hierarchies. We also tested two dif-
ferent decoder variants to deal with multiple datasets and evaluated the impact
of pretraining on models performance. Results of these experiments suggest that
their influence on the overall pipeline is beneficial in terms of speed but not effec-
tive in terms of accuracy gain. As possible future work, it would be interesting
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to study the benefits and the drawbacks on the use of more complex architec-
tures. Future experiments will also investigate the different elements involved
in employing multiple heterogeneous datasets (e.g. diverse groundtruths, classes
and images distributions) in order to disentangle the contribution of each factor.
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