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Abstract. Face attributes classification is drawing attention as a
research topic with applications in multiple domains, such as video
surveillance and social media analysis. In this work, we propose to train
attributes in groups based on their localization (head, eyes, nose, cheek,
mouth, shoulder, and general areas) in an end-to-end framework con-
sidering the correlations between the different attributes. Furthermore,
a novel ensemble learning technique is introduced within the network
itself that reduces the time of training compared to ensemble of several
models. Our approach outperforms the state-of-the-art of the attributes
with an average improvement of almost 0.60% and 0.48% points, on the
public CELEBA and LFWA datasets, respectively.

Keywords: Face attributes classification · Deep learning ·
Multi-task learning · Multi-label classification · Ensemble learning

1 Introduction

Attribute classifiers have been drawing attention in zero-shot or few-shot learning
problems where classes share attributes among them and can thus be recognized
with zero or a few samples. Face attribute in particular has been a focus [5–
7,13,17], as describing facial attributes has useful applications such as attribute-
based search. Previously, work on face attribute classification approaches were
based on handcrafted representations, as in [3,11,12]. This kind of approaches
are prone to failing when presented different variations of face images and in
unconstrained backgrounds. Recently, researchers tackle this task using deep
learning, which has resulted in huge performance leaps in several domains [13,
16,18,19,21,22]. Liu et al. [13] use two cascaded convolutional neural networks
(CNNs), for face localization (LNet) and attributes prediction (ANet). Each
attribute classifier is trained independently where the last fully connected layer
is replaced with a support vector machine classifier. Similarly in Zhong et al.
[21], attribute prediction is accomplished by leveraging different levels of CNNs.

Lately, the task is shifted to be a multi-task learning (MTL) problem by
training attributes in groups, mainly to speed up the training process and reduce
overfitting. Yet, only few works address the relationship between different facial
attributes [1,6,7]. Hand and Chellapa’s work divides the attributes into nine
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groups and train a CNN consisting of three convolutional sub-networks and two
multi-layer perceptrons [7]. The first two convolutional sub-networks are shared
for all of the classifiers and the rest of the network is independent for each group.
They also compare their results to the results of classifiers trained independently
for each attribute and show the advantage of grouping attributes together. Atito
and Yanikoglu use the multi-task learning paradigm, where attributes that are
grouped based on their location, share separate layers [1]. Learning is done in
two-stages: first by directing the attention of each network to the area of interest
and then fine-tuning the networks. In Han et al. [6], attributes are grouped into
ordinal vs. nominal attributes, where nominal attributes usually have two or
more classes and there is no intrinsic ordering among the categories, like race
and gender. The attributes are jointly estimated by training a convolutional
neural network that consists of some shared layers among all the attributes and
category-specific layers for heterogeneous attributes.

In this work, we propose an end-to-end network where all of the attributes
are trained at once in a multi-label learning scenario. An extra layer along with
a combined objective function are added to the network to capture the relation
between the attributes. Furthermore, a novel ensemble technique is introduced.

The main contributions are summarized as follows. (1) We use an end-to-end
deep learning framework for face attribute classification, capturing the correla-
tion among attributes with an extra layer that is trained at the same time with
the first one. (2) We propose a novel within-network ensemble technique. (3) We
obtain state-of-the-art results on both the CELEBA and LFWA datasets.

2 Proposed Approach

In this paper, we approached the face attributes classification problem in a multi-
label/multi-task fashion using an end-to-end framework. In Sect. 2.1, we trained
our base system in a multi-label fashion by sharing the network layers among all
of the attributes. While in Sect. 2.2, we introduced groups and attributes specific
layers for distinct feature extraction. In Sect. 2.3, an extra layer is embedded to
the architecture to capture the relation between different attributes. Finally, in
Sect. 2.4, a novel ensemble approach within the architecture itself is introduced.

Training a large deep learning network from scratch is time consuming and
needs tremendous amount of training data. Therefore, all of our proposed archi-
tectures are based on fine-tuning a pre-trained model, namely the ResNet-50
network [8] which is the first place winner of the (ILSVRC) 2015 classification
competition with top-5 error rate of 3.57%, trained on a dataset with 1.2 million
hand-labeled images of 1,000 different object classes.

2.1 Base System

Multi-Task learning has already shown a significant success in different appli-
cations like face detection, facial landmarks annotation, pose estimation, and
traffic flow prediction [10,14,15,20].
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In this work, we use MTL such that all the attributes are trained at once,
using the same shared layers. To match the output of ResNet-50 network with our
task, the output layer is replaced with 40 output units (one for each attribute)
and use the cross-entropy loss function to measure the discrepancy between the
expected and actual attribute values.

The multi-task approach not only saves on the training time, but the shared
network is also more robust to overfitting, according to our experimental results.
Intuitively, the model is forced to learn a general representation that captures
all of the specified tasks which less the chance of overfitting. Similar findings
are also reported in [2] and attributed to the regularization effect obtained by
sharing weights for multiple tasks.

Table 1. Grouping attributes based on their relative location.

Group Attributes

Head (1) Black Hair (2) Blond Hair (3) Brown Hair (4) Gray Hair
(5) Bald (6) Bangs (7) Straight Hair (8) Wavy Hair
(9) Receding Hairline (10) Hat

Eyes (11) Arched Eyebrows (12) Narrow Eyes (13) Bushy Eyebrows
(14) Bags Under Eyes (15) Eyeglasses

Nose (16) Big Nose (17) Pointy Nose

Mouth (18) Big Lips (19) Smiling (20) Mustache (21) Wearing Lipstick
(22) Mouth Slightly Open

Cheek (23) 5 O-clock Shadow (24) Rosy Cheeks (25) Goatee
(26) High Cheekbones (27) No Beard (28) Sideburns

Shoulder(29) Double Chin (30) Wearing Necklace (31) Wearing Necktie

General (32) Attractive (33) Blurry (34) Chubby (35) Young (36) Male
(37) Pale Skin (38) Oval Face (39) Heavy Makeup, (40) Earrings

2.2 Multi-task Learning with Attribute Grouping

When all the layers are shared in a simple multi-task learning approach, the
resulting network may be overly constrained. Therefore, we added a residual
block for each group of attributes, after the last residual network block (res5b),
as well as few layers for each attribute. This architecture is shown in the dashed
part of Fig. 1.

For grouping, the 40 attributes defined for the CELEBA and LFWA datasets
are divided into 7 groups based on their localization (head, eyes, nose, cheeks,
mouth, shoulder, and general areas) as shown in Table 1.

In the rest of the paper, we discuss our improvement to the multi-task learn-
ing network described thus far.
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Fig. 1. End-to-end architecture for face attributes classification.

2.3 End-to-End Network

Neither the basic, nor the multi-task architectures so far take into account the
correlations among attributes.

In previous work, correlations among facial attributes are learned and
exploited by using a separate network or learning phase. In this work we add
another fully connected layer with 40 output nodes to the network described
in Sect. 2.2, for simplicity and end-to-end training. The resulting architecture
is shown in Fig. 1, where the last layer aims to pick the most suitable predic-
tions based on the predictions in the previous layer, by learning the correlations
between the attributes.

The multi-label mean-squared-error loss used in this network consists of two
terms, one for each of the last two layers. Specifically, for a given input image
and A attributes, the loss function is denoted as shown in Eq. 1, where ŷ1[a] and
ŷ2[a] denote the output for attribute a, in the last two layers:

loss =
A∑

a=1

(y[a] − ŷ1[a])
2 + (y[a] − ŷ2[a])

2 (1)

In this architecture, mean-squared-error loss is used instead of cross-entropy
loss, with target values of {−1, 1}, since we aim to capture attribute correlations
with the last layer weights.
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2.4 Within-Network Ensemble

Ensemble approaches are very important in reducing over-fitting and they are
used more and more to improving the performance of deep learning systems.
However, forming ensembles from deep learning systems is very costly, as training
often takes long hours or days.

To reduce the time to build the base classifiers forming the ensemble and
inspired by the improved results with the end-to-end architecture with two out-
put layers, we trained an ensemble all at once, within a single network.

The architecture illustrated in Fig. 2 shows the main idea behind our app-
roach. Assuming that we have a classification/regression task with N outputs
(here the 40 binary attribute nodes), we branch a fully connected layer with N
output nodes after every several layers and include their error in the global loss
function. During testing, the outputs of these branches are treated as separate
base classifier outputs and averaged to obtain the final output.

Im
ag
e

Loss Function

FC1 FC2 FC3 FC4 FC5

Fig. 2. A basic architecture of within-network ensemble approach, with 5 output layers.

In this work, we have constructed the ensemble with 5 such branches, each
with 40 output nodes. The training of the network for one epoch on the LFWA
dataset took approximately 18 min, compared to 16 min with the end-to-end
network.

Notice that the base classifiers formed in this fashion use progressively more
complex features and the training is much faster compared to training several
separate network as base classifiers. On the other hand, while these base classi-
fiers are not independent from each other, they show complementary behaviour,
based on our experimental findings. More implementation details are discussed
in Sect. 3.3.

3 Experimental Evaluation

We evaluated the effectiveness of our approach using the widely used CELEBA
and LFWA datasets, described in Sect. 3.1. Data augmentation techniques used
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while training are presented in Sect. 3.2. In Sect. 3.3, the network and implemen-
tation details are explained. Finally, in Sect. 3.4, the performance of our pro-
posed method is evaluated along with a comparison with several state-of-the-art
techniques.

3.1 Datasets

Our experiments are conducted on two well-known datasets for face attributes
classification to assess our proposed method, CELEBA and LFWA [13].

CELEBA [13] consists of 202, 599 images of 10, 177 different celebrity faces
identities. The first 8k identities are set for training (in total around 160k
images), while the remaining images are used for validation and testing
(around 20k images each). The dataset provides 5 landmark locations (both
eyes, nose, and mouth corners), along with ground-truth for 40 binary
attributes for each image.

LFWA [13] is originally constructed for face identification and verification [9],
but recently, it is annotated with the same 40 binary attributes. The anno-
tated dataset contains 13,143 images of 5,749 different identities. The dataset
has a designated training set portion of 6,263 images, while the rest is reserved
for testing. LFWA is one of the challenging datasets with large variations in
pose, contrast, illumination and image quality.

3.2 Data Augmentation

Deep networks typically have large number of free parameters on the order of
several millions, which makes the networks prone to overfitting. One way to com-
bat overfitting is to use data augmentation. Recently, several advanced methods
for face data augmentation have been developed and automated as in [4].

In this work, we want to show the effectiveness of our stand-alone architecture
without using sophisticated data augmentation or pre-processing techniques.
Therefore, we only use the following simple, but effective data augmentation
techniques: (1) Rotation: training images are rotated using a random rotation
angle between [−5, +5] around the origin. (2) Scaling: images are scaled up and
down with a random scale factor up to a quarter of the image size. (3) Contrast:
by converting the color space of the images from RGB to HSV and randomly
multiplying the S and V channels with a factor range between [0.5, 1.5]. In addi-
tion, blurring with two different filter size (3 × 3 and 5 × 5) and histogram
equalization are performed.

At every iteration, we randomly decide whether to apply a transformation to
the input image and then pick its parameter randomly. Thus, an input image may
undergo a combination of multiple transformations, during one presentation.



472 S. A. A. Ahmed and B. Yanikoglu

3.3 Network Details and Implementation

As mentioned in Sect. 2.3, ResNet-50 is used as our base model in this work,
chosen due to its relatively small size and good performance.

All of the layers of ResNet-50 are shared among all of the attributes, up
until the last residual block, namely res5b. Then, seven forks are branched from
the res5b layer, one for each group of attributes. Each group’s shared layers
are similar to the layers in the last residual block of ResNet-50, which are as
following: a dropout layer followed by a three consecutive blocks of convolutional
layer, batch normalization, scaling and ReLU layer.

After every group block, several forks are branched, one for each attribute: a
dropout layer, pool layer, followed by a fully connected layer with one unit. The
output coming from all of the branches are then concatenated to form a vector
of 40 units and a hyperbolic tangent (tanh) activation layer is applied after this
layer. Finally, a fully connected layer with 40 units is added at the end, followed
by tanh activation layer, to learn the correlations among attributes.

For the within-network ensemble, 5 base classifiers are branched after the
res2c, res3c, res4a, res4d and res5a layers of the network. The whole network is
trained at once, with 7 terms in the loss function (5 coming from the extra
branched layers and 2 from the last two fully connected layers).

The implementation is done using the ResNet-50 models provided in the
Matlab deep learning toolbox. Throughout this work, we set the batch size equal
to 32 and the initial learning rate as 10−3 with a total of 20 epochs with stochastic
gradient descent for parameters optimization.

The training of the three models effectively took the same amount of time.
Specifically, training ResNet-50 model using LFWA dataset for one epoch was
performed in 15.52 min with the multi-task learning network, 16.02 min with the
end-to-end network and 18.28 min with the within-network-ensemble approach.
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Fig. 3. Obtained accuracies on LFWA dataset from the increasingly complex networks
described in Sect. 2. Best viewed in color. (Color figure online)
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Fig. 4. State-of-the-art accuracies on CELEBA dataset compared with our proposed
approach. Best viewed in color. (Color figure online)
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Fig. 5. Learned weights of the last hidden layer that capture the relation between
attributes (attributes order is same as in Table 1).

3.4 Results and Evaluation

A comparison between our proposed methods that are described in Sect. 2, is
shown using the LFWA dataset in Fig. 3. We have obtained an average accu-
racy of 85.15% using the base system approach; 85.66% with the multi-task
network using attribute grouping; 85.92% after embedding an extra layer to
capture the relation between the attributes; and finally 86.63% using our novel
within-network ensemble technique. Our approach outperforms the state-of-the-
art results on LFWA ([6]) by 0.48%.

In Fig. 4, our within-network ensemble approach is compared with the state-
of-the-art accuracies obtained on the larger CELEBA dataset. We obtained an
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Table 2. State-of-the-art accuracies on CELEBA dataset compared with the results
obtained in this work, using the within-network ensemble. Bold figures indicate the
best results.

# Attribute Baseline [13] [7] [6] This work

Head group

1 Black Hair 72.84% 95% 96% 91% 94.00%

2 Blond Hair 86.67% 80% 89% 96% 97.89%

3 Brown Hair 82.03% 68% 71% 88% 89.61%

4 Gray Hair 96.81% 95% 97% 98% 98.96%

5 Bald 97.88% 79% 85% 99% 99.57%

6 Bangs 84.43% 98% 99% 99% 96.32%

7 Straight Hair 79.01% 73% 84% 85% 84.21%

8 Wavy Hair 63.60% 80% 84% 87% 85.53%

9 Receding Hairline 91.51% 89% 94% 94% 94.90%

10 Wearing Hat 95.80% 99% 99% 99% 99.13%

Eyes group

11 Arched Eyebrows 71.56% 79% 83% 86% 85.79%

12 Narrow Eyes 85.13% 81% 87% 90% 89.21%

13 Bushy Eyebrows 87.05% 78% 85% 92% 94.41%

14 Bags Under Eyes 79.74% 81% 83% 85% 86.33%

15 Eyeglasses 93.54% 92% 96% 99% 99.13%

Nose group

16 Big Nose 78.80% 88% 90% 85% 83.86%

17 Pointy Nose 71.43% 72% 77% 78% 78.54%

Mouth group

18 Big Lips 67.30% 95% 96% 96% 92.70%

19 Smiling 49.97% 92% 93% 94% 95.15%

20 Mustache 96.13% 95% 97% 97% 98.75%

21 Wearing Lipstick 47.81% 93% 94% 93% 97.11%

22 Mouth Slightly . . . 50.49% 92% 94% 94% 96.27%

Cheek group

23 5 o’Clock Shadow 90.01% 91% 95% 95% 97.18%

24 Rosy Cheeks 92.83% 90% 95% 96% 95.66%

25 Goatee 95.42% 99% 100% 99% 98.41%

26 High Cheekbones 51.82% 87% 88% 88% 88.69%

27 No Beard 14.63% 95% 96% 97% 98.36%

28 Sideburns 95.36% 96% 98% 98% 98.05%

Shoulder group

29 Double Chin 95.43% 91% 96% 97% 97.56%

30 Wearing Necklace 86.21% 71% 87% 89% 88.32%

31 Wearing Necktie 92.99% 93% 97% 97% 97.58%

General

32 Attractive 50.42% 90% 93% 85% 85.68%

33 Blurry 94.94% 97% 98% 96% 96.84%

34 Chubby 94.70% 84% 96% 96% 97.54%

35 Young 24.29% 87% 88% 90% 89.84%

36 Male 61.35% 98% 98% 98% 99.13%

37 Pale Skin 95.79% 91% 97% 97% 99.35%

38 Oval Face 70.44% 66% 76% 78% 77.07%

39 Heavy Makeup 59.50% 90% 92% 92% 94.19%

40 Wearing Earrings 79.34% 82% 90% 91% 91.34%

Average 76.87% 87.30% 91.32% 92.60% 93.20%
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average accuracy of 93.20% that surpasses the state-of-the-art obtained in [6],
by 0.60%. Note that improvements are small due partly to the already high
accuracy rates for this problem and the fact that some of the binary attributes
are in fact continuous attributes (e.g. smile).

By visualizing the learned weights of the last hidden layer (Fig. 5), we found
that the relationship between attributes are nicely captured. For instance, the
learned weights show a high negative correlation between “No Beard” attribute
and “Mustache”, “Goatee”, and “Side Burns” attributes. Contrarily, there is
a high positive correlation between “Heavy Makeup” attribute and “Wearing
Lipstick”, “Rosy Cheeks”, and “No Beard” attributes.

State-of-art results on the CELEBA dataset and those obtained with the
within-network ensemble are shown in Table 2.

4 Conclusion

We present an end-to-end multi-task framework for face attribute classification
that considers attribute location to reduce network size and correlation among
attributes to improve accuracy.

We also introduce a novel ensemble technique that we call within-network
ensemble, by branching output nodes from different depths of the network and
computing the loss over all these branches. As the network is shared, this branch-
ing results in very little computational overhead. To the best of our knowledge,
this ensemble technique has not been suggested before, while it brings non-
negligible improvements (0.71% points accuracy improvement over the end-to-
end network). Our results surpass state-of-the-art on both LFWA and CELEBA
datasets, with 86.63% and 93.20% average accuracies, respectively.
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