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Abstract. Pedestrian detection is a core problem in computer vision,
and is a problem that is gaining prominence due to its importance
in assisted and autonomous driving applications. Many state-of-the-art
approaches, especially those used for autonomous driving, combine ther-
mal and visible spectrum imagery in order to robustly detect persons
independent of time of day or weather conditions. In this paper we
investigate two domain adaptation techniques for fine-tuning a YOLOv3
detector to perform accurate and robust pedestrian detection using ther-
mal images. Our approaches are motivated by the fact that thermal
imagery is privacy-preserving in the sense that person identification is
difficult or impossible. Results on the KAIST dataset show that our
approaches perform comparably to state-of-the-art approaches and out-
perform the state-of-the-art on nighttime pedestrian detection, even out-
performing multimodal techniques that use both thermal and visible
spectrum imagery at test time.
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1 Introduction

Object detection is a classical problem in computer vision, and person and pedes-
trian detection is one of the most important topics for safety and security appli-
cations such as video surveillance, autonomous driving, person re-identification,
and numerous others. The estimate of the total number of installed video surveil-
lance cameras range was already at 240 million worldwide in 2014 [16]. The
advent of autonomous driving promises to add many more cameras, all detect-
ing and observing humans in public spaces.

Recent works on pedestrian detection have investigated the use of thermal
imaging sensors as a complementary technology for visible spectrum images [21].
Approaches such as these aim to combine thermal and RGB image information
in order to obtain the most robust possible pedestrian and person detection and
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Fig.1. Thermal imaging and privacy preservation. Shown are three cropped images
from the KAIST dataset. On the left of each is the RGB image, to the right the crop
from the corresponding thermal image. Note how persons are readily identifiable in
visible spectrum images, but not in corresponding thermal images. Although identity
is concealed, there is still enough information in thermal imagery for detection. (Color
figure online)

any time of the day or night. Such detectors require both visible spectrum and
thermal images to function.

Citizens are naturally concerned that being observed violates their right to
privacy. In this paper we are interested in investigating the limits of pedestrian
detection using thermal imagery alone. Figure 1 gives an example of four matched
pairs of color and thermal images from the KAIST dataset [10]. From these
examples we see that, even in relatively low resolution color images, persons
can be readily identified. Meanwhile, thermal images retain distinctive image
features for detection while preserving privacy. Our hypothesis is that thermal
images can guarantee the balance between security and privacy concerns.

The rest of this paper is organized as follows. In the next section, we briefly
review related work from the computer vision literature on domain adapta-
tion, thermal imaging, and pedestrian detection. In Sect.3 we describe several
approaches to domain adaptation that we apply to the problem of privacy-
preserving person detection. We report on a range of experiments conducted
in Sect.4, and conclude in Sect.5 with a discussion of our contribution and
future research directions.

2 Related Work

In this section we review some recent work related to pedestrian detection,
domain adaptation, and computer vision for thermal imagery.

Person and Pedestrian Detection. The literature, both classical and con-
temporary, on pedestrian detection is vast [3]. With the advent of deep neural
networks in recent years, pedestrian detection is achieving higher and higher
accuracy! [1]. However, pedestrian detection remains a challenging task due to
occlusion, changing illumination and variation of viewpoint and background [17].
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Several CNN-based pedestrian detection methods compete for the state-of-the-
art on standard benchmark datasets for pedestrian detection. Examples include
Pedestrian Detection aided by Deep Learning Semantic Tasks [24], Scale-Aware
Fast RCNN [14], Learning Mutual Visibility Relationship [17]. These state-of-
the-art techniques use RGB images as input, while our goal is to investigate the
potential of detection in thermal imagery alone.

Domain Adaptation. Domain adaptation has played a main role in both
supervised and unsupervised recognition in computer vision. Domain adapta-
tion attempts to exploit learned knowledge from the source domain in the target
domain. One of our approaches was inspired by the AdapterNet [8], which pro-
posed adding a new shallow Convolutional Neural Network (CNN) before the
original model that transforms the input image the target domain before pass-
ing through an unmodified network trained in the source domain. Several works
have tried to mitigate the distance between the two domains by applying trans-
formation techniques. For example, the idea from [9] was to transform infrared
data (thermal domain) as close as possible to the color domain by using feature
transformations: inversion, equalization and histogram stretching. A deep archi-
tecture, called Invertible Autoencoder (InvAuto), introduced a method to treat
an encoder as an inverted version of a decoder in order to decrease the trainable
parameters of image translation processing [20].

Pedestrian Detection Exploiting Thermal Imagery. Several works demon-
strate that using thermal images in combination with RGB images can improve
object detection results. An example is the work in [23], which suggests a method
based on a cross-modality learning framework focusing only on visible images at
test time. During training time, they use thermal image features to boost visible
detection results. Their method has two main phases: Region Reconstruction
Network (RRN), for learning a non-linear feature mapping between visible and
thermal image pairs, and a Multi-Scale Detection Network (MDN) which per-
forms pedestrian detection from visible images by exploiting the cross-modal
representations learned with RRN.

A variety of recent works leverage two-stage network architectures to inves-
tigate the combination of visible and thermal features. In [22] the authors inves-
tigated two types of fusion networks. Another approach is the ACF+T+HOG
technique [15] which considers four different network fusion approaches (early,
halfway, late, and score fusion). The authors of [11] introduced a combination
Fully Convolutional Region Proposal Networks (RPN) and Boosted Decision
Trees Classifier (BDT) for person detection in multispectral video. Illumination-
aware Faster R-CNN (TIAF RCNN) [13] and Illuminating Pedestrians via Simul-
taneous Detection and Segmentation [4] used the Faster R-CNN detector to
perform pedestrian detection on paired RGB and thermal imagery. A Fusion
architecture network (MSDS-RCNN) including a multispectral proposal network
(MPN) and a multispectral classification network (MCN) was proposed by [5].
This fusion network currently yields the best results on both visible and thermal
image pairs on the KAIST dataset.
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In a slightly different direction, the combination of HOG and SVM in [2]
focused on only nighttime detection. Their method uses a Thermal Position
Intensity Histogram of oriented gradient (TPIHOG) and the additive kernel
SVM (AKSVM) for training and testing.

Differing from most of the above works which used two-stage detectors, some
the papers utilize a one-stage detector [12,21]. The authors of [12] used a decon-
volutional single shot multi-box detector (DSSD) to exploit correlation between
visible and thermal features for person detection. A fast RGB single-pass net-
work architecture (YOLOv2 [18]) was adopted by [21] for fine-tuning for person
detection.

3 Domain Adaptation Approaches

In this section we describe the approaches to domain adaptation that we will
later evaluate in Sect.4. All of our approaches use the YOLOv3 detector which
is adapted to a target domain through a sequence of domain adaptation steps.
We use YOLOv3 pretrained on the ImageNet and subsequently fine-tuned on
the MS COCO Person class 3.

3.1 Top-Down Domain Adaptation

We use the term top-down domain adaptation to refer to the fine-tuning approach
to domain adaptation in which the network is fine-tuned in the new domain to
adapt weights to the new input distribution. Thus it is top-down in the sense
that adaptation happens only via backpropagation from the detection loss at
the end of the network. We investigate three different top-down approaches. In
the descriptions below we use a notational convention to refer to each technique
that indicates which image modalities are used for training and testing. For
example, the technique indicated as TD(VT, T) is Top-Down domain adaptation,
with adaptation on Visible spectrum images, followed by adaptation on Thermal
images, and finally tested on Thermal images.

Top-Down Visible: TD(V, V). This domain adaptation approach directly
fine-tunes YOLOvV3 on visible images in the target domain (pedestrians in the
KAIST dataset for all experiments). Testing is performed on visible spectrum
images. This baseline adaptation approach serves as a sort of upper bound for
performance achievable during daytime (since visible spectrum images should
contain most information).

Top-Down Thermal: TD(T, T). This approach directly fine-tunes YOLOv3
on thermal images by duplicating the thermal image three times, once for each
input channel of the RGB-trained detector. Testing is performed only on thermal
imagery. This baseline adaptation method serves as a sort of upper bound for
the performance achievable at nighttime (since thermal images should convey
most information).
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Top-Down Visible/Thermal: TD(VT, T). This approach is a variant of
the two top-down approaches described above. First we adapt YOLOv3 to the
visible spectrum pedestrian detection domain, then we fine-tune that detector
on thermal imagery. Testing is performed on thermal images. The idea here is to
determine if knowledge from the visible spectrum can be retained and exploited
after final adaptation to the thermal domain.

3.2 Bottom-Up Domain Adaptation: BU(VAT, T)

A hypothesis of ours is that in top-down domain adaptation, as described in
the previous section, early convolutional layers are difficult and slow to adapt
to the new input distribution due to their distance from the backpropagated
loss. Here we propose a type of bottom-up domain adaptation which first trains
a bottom-up adapter segment and then proceeds to fine-tune the detector using
a top-down loss. A conceptual schema of this approach is given in Fig.2. The
main components of our bottom-up domain adaptation approach are as follows.
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(a) Adapter segment training (b) Fine-tuning of entire detector

Fig. 2. Bottom-up domain adaptation. (a) An adapter segment is first trained to take
thermal images as input, then matches the feature activations of a RGB-pretrained
detector on the corresponding RGB image. (b) After training the adapter segment,
the RGB input branch is discarded and the entire detector pipeline is fine-tuned on
thermal images.

Adapter Segment Training. As illustrated in Fig. 2(a), the main idea of the
Adapter Segment is to intervene at some early stage of the RGB-trained detec-
tor network and to train a parallel branch that takes only thermal imagery as
input and matches as best as possible the RGB feature maps at the point of
intervention. In our implementation, we decapitate the YOLOv3 network after
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the first ten convolutional layers and train a ten-layer adapter segment to match
the RGB-network using only thermal images as input. We use a simple L2 loss
function on the output feature maps from the truncated network and adapter
segment.

The starting point for this approach is the TD(V, V) network described
above. That is, the detector weights we start from are already adapted to the
KAIST domain on visible images. We then train the adapter segment using
RGB/thermal image pairs from the KAIST training set. This is the “A” in the
“VAT” for training in the mnemonic for this approach: BU(VAT, T).

Final Adaptation. After adapter segment training has converged, we reconnect
the newly trained adapter segment to the original network for final fine-tuning
of the entire detector on thermal images Fig. 2(b).

4 Experimental Results

In this section we report results of experiments we performed to evaluate the
performance of adapted detectors for pedestrian detection in thermal imagery.

4.1 Experimental Setup

To evaluate our proposed approaches to domain adaptation we used a stan-
dard benchmark dataset of RGB/thermal image pairs and standard evaluation
protocols.

Dataset and Evaluation Metrics. All experiments were performed on the
publicly available KAIST Multispectral Pedestrian Detection Benchmark [10],
which consists of 95,328 color-thermal pairs images. The KAIST dataset contains
103,128 annotations of 1,182 unique pedestrians with. The originally proposed
splits had 50,328 training and 45,000 test images. According to the official sam-
pling method from the some recent papers [10,11,21], we also do a 2-frame
sample on the training set and 20-frame sample on the test set. The training set
used contains 19,058 RGB/thermal pairs after sampling filtering (e.g occlusion,
the bounding box under 50 pixels), and the test set consists of 2,252 images
(after 20-frame sample).

To evaluate the performance of our detection results, we use log-average
miss rate (miss rate) and precision/recall metrics, which almost all pedestrian
detectors use and is described in [6]. The evaluation protocol we followed is the
same as reported in [21], which is an updated version of the Matlab code from [6].

Implementation Details. We used the YOLOv3 [19] detector to evaluate our
approach on KAIST. Our detectors were implemented using PyTorch, and we
trained every domain adaptation strategy for 50 epochs with a learning rate
0.0001 and the Adam optimizer.
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Fig. 3. Comparative performance analysis. Precision/Recall (left, higher is better) and
Log-average Miss Rate (right, lower is better) of our method and other state-of-the-art
papers are given. See text for detailed analysis.
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4.2 Comparative Performance Analysis

The plots in Fig.3 show detailed results for our approach and those described
in [21] in terms of precision/recall (left column) and log-average miss rate (right
column). The plots also break down results in terms of time-of-day: first row
averaged over all times, second row daytime only, third row nighttime only.

From the results in Fig.3 we can make several observations. First of all,
for combined day and night results (first row) multimodal techniques like
YOLO_TLV which exploit both thermal and visible spectrum images at test
time are superior to our domain adaptation approaches which use only thermal
imagery. Surprisingly, however, the gap between bottom-up domain adaptation
BU(VAT, V) and YOLO_TLV is only about 4% in log-average miss rate, which
is quite promising.

The reason that multimodal approaches outperform domain adaptation
seems to be due to the advantage they have when detecting during the day.
In the second row of Fig. 3, in fact, we see that the technique exploiting visi-
ble spectrum images during at test time on daytime images outperform all our
approaches which only use thermal imagery.

Or two domain adaptation approaches, both top-down and bottom-up, out-
perform all other techniques when testing at nighttime only (third row of Fig. 3).
Though this is not very surprising, of particular note is the fact that performing
domain adaptation on to visible images before adapting to thermal input only is
beneficial. This can be seen in the difference between TD(VT, T), BU(VAT, T)
— both of which start by fine-tuning YOLOv3 on KAIST visible images — and
TD(T, T), which directly fine-tunes YOLOv3 on thermal images. This seems
to indicate that both top-down and bottom-up domain adaptation are able to
retain and exploit some domain knowledge acquired when training the detector
on visible spectrum imagery.

As a final comment, we note that the BU(VAT, T) approach requires sig-
nificantly less training time that the others. In only 15 epochs it converged
to 84.4% precision, which is the same result for top-down adaptation after 50
epochs. Bottom-up adaptation seems to be an effective way to accelerate top-
down adaptation through fine-tuning.

In Table1 we provide a comparison of our methods and 10 others methods
from the state-of-the-art. Our approaches outperform all other single modal-
ity techniques (both visible- and thermal-only). Compared to multi-model
approaches, we outperform all of them at nighttime, and comparably on all.
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Table 1. Log-average miss rate on KAIST dataset (lower is better). The final two
columns indicate which image modality is used at test time. Our approaches outperform
all single-modality techniques from the literature, and outperform all methods at night.

Method MR all (%) | MR day (%) | MR night (%) | Visible | Thermal
KAIST baseline [10] | 64.76 64.17 63.99 v v
Late fusion [22] 43.80 46.15 37.00 v v
Halfway fusion [15] 36.99 36.84 35.49 v v
RPN+BDT [11] 29.83 30.51 27.62 v v
IATDNN+IAMSS (7] | 26.37 27.29 24.41 v v
YOLO_TLV [21] 31.20 35.10 22.70 v v
DSSD-HC [12] 34.32 - - v v
RRN+MDN (23] 49.55 47.3 54.78 v
TPIHOG [2] - - 57.38 v
SSD300 [9] 69.81 - - v
Ours: TD(V, V) 33.30 31.70 39.00 v

Ours: TD(T, T) 36.00 40.90 22.40 v
Ours: TD(VT, T) | 36.30 42.30 20.40 v
Ours: BU(VAT, T) 35.20 40.00 20.50 v

4.3 Qualitative Evaluation

In Fig. 4 we show some example detection results on the KAIST dataset for our
BU(VAT, T) domain adaptation approach in daytime (first row) and nighttime
(second row). Note how, even though person identification is impossible in all of
the example images, the detector adapted using bottom-up domain adaptation
is able to detect pedestrians even in the presence of occlusion, scale variation,
and changing illumination conditions.

Fig. 4. Qualitative results on the KAIST test set. The first row gives example detections
on daytime images from KAIST, and second row on nighttime images. Even in the
presence of occlusions and scale variations, thermal imagery retains enough information
to effectively perform pedestrian detection — day or night — in a privacy-preserving way
without using any visible spectrum imagery at detection time.
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5 Conclusions and Future Work

In this paper we investigated the potential of two domain adaptation strategies
for adapting pedestrian detectors to work in the thermal domain. The goal of this
work is to achieve the best possible person detection performance while relying
solely on thermal spectrum imagery. This is motivated by the privacy-preserving
aspects of thermal images, since persons are difficult, if not impossible, to reliably
identify in thermal images.

Our results indicate that relatively simple domain adaptation schemes can be
effective, and that the resulting detectors can outperform multimodal approaches
(i.e. those that use thermal and visible images at test time) at nighttime, and
can perform comparably when testing on day night images combined. Moreover,
results seem to indicate that a first adaptation to visible imagery can be useful
to acquire domain knowledge that can then be exploited after final adaptation
to thermal spectrum images.

Ongoing work is concentrated on improving daytime and overall performance
of adapted detectors. We are investigating techniques to retain more infor-
mation from visible spectrum adaptation in order to close the gap between
privacy-preserving detection in thermal imagery and multimodal techniques
which require visible spectrum images.
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