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Abstract. Texture is an important visual property which has been largely
employed for image characterization. Recently, Convolutional Networks has been
the predominant approach on Computer Vision, and their application on tex-
ture analysis shows interesting results. However, their popularity steers around
object recognition, and several convolutional architectures have been proposed
and trained for this task. Therefore, this works evaluates 17 of the most diffused
Deep Convolutional Neural Networks when employed for texture analysis as fea-
ture extractors. Image descriptors are obtained through Global Average Pooling
over the output of the last convolutional layer of networks with random weights
or learned from the ImageNet dataset. The analysis is performed under 6 tex-
ture datasets and using 3 different supervised classifiers (KNN, LDA, and SVM).
Results using networks with random weights indicates that the architecture alone
plays an important role in texture characterization, and it can even provide useful
features for classification for some datasets. On the other hand, we found that
although ImageNet weights usually provide the best results it can also perform
similar to random weights in some cases, indicating that transferring convolu-
tional weights learned on ImageNet may not always be appropriate for texture
analysis. When comparing the best models, our results corroborate that DenseNet
presents the highest overall performance while keeping a significantly small num-
ber of hyperparameters, thus we recommend its use for texture characterization.

Keywords: Deep Convolutional Neural Networks · Texture analysis ·
Feature extraction

1 Introduction

Texture is a highly discriminating visual characteristic that has been widely studied
since the 1960s. In Computer Vision (CV), texture analysis is an active field of research
and there is a constant need for new methods for texture characterization in several areas
that rely on image recognition systems. Many techniques have then been proposed in
the past years [16] composing a wide and heterogeneous literature on texture analysis,
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however, the recent advances on Deep Learning made Neural Networks the predomi-
nant approach on CV. This trend grew mainly after the success obtained by the AlexNet
[11] Deep Convolutional Neural Network (DCNN) on the 2012 ImageNet [5] challenge.
Several DCNN architectures have then been proposed for object recognition, with vary-
ing structural properties such as different convolutional blocks and their combinations.
These models with pre-trained weights on ImageNet have then been employed as tex-
ture feature extractors [3,30], achieving promising results.

Although it has been shown that transferring the learning of some DCNN pre-
trained on the ImageNet dataset into texture analysis usually provides good results, little
is known on the impacts of different architectures on performance. Moreover, there are
no obvious reasons to believe that the use of ImageNet weights, which have been trained
for object recognition, is the best approach for texture characterization. Therefore, this
works presents a broad evaluation of 17 DCNN models considering these aspects. Tex-
ture descriptors are obtained through the Global Average Pooling (GAP) over the output
of the last convolutional layer, which is then fed to a supervised classifier. We analyze
the importance of the architecture alone and the gain on using ImageNet weights for
texture analysis by comparing the network performance with random weights. More-
over, our experiments include 6 texture datasets with varying properties and 3 classifiers
(KNN, LDA, and SVM) in order to measure the capacity of each model. We also ana-
lyze the efficiency of the networks for texture analysis in terms of its size (number of
hyperparameters) and average performance.

2 Theoretical Background

2.1 Texture Analysis

Texture is a key feature of many types of images and, over the decades, many meth-
ods for texture representation (i.e., extraction of features to describe the texture infor-
mation) have been proposed. In the last century, the research in texture representa-
tion mainly focused on two-well established types of approaches: filtering-based and
statistical-based [16]. In the filtering-based approaches, the image is convolved with a
filter bank. In this category, some important techniques are Gabor filters, wavelet pyra-
mids, and simple linear filters. The statistical-based approaches model the texture using
kth order statistics and use probability distributions to characterize the images, such
as the Markov Random Field, Fractal models and Gray Level Co-occurrence Matrix
(GLCM).

At the end of the last century and in the 2000s, there was the propose of texton-based
approaches such as Bag of Textons [13] and Bag of Words [4]. In these approaches, a
dictionary of textons is obtained and the images are represented by statistics over the
texton dictionary. Furthermore, the need for features invariant to scale, rotation, illu-
mination and viewpoint stimulated the development of local invariant descriptors, such
as SIFT [17] and LBP [19]. These local descriptors were extensively used in com-
puter vision, however, more recently, there was a renaissance of deep neural networks
approaches from the work of Krizhevsky et al. in 2012 [11]. In this way, actually, the
research in textures and image analysis has focused on deep learning approaches. In
texture analysis, important advances have been reported such as in [3,30].
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2.2 Deep Convolutional Neural Networks

A convolutional network is a type of neural network that is mainly used for analyzing
images, videos and any kind of spatially organized data, and it has been studied since
the 1990’s [12]. In a general fashion, we can split a convolutional neural network into
two well-defined components: (i) the feature extraction part and (ii) the classification
part. In most of the DCNN, the latter component is organized into one or more fully-
connected layers, like a traditional multilayer neural network. On the other hand, the
feature extraction part consists of convolutional layers which can vary greatly from one
network to another, as various convolutional blocks have been proposed throughout the
years. In early models [12] it consisted of a few convolutional and pooling layers, how-
ever, since the introduction of the deep learning concept new architectures are increas-
ingly grouping layers. Moreover, different structures of convolutional blocks have been
proposed such as the Inception modules [27] and Residual connections [8].

The input and output of layers in the feature extraction part of a DCNN consists
of a set of nA(l) stacked 2-D matrices A(l), that we refer here as “feature maps”, where

l indicates the layer’s depth and A(l)
j represents the j-th feature map (1 ≤ j ≤ nA(l) ).

In the case of convolutional layers, the trainable weights are organized into a set of
nF(l) filters of fixed size. This set, also known as the filter bank (F(l)), is in charge of
computing a new set of feature maps A(l+1) by convolving A(l) with every filter in F(l).
In addition, there are vastly more types of layers in a DCNN that also yield a feature
map, for example, the Dropout layer, the concatenation layer, and batch normalization.

The set of feature maps A(n) represents the output of the last convolutional layer
(n) of a DCNN, and it is usually flattened to fit into a fully-connected layer. Another
approach is the use of Global Average Pooling (GAP) [14] to reduce the data before
passing it to a classification layer

ϕ j =
∑Aj

(n)

nAj
(n)

(1)

In other words, the GAP takes the mean value of every feature map A(n)
j and con-

catenates into a vector ϕ. This vector acts as a final image descriptor, therefore pre-
trained DCNN can be used as feature extractors by obtaining ϕ.

3 Experiments

3.1 Considered Networks

For a broad analysis of DCNN architectures we considered 17 models with varying
depth and modules proposed along the past years (between 2012 and 2018), details are
given on Table 1. These are well-known models which have been extensively evaluated
by the deep learning community recently, and its source code is open access1. All net-
works are applied as feature extractors by removing its last fully-connected layers and

1 Keras models: https://keras.io/applications/
PyTorch models: https://github.com/Cadene/pretrained-models.pytorch.

https://keras.io/applications/
https://github.com/Cadene/pretrained-models.pytorch
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taking the GAP from feature maps of the last convolutional layer, composing the feature
vector ϕ. A more elaborated approach for feature map characterization is presented in
[3], however, our goal here is to analyze the difference in performance between these
architectures rather than maximizing the obtained results. Regarding the weight initial-
ization policy, we considered the standard definition of the framework from which the
model is imported, as this is the most common case when applying these networks. In
the Keras 2.2.4 library, the 2D convolutional layers employ the Glorot uniform random
weight initialization [6], and the bias terms are initialized with 0. In the case of AlexNet,
PolyNet, PNASNet5 and all the Squeeze-and-Excitation networks, the PyTorch 1.0.0
default initialization policy is used, that is: the convolutional layer weights and bias are
sampled from an uniform distribution U(−√

k,
√
k), where k = 1/Nwc . The term Nwc

is the number of weights at the convolutional layer c. On the other hand, in the case of
the ResNet and DenseNet models, the weights of the convolutional layers are initialized
according to the Kaiming normal distribution [7], N (mean = 0 and std =

√
2/Nwc ), the

batch normalization weights and bias are respectively initialized with 1s and 0s.

Table 1. Details on each DCNN considered for analysis. The network size is measured by the
number of hyperparameters (full includes fully-connected layers and GAP refers to only the
feature extraction part). |ϕ| represents the size of the resulting feature vector.

Network Weight initialization Size (in millions) |ϕ| Framework

Full GAP

AlexNet [11] U(−√
k,

√
k), k = 1/Nwc 61.1008 2.4697 256 Pytorch 1.0.0

VGG16 [25] Glorot uniform 138.3575 14.7147 512 Keras 2.2.4

VGG19 [25] Glorot uniform 143.6672 20.0244 512 Keras 2.2.4

InceptionV3 [27] Glorot uniform 23.8518 21.8028 2048 Keras 2.2.4

ResNet18 [8] Kaiming normal 11.6895 11.1765 512 Pytorch 1.0.0

ResNet50 [8] Kaiming normal 25.5570 23.5080 2048 Pytorch 1.0.0

ResNet152 [8] Kaiming normal 60.1928 58.1438 2048 Pytorch 1.0.0

InceptionResNetV2 [26] Glorot uniform 55.8737 54.3367 1536 Keras 2.2.4

PolyNet [31] U(−√
k,

√
k), k = 1/Nwc 95.3666 93.3176 2048 Pytorch 1.0.0

DenseNet121 [10] Kaiming normal 7.9789 6.9539 1024 Pytorch 1.0.0

DenseNet201 [10] Kaiming normal 20.0139 18.0929 1920 Pytorch 1.0.0

PNASNet5 (large) [15] U(−√
k,

√
k), k = 1/Nwc 86.0577 81.7367 4320 Pytorch 1.0.0

SENet154 [9] U(−√
k,

√
k), k = 1/Nwc 115.0890 113.0400 2048 Pytorch 1.0.0

SEResNet50 [9] U(−√
k,

√
k), k = 1/Nwc 28.0880 26.0390 2048 Pytorch 1.0.0

SEResNet152 [9] U(−√
k,

√
k), k = 1/Nwc 66.8218 64.7728 2048 Pytorch 1.0.0

SEResNeXt50 [9,29] U(−√
k,

√
k), k = 1/Nwc 27.5599 25.5109 2048 Pytorch 1.0.0

SEResNeXt101 [9,29] U(−√
k,

√
k), k = 1/Nwc 48.9554 46.9064 2048 Pytorch 1.0.0

3.2 Experimental Protocol

Six color texture datasets with varying properties are used in our experiments. We con-
sidered well-known traditional datasets and also recent and more complicated ones:
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(1) Vistex [20] (864 images, 54 classes); (2) USPtex [2] (2292 images, 191 classes);
(3) Outex13 [18] (test suite Outex TC 00013, 1360 images, 68 classes); (4) CUReT
[28] (5612 images, 61 classes); (5) MBT [1] (2464 images, 154 classes, clipping of
original images as in [22]); and (6) FMD [24] (1000 images, 10 classes). To process
the datasets with the studied DCNN we resize the images to the corresponding network
input, except for the FMD dataset where images are not square, thus we use the origi-
nal images to preserve its proportions (the DCNN will produce valid feature maps for
GAP). Regarding the gray-level images present in the FMD dataset, we transform them
in RGB by replicating its values for all channels.

We considered different classifiers in our experiments: (1) a K-Nearest-Neighbors
(KNN) approach with k = 1; (2) Linear Discriminant Analysis (LDA) using a least
squares solution; (3) The Support Vector Machine (SVM) using a linear kernel and
penalty parameterC= 1. The classification experiments are performed with 10 random
splits into half for training and a half for the test in a stratified fashion. In the case of
the network random weight initialization, 10 different networks are initialized and the
classification is done using the same 10 random splits for each one, yielding a total of
100 train and test procedures. The performance is measured by the mean and standard
deviation of the test accuracy over the iterations.

4 Results Analysis

4.1 Contribution of the Architecture Versus Learned Weights

Intriguing results [21] have shown that neural networks, convolutional or not, with com-
pletely random weights can achieve interesting performance. This is, in fact, similar to
randomized neural networks [23], where a hidden layer with random weights has the
purpose of projecting non-linearly the input data in another dimensional space where
it is more likely that the feature vectors are linearly separable. Therefore, on these net-
works, the performance relies on the training of the output layer and the shape of the
hidden layer rather than on its weights, as they are random. In the case of DCNN, the
feature extraction part plays a similar role than the hidden layer of the randomized neu-
ral network, projecting the data. The discussion presented in [21] corroborates that the
convolutional architecture alone is of high importance for object recognition, where
they propose a fast method for architecture selection based on the performance on ran-
dom weights. In this context, we verify the contribution of the architecture alone and the
learned weights for texture analysis by analyzing the performance of DCNN using ran-
dom weights or pre-trained on the ImageNet dataset. Figure 1 shows the results obtained
with the simplest classifier, KNN, that we choose in this experiment in order to highlight
the quality of the features itself so that the result does not rely mostly on the classifica-
tion technique. We can verify the contribution of the learned weights over the random
ones by the distance of the points to the dotted line, which represents x = y (where
random weight equals the accuracy of the ImageNet weights).

It is possible to notice different cases regarding random and ImageNet weights,
where performance varies both according to the dataset or the DCNN model. First, the
standard deviation on random weights indicates that different initialization has a rela-
tively small impact in comparison to the architecture performance itself. Regarding the



Evaluating DCNN as Texture Feature Extractors 197

20 40 60 80 100
Random weights

95

96

97

98

99

100

Im
ag

eN
et

 w
ei

gh
ts

KNN accuracy (%)

(a) USPtex

20 40 60 80 100
Random weights

96.5

97

97.5

98

98.5

99

99.5

100

Im
ag

eN
et

 w
ei

gh
ts

KNN accuracy (%)

(b) Vistex

40 60 80
Random weights

78

80

82

84

86

Im
ag

eN
et

 w
ei

gh
ts

KNN accuracy (%)

(c) Outex13

50 60 70 80 90
Random weights

96.5

97

97.5

98

98.5

99

Im
ag

eN
et

 w
ei

gh
ts

KNN accuracy (%)

(d) CUReT

0 20 40 60 80
Random weights

75

80

85

90

Im
ag

eN
et

 w
ei

gh
ts

KNN accuracy (%)

(e) MBT

20 40 60
Random weights

55

60

65

70

75

Im
ag

eN
et

 w
ei

gh
ts

KNN accuracy (%)

(f) FMD

Fig. 1. Correlation between the accuracy using DCNN with random weights or pre-trained on
ImageNet. The doted line represents the diagonal of the plan, i.e. x= y. The small black horizontal
lines represents the standard deviation over 10 random networks.

variation between datasets, we observe in USPtex, Vistex, and CUReT a similar behav-
ior, where the learned weights provide a small but relevant improvement. Nonetheless,
in the Outex13 dataset, most of the networks have similar performance either with ran-
dom or ImageNet weights, some of them, in fact, performs better with random weights.
This raises questions concerning the applicability of the ImageNet weights for color tex-
ture characterization. On the other hand, in the MBT and FMD datasets, the gain from
the learned weights is significantly higher for all networks. In terms of texture clas-
sification, these two datasets present different properties in comparison to the others.
MBT, for instance, have complex intraband and interband spatial variations, forming
unusual spectral texture patterns. It seems that these DCNN architectures alone are not
capable of effectively capturing these spectral variations, while learned weights play a
significant role in texture characterization. In the FMD dataset, the gain provided by
the learned weights is the higher, where most networks with random weights perform
poorly (around 20% and 30% of accuracy). FMD is a in-the-wild dataset, with texture
images from various different objects in the same class, which explains why ImageNet
weights are important here, as they are learned in a wide object recognition scenario.
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In conclusion, the architecture alone may be responsible for most of the network per-
formance in some cases, however, in most cases, the use of learned weights is important
for achieving higher performance. On the other hand, the results on the Outex13 dataset
indicates that, for texture analysis, the current models need either modification in its
architecture and/or new training procedures beyond ImageNet, for the learning of more
unusual color texture patterns.

It is also possible to notice that some networks have higher random weight perfor-
mance than the other networks in most cases, but in other hand are overcome when
using the ImageNet weights. This happens with the PNASNet5 and PolyNet networks,
except for the FMD dataset. In fact, in the FMD dataset deeper networks achieve the
highest performance. The ResNet networks, although performing among the best in
some datasets using the ImageNet weights, have a considerably low performance with
random weights, which seems to get worse as we increase its depth. Concerning the
best networks in most cases, we can notice the DenseNet model, with both depths we
tested (121 and 201 layers), performing above the others in all cases, except on the
FMD dataset, where the highest result is achieved by PolyNet.

4.2 Performance Under Different Classifiers

We include the DCNN performance under two additional classifiers, LDA and SVM,
results using the ImageNet weights are shown in Table 2. Both these classifiers perform
better than KNN, where LDA is slightly superior overall (except for the FMD dataset).
Regarding the best networks, we can see a similar pattern as observed with the KNN
classifier, where the DenseNet model overcomes the other networks in most cases. In
the USPtex dataset, the highest results are obtained by both DenseNet models (121
and 201 layers deep), with 99.8% ± 0.1 of accuracy using either LDA or SVM. For
the Vistex dataset, DenseNet201 achieves 100%±0.1 with LDA and 99.9%±0.2 with
SVM, however various networks performs above 99.7% on this dataset, as ResNet50,
PolyNet, PNASNET5, SENet154 and SEResNet152. For Outex13 results are signifi-
cantly lower than for the former 2 datasets, and DenseNet201 present the higher perfor-
mance (91.8%±0.5 with LDA and 90.8%±0.7 with SVM). DenseNet201 also present
the highest results for the CUReT (99.4%±0.2 with LDA and 99.8%±0.1 with SVM)
and MBT datasets (97.6% ± 0.3 with LDA and 97.2% ± 0.3 with SVM). The results
obtained on FMD vary if compared to the other datasets, where DenseNet is overcome
by other networks such as PolyNet, SENet154, and SEResNet50. The highest results
are obtained by PolyNet using LDA, with 87.3% ± 0.9, and SENet154 using SVM,
with 86.4% ± 0.8. However, the standard deviation of their results on this dataset puts
these networks in a similar performance range.

4.3 Efficiency Comparison

For a final comparison, we considered the efficiency of the network, defined here as the
correlation between size (number of hyperparameters) and performance (mean accuracy
for the six datasets). The number of hyperparameters of a network is directly related to
the number of operations performed throughout its layers, which is a good measure for
the cost of computing the image descriptor. Figure 2 shows this analysis with the three
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Table 2. Results of each DCNN using the LDA and SVM classifiers, representing the mean
accuracy and the standard deviation for 10 random data splits into half for train and half for test.
Best results in each dataset are highlighted in bold type.

Network USPtex Vistex Outex13 CUReT MBT FMD

LDA

Alexnet 98.7 ± 0.2 99.4 ± 0.3 87.2 ± 1.0 90.5 ± 0.7 88.2 ± 0.9 70.0 ± 1.4

VGG16 98.7 ± 0.2 99.0 ± 0.4 86.6 ± 0.5 93.6 ± 0.5 93.4 ± 0.7 74.8 ± 1.3

VGG19 98.5 ± 0.3 98.8 ± 0.4 86.3 ± 0.9 93.2 ± 0.6 92.6 ± 0.7 72.5 ± 1.8

InceptionV3 98.4 ± 0.3 98.8 ± 0.5 86.1 ± 0.8 97.4 ± 0.2 92.2 ± 0.5 80.6 ± 1.2

InceptionResNetV2 97.7 ± 0.4 98.8 ± 0.3 88.2 ± 0.6 96.4 ± 0.5 91.2 ± 0.7 82.6 ± 2.2

ResNet18 98.8 ± 0.3 99.3 ± 0.3 86.9 ± 0.7 95.7 ± 0.4 91.3 ± 0.8 82.8 ± 0.4

ResNet50 99.4 ± 0.1 99.7 ± 0.3 90.5 ± 0.5 98.6 ± 0.2 94.1 ± 0.8 84.3 ± 1.5

ResNet152 99.6 ± 0.2 99.5 ± 0.3 89.4 ± 0.8 98.9 ± 0.2 94.8 ± 0.6 86.1 ± 0.7

PolyNet 99.3 ± 0.2 99.6 ± 0.4 88.5 ± 0.7 98.5 ± 0.2 95.4 ± 0.5 87.3 ± 0.9

DenseNet121 99.8 ± 0.1 99.9 ± 0.2 91.1 ± 0.8 98.9 ± 0.2 97.4 ± 0.3 85.9 ± 0.8

DenseNet201 99.8 ± 0.1 100.0 ± 0.1 91.8 ± 0.5 99.4 ± 0.2 97.6 ± 0.3 86.8 ± 1.1

PNASNet5(large) 98.7 ± 0.4 99.7 ± 0.3 86.9 ± 0.9 98.8 ± 0.3 93.5 ± 1.0 83.6 ± 1.6

SENet154 99.5 ± 0.2 99.7 ± 0.3 87.7 ± 0.7 98.1 ± 0.3 93.4 ± 0.4 87.1 ± 1.2

SEResNet50 99.5 ± 0.2 99.6 ± 0.3 88.7 ± 0.6 97.8 ± 0.2 93.2 ± 0.7 87.1 ± 0.7

SEResNet152 98.9 ± 0.2 99.8 ± 0.3 90.1 ± 0.9 96.9 ± 0.3 92.1 ± 0.4 86.0 ± 0.8

SEResNeXt50 99.2 ± 0.3 99.5 ± 0.3 86.2 ± 0.9 97.4 ± 0.3 92.0 ± 0.8 86.0 ± 0.9

SEResNeXt101 99.3 ± 0.3 99.5 ± 0.4 86.9 ± 0.7 96.9 ± 0.3 91.9 ± 0.5 86.2 ± 1.0

SVM

Alexnet 98.9 ± 0.3 99.4 ± 0.4 86.8 ± 0.8 98.3 ± 0.2 86.6 ± 0.6 66.7 ± 2.3

VGG16 99.0 ± 0.2 99.4 ± 0.4 87.7 ± 0.7 98.6 ± 0.1 94.5 ± 0.7 72.5 ± 1.9

VGG19 98.5 ± 0.3 99.3 ± 0.3 87.5 ± 0.7 98.1 ± 0.3 93.3 ± 0.6 69.6 ± 2.4

InceptionV3 98.0 ± 0.3 99.0 ± 0.4 85.4 ± 1.3 99.0 ± 0.2 91.6 ± 0.4 80.7 ± 1.0

InceptionResNetV2 97.6 ± 0.2 98.7 ± 0.3 87.8 ± 1.0 98.6 ± 0.2 89.2 ± 0.5 81.5 ± 1.6

ResNet18 99.1 ± 0.2 98.9 ± 0.5 87.3 ± 0.6 98.9 ± 0.2 90.9 ± 0.8 80.7 ± 1.0

ResNet50 99.2 ± 0.4 99.5 ± 0.4 89.5 ± 0.8 99.3 ± 0.1 92.9 ± 0.6 82.8 ± 1.2

ResNet152 99.1 ± 0.3 99.5 ± 0.4 88.3 ± 0.8 99.4 ± 0.2 93.8 ± 0.6 84.6 ± 1.2

PolyNet 98.7 ± 0.3 99.7 ± 0.4 87.3 ± 0.6 99.2 ± 0.1 94.5 ± 0.6 86.1 ± 0.9

DenseNet121 99.8 ± 0.1 99.8 ± 0.2 90.3 ± 0.8 99.7 ± 0.1 96.9 ± 0.5 84.3 ± 1.2

DenseNet201 99.8 ± 0.1 99.9 ± 0.2 90.8 ± 0.7 99.8 ± 0.1 97.2 ± 0.3 85.2 ± 1.1

PNASNet5 (large) 98.0 ± 0.4 99.3 ± 0.4 85.0 ± 1.0 99.0 ± 0.2 91.5 ± 0.7 84.3 ± 1.1

SENet154 99.1 ± 0.2 99.6 ± 0.3 87.0 ± 0.6 99.3 ± 0.1 92.8 ± 0.7 86.4 ± 0.8

SEResNet50 99.0 ± 0.4 99.4 ± 0.5 87.5 ± 0.7 99.3 ± 0.1 92.3 ± 0.4 85.6 ± 1.0

SEResNet152 98.2 ± 0.3 99.4 ± 0.3 88.6 ± 0.7 99.1 ± 0.2 91.3 ± 0.6 84.8 ± 0.7

SEResNeXt50 98.7 ± 0.4 99.2 ± 0.5 85.6 ± 0.4 99.2 ± 0.2 91.5 ± 0.6 83.9 ± 0.9

SEResNeXt101 98.7 ± 0.4 99.1 ± 0.5 86.0 ± 0.9 99.0 ± 0.2 90.7 ± 0.7 84.7 ± 1.0

classifiers (KNN, LDA, and SVM), where network size refers to the feature extraction
part only. The observed behavior for the three classifiers is similar where, overall, there
is a positive correlation between the increase in size and performance. However, the
DenseNet model seems to escape this rule, presenting the highest mean performance
together with a relatively small size. It has a size around the smallest networks analyzed
while performing significantly better. After DenseNet, the ResNet50 and SEResNet50
models present the highest efficiency, with performance similar to big networks while
keeping a relatively small size.
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Fig. 2. The relation between the mean accuracy over the 6 datasets and the network size, i.e.
the number of hyperparameters of the part used as feature extractor (no fully connected layers).
Results are shown for 3 different classifiers (KNN, LDA and SVM).

5 Conclusion

On this work we performed a broad analysis of different DCNN models on texture
analysis, specifically as texture feature extractors coupled with a supervised classi-
fier. Our experiments include 17 DCNN, 6 texture datasets and 3 different classi-
fiers (KNN, LDA, and SVM). The results indicate various interesting properties of
these networks and datasets. First, we observed that the DCNN architecture alone is
of great importance for texture characterization, as results with random weights point
out, and learned weights make a complementary contribution for performance. How-
ever, weights learned on ImageNet may not be always appropriate for texture analysis,
as results in the Outex13 dataset indicates, where random weights outperformed Ima-
geNet weights for some networks. Regarding the performance of the models, our results
indicate that the DenseNet architecture, both with 121 or 201 layers deep, is highly rec-
ommendable for texture analysis as it achieves the highest results in all datasets, except
FMD. Moreover, our efficiency analysis indicates a positive correlation between the
increase in network size and performance, but DenseNet escapes this rule as it has a
significantly small size while keeping higher performance. The pattern of performance
difference between networks is similar regardless of the chosen classifier. However, the
LDA and SVM classifiers perform better than KNN, and LDA is slightly superior over-
all, except for the CUReT dataset where SVM is better. As future works for a better
understanding of DCNN architectures, it is possible to explore the impact of different
weight initialization techniques, as we considered here only the default from the frame-
works. Moreover, it is possible to explore the use of more sophisticated feature map
characterization techniques besides from GAP, in order to obtain better texture descrip-
tors from each network.
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