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Abstract. Sport classification is a crucial step for content analysis in a
sport stream monitoring system. Training a reliable sport classifier can
be a challenging task when the data is limited in amount and highly
imbalanced. In this paper, we introduce a supervised two-stage transfer
learning (Two-Stage-TL) method to solve the data shortage problem. It
can progressively transfer features from a source domain to the target
domain using a properly selected bridge domain. For the class imbalance
issue, we compare several existing methods and demonstrate that the
log-smoothing class weight is the most applicable way for this specific
problem. Extensive experiments are conducted using ResNet50, VGG16,
and Inception-ResNet-v2. The results show that Two-Stage-TL outper-
forms classical One-Stage-TL and achieves the best performance using
log-smoothing class weight. The in-depth analysis is useful for researchers
and developers in solving similar problems.

Keywords: Multimedia content analysis + Sport classification -
Transfer learning - Class imbalance learning

1 Introduction

The online piracy of media content is widespread, especially for sport streams.
To combat piracy of sport streams, content protection companies usually apply
a sport stream monitoring system. Figure 1 shows the workflow of such a sys-
tem, which tracks illegal activities, detects pirated sport streams, collects sample
data for sport classification and content identification, and finally enforces con-
tent rights. With respect to sport classification, traditional systems either need
human in the loop, which is not cost-effective and not scalable, or use hand-
crafted classifiers, which are not robust and lack flexibility. Thus, there is a need
to build a better sport classification model for the system.

Automatic sport classification is a sub-topic of multimedia content analysis.
Existing approaches can be categorized by the type of data (single image or
images/video), or by the algorithms (handcrafted features or deep learning) as
shown in Table 1.
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Fig. 1. Workflow of a sport stream monitoring system. For each sport stream, several
screenshots are collected as the sample data for further analysis.

Table 1. Existing methods.

Handcrafted features Deep learning
Single image | Fisher Kernel [1], Deep CNN image

Bag-of-features [2] classifiers [3-5]
Images/video | Sparse features [6], Two-stream [7],

Dense trajectory [§] C3D [9], LSTM [10]

Since the data collected by the system is single image, we focus on image
classification methods. Deep Convolutional Neural Networks (CNN) such as
ResNet50 [4] and Inception-ResNet-v2 [5] have shown state-of-the-art perfor-
mance and outperformed the handcrafted methods. Thus, we decide to build a
sport image classification model based on deep learning methods.
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Fig. 2. Pie chart of Live-Sports dataset.

To train our model, we collect a dataset using the sport stream monitoring
system and manually label the data. This dataset is called Live-Sports, which
has five sport categories as shown in Fig. 2. Due to the dataset limitation, we are
facing two challenges. The first challenge is the data shortage problem. Training
deep learning models usually require massive amounts of data. However, we
only have 6000 images over five sport categories. By training with a limited
amount of data, the generalization error of the supervised learning model can
be high [11]. The second challenge is the class imbalance problem. As shown in
Fig. 2, the dataset is highly imbalanced in categories. Recent study [12] reveals
that the class imbalance problem can have a detrimental effect on classification
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performance especially when the class imbalance ratio is large. Since our target
data has a large imbalance ratio, class balancing methods need to be applied to
reduce the detrimental effect on the target performance.

To address the first challenge, supervised transfer learning with fine-tuning,
can be applied, which reuses the deep learning model or features trained on one
task to another related task [13]. For general image classification tasks, a repre-
sentative way is to use deep learning models that are pretrained on ImageNet and
fine-tuned on the target domain [11]. It can be called one stage transfer learning
(One-Stage-TL), which transfers features from one source to one target. One-
Stage-TL works well for most cases since the earlier layers in the pretrained
network extract general features such as edges, colors, and textures, which have
high transferability for general image classification tasks [14]. However, the lat-
est findings also reveal that feature transferability drops considerably in the
higher layers when there is a large discrepancy between the source and target
domains [11]. Thus, One-Stage-TL may not be enough for achieving optimal
transferability.

In this work, we suggest an intuitive method that is called supervised two-
stage transfer learning (Two-Stage-TL). It establishes knowledge transfer from
a source domain to a target domain by using a bridge domain. In this way, it
keeps the general features in lower layers, and at the same time, transfers task-
related features in higher layers. Feature transferability is enhanced by gradually
reducing the domain discrepancy in two stages. Similar ideas have been shown in
[15-17]. Our Two-Stage-TL approach is different from theirs as it is designed for
deep learning models and it uses a two-step fine-tuning scheme, which fully fine-
tunes the CNN model in each step. Based on the defined properties in Sect. 2.1,
we find that ImageNet is a good choice for source domain and Sports-1M [18] is a
suitable bridge domain. In the experiment, we compare Two-Stage-TL with One-
Stage-TL and other training methods using ResNet50 as the model architecture
for the sport classification task. We also evaluate the performance of Two-Stage-
TL using VGG16 and Inception-ResNet-v2 for comparison. Experimental results
show that T'wo-Stage-TL always achieves better performance than the common
One-Stage-TL.

To address the second challenge, existing solutions include oversampling [12],
undersampling [12], class weight [12], and imbalance fine-tuning [19]. In this
paper, we use a log-smoothing class weight method and compare it with existing
methods mentioned above. Experimental results show that the sport classifica-
tion model achieves the best performance when applying log-smoothing class
weight with Two-Stage-TL.

Our contribution consists of three parts. First, we demonstrate that for multi-
class classification with a limited number of training data, the Two-Stage-TL
method outperforms the One-Stage-TL method if a proper bridge domain is
selected. Second, we compared several existing methods for the class imbalance
problem and demonstrated that for this specific problem, the log-smoothing
class weight is the best way to reduce the impact of class imbalance. Further-
more, extensive experiments are conducted on different CNN models to find the
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optimal solution considering the tradeoff of accuracy, training time, and model
size. Finally, since data shortage and class imbalance are common problems, our
in-depth problem analysis and solution are not limited to a specific application
and could be helpful to solve similar problems in other applications.

2 Two-Stage Transfer Learning

2.1 Two-Stage Transfer Learning Using Bridge Domain

For image classification tasks, researchers always recommend to pretrain the
model on a large-scale publicly available dataset and then fine-tune it on the
target dataset. This approach, which is called fine-tuning, has been widely-used
for supervised learning tasks. In this paper, we call it one-stage transfer learning
(One-Stage-TL), which only transfers knowledge once from a source task to the
target task. Here, the source domain and target domain can be denoted by
Dy = (x},y5);=, and D; = (25, yj):; | respectively, where 27 and z; are training
samples, y; and y§ are labels, and ns; and n; are the number of samples.

One-Stage-TL can improve the performance on the target task when the
source is similar to the target. However, when the source data is quite different,
it may lead to very limited performance improvement on the target task due
to the low feature transferability. To further improve the target performance,
we introduce a very intuitive supervised two-stage transfer learning (Two-Stage-
TL) approach. Different from One-Stage-TL, it progressively transfers knowledge
from the source to the target by using a bridge domain in the middle. The bridge
domain can be denoted by D;, = (J;Z,yz)zbzl, where 2% represents the training
sample, y,l; represents the label, and n; is the number of samples.

To guarantee the effectiveness of Two-Stage-TL, the bridge domain should
have certain properties. Based on practical experience, we make some assumption
with respect to the properties of the bridge domain. First, compared with the
task of source t4, the task of the bridge ¢, should be more related to the task
of the target t;. Second, the data distribution of the bridge D; should be more
similar to the target distribution D; than the source distribution Dg. Third, the
bridge dataset X; should be larger than the target dataset X;. Finally, since
Two-Stage-TL is used for supervised learning tasks, the bridge domain should
have labeled data without heavy cleaning work.

Based on our assumption, we find Sports-1M can be a good bridge domain
given ImageNet as the source and Live-Sports as the target. Sports-1M [18] is
a publicly available dataset, which has approximately 1 million YouTube video
links for 487 sport categories. We collect a dataset of Sports-1M with the five
sports of interest. We collect 2000 frames extracted from about 100 videos for
each sport. Non-sports contents such as commercials or interviews are removed
in advance. We find that the dataset is a hybrid of professional sports, user
generated contents and remix, while the target dataset contains only professional
sports data. Thus, Sports-1M has the same task, and visually different but very
similar data compared with the target domain, which meets the requirements of
the bridge domain.
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Fig. 3. Two-Stage-TL framework: (a) The Two-Stage-TL approach. Source data is not
required if the pre-trained model is available. (b) The two-step fine-tuning scheme.
When the target dataset is small, a smaller learning rate is applied in step 2 to avoid
overfitting [13].

2.2 Two-Stage-TL Framework

The framework of our Two-Stage-TL approach is shown in Fig. 3. In stage 1, we
pretrain the model on the source domain, transfer the features, and fine-tune
the model on the bridge domain. To speed up the pretraining step, we can use
off-the-shelf features that are pretrained on ImageNet or other benchmarks. In
this case, we do not need to collect data and train the model for the source
domain. If the bridge has a different task, the model needs modifications on
fully-connected (FC) layers. In this case, when we transfer the features from
source to bridge, features on FC layers can remain for fine-tuning or be replaced
by random initialization. Since FC layers are task-specific with a larger transfer-
ability gap [11], it should be fully trained on the new task, while the lower layers,
which contain general features, should be gently fine-tuned to further improve
the performance [13]. Thus, we use a two-step fine-tuning scheme as shown in
Fig.3(b). In this scheme, the model is trained on FC layers with a large learning
rate in step 1 and fine-tuned on all layers with a smaller learning rate in step 2.
After training the bridge model, we transfer features of all layers to the target
model and fine-tune the model on the target task in stage 2. Similarly, the target
model is fine-tuned using the two-step fine-tuning scheme.

2.3 Class Imbalance Learning

We evaluate four class balancing methods including oversampling, undersam-
pling, class weight, and imbalance fitting. Oversampling is a widely-used sam-
pling method proven to be effective in many situations [12]. In our experiment,
we choose random minority oversampling, which randomly selects samples from
minority classes and applies data augmentation. Undersampling is another sam-
pling method, which is preferable to oversampling in some cases [12]. We choose
random majority undersampling that removes randomly selected samples from
majority classes.

Class weight is another common approach, which assigns different loss for
different classes by giving higher weight to the minority class and lower weight
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to the majority class. The original class weight is calculated by the equation:
CW; = Nmajority/Ni, Where cw; denotes the class weight for class i, nmajority 1S
the number of samples for the majority class, and n; is the number of samples for
class i. Since our dataset is highly imbalanced, the class weight of a minority class
can be very large. In this case, we need to smooth the class weight to avoid getting
biased on the minority class due to the large weight. Simply dividing the original
class weight by a constant value is not enough, since the majority class suffers
from a too small weight. We introduce a log-smoothing method that smooths
the class weight by a natural logarithm function as follows: cw%” = In(cw;) + 1.
In this way, the class weight of minority classes shrinks to a reasonable level,
while the class weight of the majority class keeps the same. Both default and
log-smoothing class weight methods are evaluated in the experiment.

The last method, which we call imbalance fitting, is inspired by the method
in [19]. In our implementation, we first train the network on the balanced data
(by undersampling), then fully fine-tune the network with the original dataset.
To find the optimal method for our target dataset, we evaluate all of the above
methods using different training approaches.

3 Experiments

3.1 Dataset

In our experiment, ImageNet is the source domain and the pretrained features are
used for transfer learning in stage 1. Live-Sports and Sports-1M are the target
domain and bridge domain. They both have five sport categories: American
Football, Baseball, Basketball, Ice Hockey, and Soccer. Live Sports has 6000
images: 100 images for validation, 100 images for testing for each category, and
the rest are used for training. Sports-1M has 12500 images: 2000 images for
training and 500 images for validation for each category.

For the undersampling method, we create a balanced training set of Live-
Sports and each class has the same number of images (100) as the minority
class (American Football). The balanced samples are randomly selected from
the original training set. For the oversampling method, a balanced training set
is created by using data augmentation. Each category has the same number of
images (4000) as the majority class (Soccer).

3.2 Experimental Environment and Settings

The experimental environment is a PC with an Intel Xeon E5 CPU and an
Nvidia Tesla V100 GPU with 32 GB of memory. We select ResNet50, VGG16,
and Inception-ResNet-v2 as the basic CNN models in our experiment, because
they are widely used for image classification and have different levels of depth
and size. All models used in the experiments are implemented using Keras with
TensorFlow as the backend.
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To preprocess training and testing data, we resize the images to a certain
size, which is 224 * 224 for ResNet50 and VGG16 and 299 * 299 for Inception-
ResNet-v2. For real-time data augmentation during training, we use several
image processing methods provided by Keras ImageDataGenerator. The image
processing methods include rotation (—90°..90°), width shift (—20%..20%),
height shift (—20%..20%), shear (—0.2°..0.2°), zoom (—20%..20%), horizontal
flip (prob 50%), and vertical flip (prob 50%).

We use stochastic gradient descent (SGD) with momentum as the optimiza-
tion strategy in our experiment. The momentum is set to 0.9, the batch size
is set to 32, and the initial learning rate is set to 0.01. For the second step of
the two-step fine-tuning scheme, which fine-tunes on all layers, we use a smaller
learning rate (0.001) to avoid overfitting to the target domain [13]. For train-
ing from scratch, the model is trained by 100 epochs. For transfer learning, the
model is trained by 50 epochs in step 1 and 50 epochs in step 2. Instead of
running through all the epochs, we stop training when the validation loss does
not improve in 10 epochs.

In the test phase, we use classification accuracy and training time as the
evaluation metrics.

3.3 Comparison of Different Training Approaches

In this section, we evaluate the performance of Two-Stage-TL and other train-
ing methods including Train-From-Scratch, Train-From-Scratch-NoAug (with-
out data augmentation), and One-Stage-TL (using ImageNet as source). Classi-
fication accuracy and training time are used to evaluate these methods. Table 2
shows the evaluation results using ResNet50 as the basic network.

Table 2. Classification accuracy and training time of different training approaches.

Approaches Accuracy | Time (min)
Train-From-Scratch-NoAug | 77.8% 19
Train-From-Scratch 79% 35
One-Stage-TL 90.4% 54
Two-Stage-TL 93% 124 463

From Table2, we can see that Train-From-Scratch-NoAug has the lowest
classification accuracy, which is only 77.8%. The classification accuracy of Train-
From-Scratch increases by 1.2% because of data augmentation. However, it is
still quite low (79%), which shows that training from scratch only is not enough
for training a reliable sport classifier. One-Stage-TL achieves much higher per-
formance, which is 90.4%. It shows that the pretrained weights on ImageNet are
beneficial for our task, sport classification. Compared with other methods, Two-
Stage-TL achieves the highest classification accuracy, which is improved by 2.6%
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from One-Stage-TL. It demonstrates that using Sports-1M as a bridge between
ImageNet and the target can further improve the classification accuracy. The
training time of Two-Stage-TL is more than other methods, which is 124 min in
the first stage and 63 min in the second stage. The time of the first stage can
be ignored, since it is only conducted once and the weights can be reused in the
future.

3.4 Comparison of Different Class Balancing Methods

In this section, we evaluate the performance of different class balancing meth-
ods including oversampling, undersampling, class weight, and imbalance fitting
(Imb-Fit). We use ResNet50 for this experiment because it has a good trade-off
between high performance and low training time. From Table3, we find that
oversampling has an enhancement in performance for all training approaches.
Compared with other class balancing methods, oversampling enables the high-
est classification accuracy for Train-From-Scratch and One-Stage-TL. The per-
formance for Train-From-Scratch and One-Stage-TL approaches with the under-
sampling method drops by 5.2% and 1% respectively compared with the original
performance (in Table2). The reason can be that removing training examples
in undersampling affects the generalizability on the test set. For Two-Stage-TL,
the undersampling method achieves higher performance than the original set-
ting and oversampling. The default class weight method does not work well on
Train-From-Scratch because the model cannot converge under the higher train-
ing loss. Two-Stage-TL with log-smoothing class weight achieves better perfor-
mance, which is 1% higher than using the default class weight method. The
imbalance fitting method does not improve the best performance of any training
approach. Overall, Two-Stage-TL with log-smoothing class weight is considered
as the most applicable approach for our problem.

Table 3. Classification accuracy of different class balancing methods (* log-smoothing).

Approaches Undersampling | Oversampling | Class weight | Imb-Fit
Train-From-Scratch | 72.6% 82.8% 20% 78.6%
One-Stage-TL 89.4% 93.2% 91.6% 91.6%
Two-Stage-TL 94% 93.4% 93% (*94%) | 94%

Additionally, we compare the training time of the training approaches with
different class balancing methods. From Fig.4, we can see that for most cases
oversampling has the longest training time while undersampling has the shortest
training time. This is caused by the different size of the training set, which is
500 for undersampling and 20000 for oversampling. Imbalance fitting and class
weight require medium level training time. If training time is crucial, Two-Stage-
TL with undersampling is the most applicable one, even though it may lose useful
information from training data.
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3.5 Comparison of Different CNIN Models

In this section, we compare the performance of Two-Stage-TL on different deep
CNN models including ResNet50, VGG16, and Inception-ResNet-v2. We use
undersampling as the class balancing method for all of them. We evaluate the
models using classification accuracy and also compare the model size and the
training time in two stages. Table4 shows the classification accuracy, training
time, and model size of three deep CNN models. We find that Inception-ResNet-
v2 achieves the best accuracy (96.8%), while ResNet50 achieves a bit lower
accuracy (94%) but requires much less training time (136 min) and has much
smaller model size (196 MB). For practical implementation, if there is a limitation
for training time and model size, ResNet50 is a good choice. Inception-ResNet-
V2 is optimal when the classification accuracy is crucial.

Table 4. Classification accuracy, training time, and model size of different CNN
models. T1 and T2 refer to the training time in two stages.

Approaches Accuracy | T1 (min) | T2 (min) | Size (MB)
VGG16 93.8% 270 13 968
ResNet50 94% 130 6 196
Inception-ResNet-v2 | 96.8% 329 11 428

3.6 Feature Visualization

To demonstrate Two-Stage-TL has better transferability than One-Stage-TL,
we visualize Two-Stage-TL features and One-Stage-TL features of test images.
The features are extracted from the last hidden layer of the ResNet50 mod-
els trained by Two-Stage-TL and One-Stage-TL. We use the t-SNE method to
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Fig. 5. Visualization of t-SNE embeddings

reduce dimensions of the features and plot the t-SNE embeddings in a 2D space
for visual analysis. The t-SNE embeddings of Two-Stage-TL and One-Stage-TL
features are shown in Fig. 5, in which the data points of the same class are drawn
in the same color. Our observation is that the test examples with Two-Stage-TL
features are discriminated better compared with One-Stage-TL features. The
samples of each class in Two-Stage-TL features are better clustered with clearer
boundaries. The observation implies that Two-Stage-TL improves the transfer-
ability of the features to the target domain. The finding can explain the better
performance of Two-Stage-TL over One-Stage-TL.

4 Conclusion

In this paper, we introduced a supervised two-stage transfer learning (Two-
Stage-TL) method, which improves feature transferability by reducing the
domain discrepancy progressively. To verify its effectiveness, we conducted exper-
iments using three deep CNN models: ResNet50, VGG16, and Inception-ResNet-
v2. To solve the class imbalance problem, we evaluated different class balancing
methods. The experimental results show that the Two-Stage-TL outperforms
the classical One-Stage-TL, and it achieves the best performance using together
with log-smoothing class weight. In future work, we will extend Two-Stage-TL
to Multi-Stage-TL and explore its feasibility in multi-model applications.
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