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Abstract. Automatic recognition and classification of skin diseases is
an area of research that is gaining more and more attention. Unfortu-
nately, most relevant works in the state of the art deal with a binary
classification between malignant and non-malignant examples and this
limits their use in real contexts where the classification of the specific
pathology would be very useful. In this paper, a convolutional neural
network (CNN) based on DenseNet architecture has been introduced
and exploited for the automatic recognition of seven classes (Melanoma,
Melanocytic nevus, Basal cell carcinoma, Actinic keratosis, Benign ker-
atosis, Dermatofibroma, Vascular) of epidermal pathologies starting from
dermoscopic images. Specialized network architecture and an innovative
multilevel fine-tuning method that generates a set of specialized net-
works able to provide highly discriminative features have been designed.
Finally, an SVM model is used for the final classification of the seven skin
lesions. The experiments were carried out using an extended version of
the HAM10000 dataset: starting from the publicly available images, geo-
metric transformations such as rotations, flipping and affine were carried
out in order to obtain a more balanced dataset.

Keywords: Deep Learning · Center loss · Skin lesion classification

1 Introduction

The development of systems based on image analysis for the automatic recogni-
tion and classification of skin diseases is an area of research that in recent years
is gaining more and more attention. It is indeed a challenging multidisciplinary
research area in which the application of modern machine learning techniques,
with particular attention to those based on Deep Learning methodologies, have
made automatic classification systems increasingly performing and attractive for
real uses [13].

Automatic systems for the classification of skin lesions are very desired
because, on the one hand, can drive the doctor’s attention (allowing the screen-
ing of a larger number of patients in the same portion of time) and, on the
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other hand, can even allow the development of domestic tools to identify per-
sons most at risk. In the scientific literature, several computer vision based
approaches making use of handcrafted features for skin lesions classification can
be found [1,4,5,12]. Due to huge inter/intraclass variation and high visual simi-
larity among different classes, the above-mentioned approaches were not able to
get satisfying performance in terms of accuracy. In the last years, Deep Convo-
lutional Neural Networks (DCNN) have increasingly being used in the computer
vision field for tasks such as image recognition and classification, showing to
exceed human performance. This surprising popularity of CNN pushed some
researchers to investigate how they can impact on automatic skin lesion classifi-
cation. Two relevant works exploiting CNN for skin lesion classification are those
proposed in [3,6]. Unfortunately, the work in [6] only deals with the binary clas-
sification between malignant and non-malignant examples. The work in [3] pro-
poses a unique model to classify multiple classes of skin lesions and to do that a
huge amount of data was used in order to handle the large number of parameters
in the model. Authors in [14] propose an approach that combines Deep Learn-
ing techniques with a low-level segmentation algorithm to distinguish malignant
and benign skins lesions. The starting idea of [21] is not far from this, but here
authors perform both the segmentation and the classification stages by means of
very deep networks with the goal of obtaining more discriminative features for
more accurate recognition. The typical degradation problem that occurs when a
network goes deeper is overcome by utilizing residual learning technique [7]. In
[18] an additional class, representing the visual patterns of regions outside the
lesion to reduce their influence on the classification decision, is introduced. In
[20] multiple imaging modalities together with patient metadata are provided
to a deep neural network to improve the performance of automated diagnosis of
five classes of skin cancer. The same five classes are the focus of the approach
proposed in [11]. Recently, an interesting comparison between the performance
of human experts and Convolutional Neural Networks for skin lesion detection
has been proposed in [16].

In this paper, a convolutional neural network (CNN) based on DenseNet
architecture [8] has been introduced and exploited for the automatic recognition
of seven classes of epidermal pathologies starting from dermoscopic images. In
particular, a network architecture more suited to the problem and an innovative
multilevel fine-tuning method that generates a set of specialized networks able,
also thanks to the linear combination of soft-max and center-loss [19], to provide
highly discriminating features have been designed. To the best of our knowledge,
the use of a model ensemble built by starting from one network architecture and
generating from that a set of specialized networks through a multilevel fine-
tuning method is the main contribution of the paper.

Starting from dermoscopic images, through each network new features are
obtained. Features are then concatenated and supplied as input to an SVM model
[15] for the final classification of seven skin lesions: Melanoma, Melanocytic
nevus, Basal cell carcinoma, Actinic keratosis, Benign keratosis, Dermatofi-
broma, Vascular. The experiments were carried out using an extended version of
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the HAM10000 dataset [17]. In particular, starting from the publicly available
images, geometric transformations such as rotations, flipping and affine were
carried out in order to obtain a dataset that is as balanced as possible.

The rest of the paper is organized as follow. In Sect. 2 the proposed clas-
sification system is described whereas Sect. 3 reports the experimental results.
Finally, Sect. 4 concludes the paper and give a glimpse of future works.

2 Methodology

The challenging problem of the classification of seven classes of skin lesions
has been faced by a novel CNN architecture. The architecture was designed by
taking as a starting point the one of the Densenet-121 presented in [8]. From the
original implementation, the first two Transition Layers and the first two Dense
Blocks were maintained whereas the number of layers in the third Dense Block
was reduced. The initial internal parameters of the net were set up as provided
after the pre-training on the IMAGENET dataset [2]. The third dense block was
simplified by reducing the number of its layers and the whole architecture is
reported in Table 1.

Table 1. The employed CNN architecture

Layers Output size Densenet-62

Convolution 112 × 112 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2

Dense Block (1) 56 × 56

[
1 × 1 conv

3 × 3 conv

]
× 6

Transition Layer (1) 56 × 56
28 × 28

1 × 1 conv
2 × 2 average pool, stride 2

Dense Block (2) 28 × 28

[
1 × 1 conv

3 × 3 conv

]
× 12

Transition Layer (2) 28 × 28
14 × 14

1 × 1 conv
2 × 2 average pool, stride 2

Dense Block (3) 14 × 14

[
1 × 1 conv

3 × 3 conv

]
× 11

Classification Layer 1 × 1 7 × 7 global average pool
7D fully-connected, softmax

The resulting CNN was then fine-tuned on the HAM10000 Dataset [17] that
consist of 10, 015 dermoscopic images regarding the considered classes of skin
lesions: melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC),
actinic keratosis (AKIEC), benign keratosis (BKL), dermatofibroma (DF), vas-
cular (VASC). Some representative samples in the aforementioned dataset are
reported in Fig. 1.
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(a) Basal Cell Carcinoma (b) Dermatofibroma

(c) Melanoma (d) Nevus

(e) Pigmented Benign Keratoses (f) Pigmented Bowen

(g) Vascular

Fig. 1. One representative example for each of the seven Skin Lesion Classes of the
HAM10000 dataset.

Besides, in order to obtain a higher discriminative CNN model, in the learning
phase the center-loss function based approach, proposed in [19], was exploited.
In particular, in the course of CNN training, high discriminative features are
learned considering jointly softmax and center loss functions balanced by means
of a hyper parameter. The center loss function was defined by:

Lcenter =
1
2

m∑

i=1

‖xi − cyi
‖22 (1)

where the term ci ∈ �d denotes the yith class center of deep features xi.
Finally, the total loss function was defined as linear combination of soft-max

Ls and center-loss Lc functions as following:

L = Ls + γLc (2)

where the term γ is a scalar used for balancing the two loss functions. Intra-
class minimizations, during the learning phase, were controlled by means of Lc,
inter-class maximizations by means of Ls.

3 Experimental Results

The CNN introduced in Sect. 2 was trained by employing a k − fold approach
with k = 5. The whole HAM10000 (Table 2) was partitioned into five splits: four
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Table 2. HAM10000 Training Dataset. Number of images for each class.

MEL NV BCC AKIEC BKL DF VASC Total

1113 6705 514 327 1099 115 142 10015

of them were used for training and the remaining one for test. The procedure was
iterated in order to cover all the combinations of training and test splits. Given
the complexity of the network and the number of parameters to be trained
during the fine-tuning procedure, the samples of each training/test split were
increased by means of geometric transformations. In particular, from each base
image in a split additional images were obtained by rotation, flipping and affine
transformations (see examples in Fig. 2) in order to obtain training/test sets
having the representatives of each class as balanced as possible.

Each image in the balanced splits was then squared by centered cropping of
amplitude equal to the shorter side of the starting image. The resulting patch
was subsequently resized to a dimension of 224 × 224 pixels as requested by the
input layer of the network.

(a) Base image (b) Affine

(c) Rotation (d) Flipping of
the rotated im-
age

Fig. 2. Image transformations on a Melanoma sample

A multilevel fine-tuning, on the last Dense Block of the employed CNN archi-
tecture, was carried out using the training/test data splits provided by the
k − fold procedure. In each fine-tuning session, together with the last fully-
connected layer, the last two, the last four, the last six, the last eight, the last
ten and the last twelve convolution layers of the third Dense Block were modified
respectively. To explain better this step, in the first session the last three convo-
lution layers were fine-tuned whereas the parameters in the remaining layers of
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the network were not modified. In the second session, the last five convolution
layers were fine-tuned and so on. This led to six different models, namely Mod.1,
Mod.2, Mod.3, Mod.4, Mod.5, Mod.6 respectively. The classification scores, aver-
aging the obtained perfold results for each model, are in Tables 3 and 4 where
Precision/Recall and F1-score are reported.

In Tables 3 and 4 it is evident that each model performs better on a particular
class of skin lesions and this experimental evidence led to use an ensemble of
nets instead of an end-to-end classifier. To this end, the probability outputs
of each network were considered as features and chained in order to obtain
a single feature vector in order to represent all the classes as a whole. Feature
extraction was then performed on training data and the resulting feature vectors,
after dimensional reduction by means of PCA, were used to train a seven class
SVM classifier. The obtained SVM model was tested on the test data. The
entire procedure was carried out using the k − fold partitioned data and the
averaged results related to Precision, Recall, F1-score and confusion matrix of
the ensemble classifier are reported in Table 5 and Fig. 3 respectively.

In order to highlight the improvement in the performance of the proposed,
the same validation procedure with k − folded splitting of data and the same
center − loss approach was carried out by using the Densenet-121 CNN. In this
case, the last two convolution layers of the last Dense Block were fine-tuned.
Results, in terms of Precision, Recall and F1-Score, of this additional experiment
are reported in Table 6. Despite the deeper layout of the net, Densenet-121 CNN
showed a worse capacity, in terms of generalization, than the proposed approach
to classify the 7 classes of skin lesions.

This can be attributed to the high complexity of the network in terms of the
number of layers and to the low numerosity of the dataset used for which the
strategy for data augmentation used was not sufficient.

Network training was performed using two NVIDIA GTX 1080Ti cards and
the Caffe [9] framework. As optimizer, SGD was chosen with learning rate start-
ing at 0.01, weight decay and momentum equal to 0.0001 and 0.9 respectively.
The maximum number of iterations has been set at 75000, decreasing the learn-
ing rate by a factor of 10 at each step of 20000 iterations. Finally, the 0.008 value
was used for the γ parameter in the Eq. 2. Regarding SVM classifier, an RBF
kernel with λ = 0.01 and C = 10 were used.

Experimented outcomes are very encouraging. For all the classes the F1-score
was greater than 0.8, except for Melanoma (0.72) and Keratosis (0.62). Since
this is a relatively unexplored research field the fair comparison with leading
approaches in the literature is not trivial. There is no published work exploiting
the HAM10000 dataset indeed. Anyway, it is still possible to get a fair compari-
son in a quite simple way. In 2018 a dedicated challenge (ISIC 2018: Skin Lesion
Analysis Towards Melanoma Detection1) was held rightly on the HAM10000
dataset. Task 3 in the challenge was devoted to the seven classes of skin diseases
in the HAM10000 dataset. Task 3 was addressed by 141 research groups and,
excluding solutions using external data for training, the best one was the ensem-

1 https://challenge2018.isic-archive.com.

https://challenge2018.isic-archive.com


Skin Lesions Classification by DenseNet CNN Approach 341

Table 3. Results obtained using the 6 fine tuned models (In each row, upper value
refers to Precision score, lower value refers to Recall score)

Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Mod. 6

MEL 0.70 0.70 0.73 0.70 0.75 0.72

0.56 0.52 0.54 0.60 0.55 0.68

NV 0.91 0.92 0.92 0.94 0.92 0.94

0.95 0.97 0.97 0.95 0.97 0.96

BCC 0.84 0.83 0.81 0.87 0.83 0.80

0.82 0.78 0.84 0.80 0.84 0.78

AKIEC 0.79 0.73 0.78 0.76 0.74 0.74

0.69 0.60 0.56 0.59 0.53 0.53

BKL 0.74 0.76 0.77 0.74 0.78 0.78

0.72 0.80 0.78 0.82 0.79 0.80

DF 0.80 1.00 0.90 0.75 0.90 0.82

0.72 0.82 0.82 0.82 0.82 0.82

VASC 0.93 1.0 0.91 0.93 0.92 1.00

0.93 0.79 0.71 0.93 0.86 1.00

Average 0.81 0.85 0.83 0.93 0.83 0.82

0.77 0.75 0.75 0.80 0.77 0.80

Table 4. F1-Score results related to the 6 fine tuned models

Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Mod. 6

MEL 0.62 0.60 0.62 0.65 0.64 0.70

NV 0.93 0.94 0.95 0.94 0.94 0.95

BCC 0.83 0.81 0.83 0.84 0.83 0.80

AKIEC 0.73 0.66 0.65 0.67 0.62 0.62

BKL 0.73 0.78 0.78 0.77 0.79 0.80

DF 0.76 0.90 0.86 0.78 0.86 0.82

VASC 0.93 0.90 0.80 0.93 0.90 1.00

Average 0.79 0.79 0.78 0.80 0.79 0.81

ble of CNN described in [10]. Using PNASNet on 5-fold Validation Data authors
in [10] reported a mean precision on 7 classes (namely MCA) of 82, 6% ± 2.0
whereas the MCA score, as reported in Table 5 for the ensemble approach pro-
posed in this paper, is 88%.

A final consideration should be made: the approach proposed in this paper is
based on an ensemble of models generated by the same reduced network architec-
ture. This leads to reduced models extracted by the same network architecture
that can be exploited into embedded systems that are very desirable to quickly
move towards portable devices for domestic diagnosis of skin lesions.
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Table 5. Precision, Recall and F1-Score results for the proposed ensemble approach.

Precision Recall F1-Score

MEL 0.77 0.68 0.72

NV 0.92 0.98 0.95

BCC 0.91 0.82 0.87

AKIEC 0.80 0.50 0.62

BKL 0.86 0.77 0.81

DF 1.00 0.82 0.90

VASC 0.92 0.86 0.89

Average 0.88 0.76 0.82

Table 6. Precision, Recall and F1-Score results for the original Densenet-121.

Precision Recall F1-Score

MEL 0.60 0.03 0.05

NV 0.95 0.44 0.60

BCC 0.63 0.27 0.38

AKIEC 0.67 0.19 0.29

BKL 0.17 0.93 0.28

DF 0.22 0.18 0.20

VASC 0.21 0.50 0.30

Average 0.49 0.36 0.30

Fig. 3. Ensemble classifier Confusion Matrix

4 Conclusions and Future Work

In this work, a novel approach, based on deep CNNs, for classification of skin
lesions has been introduced. It works by using a unique (and not very deep)
network architecture from which six models have been generated (each one better
performing for specific classes of skin lesions) and then used in an ensemble able
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to handle 7 different classes of output. Due to the particular configuration of
the CNN, this approach could be exploited into embedded systems that are very
desirable to quickly move towards portable devices for domestic diagnosis of skin
lesions. Future works will deal with the challenging task of increasing the dataset
adding annotated data that can bring to more robust learning of the network
parameters. Besides, the possibility to take advantage of some pre-processing
step on input images (e.g. colour constancy) will be investigated. Finally, also
the use of a preliminary segmentation phase could be considered in order to
obtain registered images into a common reference.
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