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Abstract. Few works tackle the Human Pose Estimation on depth
maps. Moreover, these methods usually rely on automatically annotated
datasets, and these annotations are often imprecise and unreliable, lim-
iting the achievable accuracy using this data as ground truth. For this
reason, in this paper we propose an annotation refinement tool of human
poses, by means of body joints, and a novel set of fine joint annota-
tions for the Watch-n-Patch dataset, which has been collected with the
proposed tool. Furthermore, we present a fully-convolutional architec-
ture that performs the body pose estimation directly on depth maps.
The extensive evaluation shows that the proposed architecture outper-
forms the competitors in different training scenarios and is able to run
in real-time.
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1 Introduction

In recent years, the task of estimating the human pose has been widely explored
in the computer vision community. Many deep learning-based algorithms that
tackles the 2D human pose estimation have been proposed [5,19,22] along with a
comprehensive set of annotated datasets, collected both in real world [1,8,11] or
in simulations [7,17]. However, the majority of these works and data collections
are based on standard intensity images (i.e. RGB and gray-level data) while
datasets and algorithms based only on depth maps, i.e. images in which the
value of each pixel represents the distance between the acquisition device and
that point in the scene, have been less explored, even though this kind of data
contains fine 3D information and it can be used in particular settings, like the
automotive one [4,18], since depth maps are usually acquired through IR.

A milestone in the human pose estimation on depth maps is the work of
Shotton et al. [15], based on the Random Forest algorithm, that has been imple-
mented in both commercial versions of the Microsoft Kinect SDK. This real time
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algorithm has been widely used to automatically produce body joints annota-
tions in depth-based public datasets. However, these annotations have limited
accuracy: in [15], the authors report a mean average precision of 0.655 on syn-
thetic data with full rotations.

For these reasons, in this paper we present Watch-R-Patch, a novel refined
set of annotations of the well-known Watch-n-Patch dataset [20], which contains
annotations provided by Shotton et al. ’s method [15].

Original wrong, imprecise, or missing body joints have been manually cor-
rected for 20 training sequences and 20 testing sequences, equally split between
the different scenarios of the dataset, i.e. office and kitchen.

Furthermore, we present a deep learning-based architecture, inspired by [5],
that performs the human pose estimation on depth images only. The model is
trained combining the original Watch-n-Patch dataset with the manually-refined
annotations, obtaining remarkable results. Similar to [15], the proposed system
achieves real time performance and can run at more than 180 fps.

2 Related Work

The majority of the literature regarding the Human Pose Estimation task is
focused on intensity images [6,13,22]. In [19] a sequential architecture is proposed
in order to learn implicit spatial models. Dense predictions, that corresponds to
the final human body joints, are increasingly refined through different stage into
the network model. The evolution of this method [5] introduces the concept of
Part Affinity Fields that allows learning the links between the body parts of
each subject present in the image.

Only a limited part of works is based on depth maps, i.e. images that provide
information regarding the distance of the objects in the scene from the camera,
One plausible limitation of depth-based methods is the lack of rich depth-based
datasets which have been specifically collected for the human pose estimation
task and contains manual body joint annotations. Indeed, available datasets
are often small, both in terms of number of annotated frames and in terms of
subjects. limiting their usability for the training of deep neural networks. In
2011, a method to quickly predict the positions of body joints from a single
depth image was proposed in [15]. An object recognition approach is adopted,
in order to shift the human pose estimation task in a per-pixel classification
problem. The method is based on the random forest algorithm and on a wide
annotated dataset, which has not been publicly released. A viewpoint invariant
model for the human pose estimation was recently proposed in [9], in which a
discriminant model embeds local regions into a particular feature space. This
work is based on the Invariant-Top View Dataset, a dataset with frontal and
top-view recordings of the subjects.

Recently, approaches performing the head detection directly on depth maps
were proposed in [2,3]. In [3], a shallow deep neural network is exploited to clas-
sify depth patches as head or non-head in order to obtain an estimation of the
head centre joint. The Watch-n-Patch dataset [20,21] has been collected for the
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unsupervised learning of relations and actions task. Its body joints annotation
are obtained applying an off-the-shelf method [15], therefore they are not par-
ticularly accurate, in particular when subjects stand in a non-frontal position.

Fig. 1. Annotation tool overview. The tool initially shows the original joint locations
(a). Then, each joint can be selected to view its name (b) or to move it in the correct
location (c). Missing joints can be added in the right position (d) (e). Finally, the
annotations (f) can be saved and the next sequence frame is shown.

3 Dataset

In this section, we firstly report an overview of the Watch-n-Patch dataset [20].
Then, we present the procedure we used to improve the original joint annotations
and the statistics of the manually refined annotations which are referred as
Watch-R(efined)-Patch. The dataset will be publicly available1.

3.1 Watch-n-Patch Dataset

Watch-n-Patch [20] is a challenging RGB-D dataset acquired with the second
version of the Microsoft Kinect sensor: differently from the first one, it is a Time-
of-Flight depth device. The dataset contains recordings of 7 people performing
21 different kinds of actions. Each recording contains a single subject performing
multiple actions in one room chosen between 8 offices and 5 kitchens.

The dataset contains 458 videos, corresponding to about 230 min and 78k
frames. The authors provide both RGB and depth frames (with a spatial resolution
of 1920×1080 and 512×424, respectively) and human body skeletons (composed
of 25 body joints) estimated and tracked with the method proposed in [15].
1 Watch-R-Patch: http://imagelab.ing.unimore.it/depthbodypose.

http://imagelab.ing.unimore.it/depthbodypose
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Fig. 2. Watch-R-Patch dataset overview. Kitchen and office sequences are shown in
the first and second row, respectively.

3.2 Annotation Procedure

We collect refined annotations for the Watch-n-Patch dataset using a quick
and easy-to-use annotation tool. In particular, we develop a system that shows
the original body joints (i.e. the Watch-n-Patch joints) on top of the acquired
depth image. The user is then able to move the incorrect joints in the proper
positions using the mouse in a drag-and-drop fashion. Once every incorrect joint
has been placed in the correct location, the user can save the new annotation
and move to the next frame. It is worth noting that, in this way, the user has
only to move the joints in the wrong position while already-correct joints do not
have to be moved or inserted. Therefore, original correct joints are preserved,
while improving wrongly-predicted joints. We have ignored finger joints (tip and
thumb) since original annotations are not reliable and these joints are often
occluded. An overview of the developed annotation tool is shown in Fig. 1. The
annotation tool is publicly released2.

3.3 Statistics

We manually annotate body joints in 20 sequences from the original training
set and 20 sequences from the original testing set. Sequences are equally split
between office and kitchen sequences. To speed up the annotation procedure and
increase the scene variability, we decided to fine-annotate a frame every 3 frames
in the original sequences. In some test sequences, every frame has been fine-
annotated. The overall number of annotated frames is 3329, 1135 in the training
set, 766 in the validation one, and 1428 in the testing one. We also propose an
official validation set for the refined annotations, composed of a subset of the
testing set, in order to standardize the validation and testing procedures.

For additional statistics regarding the annotated sequences and the proposed
train, validation, and test splits, please refer to Table 1. A qualitative overview
of the dataset is reported in Fig. 2.

2 Annotation tool: https://github.com/aimagelab/human-pose-annotation-tool.

https://github.com/aimagelab/human-pose-annotation-tool
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Table 1. Statistics of the Watch-R-Patch dataset.

Split Sequences Frames Annotated Modified mAP

Kitchen Office frames joints (%)

Train data 02-28-33 data 01-50-09 3385 1135 0.757 0.574

data 03-22-44 data 03-28-59

data 03-38-20 data 04-02-43

data 03-42-37 data 04-31-13

data 03-46-49 data 04-41-55

data 03-50-38 data 04-47-41

data 04-07-17 data 04-56-00

data 04-17-37 data 05-31-10

data 04-31-11 data 05-34-47

data 04-34-13 data 12-03-57

Val data 01-52-55 data 02-32-08 995 766 0.643 0.600

data 03-53-06 data 02-50-20

data 04-52-02 data 03-25-32

Test data 02-10-35 data 03-04-16 2213 1428 0.555 0.610

data 03-45-21 data 03-05-15

data 04-13-06 data 03-21-23

data 04-27-09 data 03-35-07

data 04-51-42 data 03-58-25

data 05-04-12 data 04-30-36

data 12-07-43 data 11-11-59

Overall – – 6593 3329 0.644 0.595

4 Proposed Method

In the development of the human pose estimation architecture, we focus on both
the performance (in terms of mean Average Precision (mAP)) and the speed (in
terms of frames per second (fps)).

To guarantee high performance, we decided to develop a deep neural network
derived from [5] while, to guarantee high fps, even on cheap hardware, we do
not include the Part Affinity Fields section (for details about PAF, see [5]).

4.1 Network Architecture

An overview of the proposed architecture is shown in Fig. 3.
The first part of the architecture is composed of a VGG-like feature extraction

block which comprises the first 10 layers of VGG-19 [16] and two layers that
gradually reduce the number of feature maps to the desired value. In contrast
to [5], we do not use ImageNet pre-trained weights and we train these layers
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Fig. 3. Proposed architecture overview. Each block contains its type (C: convolution,
MP: max pool), the kernel size, the number of feature maps, and the number of repe-
titions (if higher than 1). In our experiments, K = 21 and T = 6.

from scratch in conjunction with the rest of the architecture since the input is
represented by depth maps in place of RGB images.

The feature extraction module is followed by a convolutional block that pro-
duces an initial coarse prediction of human body joints analyzing the image
features extracted by the previous block only. The output of this part can be
expressed as:

P1 = φ(F, θ1) (1)

where F are the feature maps computed by the feature extraction module and
φ is a parametric function that represents the first convolutional block of the
architecture with parameters θ1. Here, P1 ∈ R

k×w×h.
Then, a multi-stage architecture is employed. A common convolutional block

is sequentially repeated T − 1 times in order to gradually refine the body joint
prediction. At each stage, this block analyzes the concatenation of the features
extracted by the feature extraction module and the output of the previous stage,
refining the earlier prediction. The output at each step can be represented with

Pt = ψt(F ⊕ Pt−1, θt) ∀t ∈ [2, T ] (2)

where F are the feature maps computed by the feature extraction module, Pt−1

is the prediction of the previous block, ⊕ is the concatenation operation, and ψt

is a parametric function that represents the repeated convolutional block of the
architecture with parameters θt. As in the previous case, Pt ∈ R

k×w×h.
The model is implemented in the popular framework Pytorch [14]. Further

details regarding the network architecture are reported in Fig. 3.

4.2 Training Procedure

The architecture is trained in an end-to-end manner applying the following objec-
tive function

Lt =
K∑

k=1

αk ·
∑

p

‖Pt
k(p) − Hk(p)‖22, (3)
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where K is the number of considered body joints, αk is a binary mask with
αk = 0 if the annotation of joint k is missing, t is the current stage, and p ∈ R

2

is the spatial location.
Here, Pt

k(p) represents the prediction at location p for joint k while Hk ∈
R

w×h is the ground-truth heatmap for joint k, defined as

Hk(p) = e−||p−xk||22 · σ−2
(4)

where p ∈ R
2 is the location in the heatmap, xk ∈ R

2 is the location of joint k,
and σ is a parameter to control the Gaussian spread. We set σ = 7.

Therefore, the overall objective function can be expressed as L =
∑T

t=1 Lt

where T is the number of stages. In our experiments, T = 6.
As outlined in [5], applying the supervision at every stage of the network

mitigates the vanishing gradient problem and, in conjunction with the sequential
refining of the body joint prediction, leads to a faster and more effective training
of the whole architecture.

The network is trained in two steps. In the first stage, the original body joint
annotations of Watch-n-Patch are employed to train the whole architecture from
scratch. It is worth noting that the Watch-n-Patch body joints are inferred by
the Kinect SDK which makes use of a random forest-based algorithm [15].

In the second stage, the network is finetuned using the training set of the
presented dataset. During this phase, we test different procedures. In the first
tested procedure, the whole architecture is fine-tuned, in the second one the
feature extraction block is frozen and not updated, while in the last procedure
all the blocks but the last one are frozen and not updated.

During both training and finetuning, we apply data augmentation techniques
and dropout regularization to improve the generalization capabilities of the
model. In particular, we apply random horizontal flip, crop (extracting a portion
of 488 × 400 from the original image with size 512 × 424), resize (to the crop
dimension), and rotation (degrees in [−4◦,+4◦]). Dropout is applied between
the first convolutional block and each repeated block.

In our experiments, we employ the Adam optimizer [10] with α = 0.9, β =
0.999, and weight decay set to 1 · 10−4. During the training phase, we use a
learning rate of 1 · 10−4 while, during the finetuning step, we use a learning rate
of 1 · 10−4 and apply the dropout regularization with dropout probability of 0.5.

5 Experimental Results

5.1 Evaluation Procedure

We adopt an evaluation procedure following what proposed for the COCO Key-
points Challenge on the COCO website [12].

In details, we employ the mean Average Precision (mAP) to assess the quality
of the human pose estimations compared to the ground-truth positions. The
mAP is defined as the mean of 10 Average Precision calculated with different
Object Keypoint Similarity (OKS) thresholds:
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Table 2. Comparison of the mAP reached by different methods computed on the
Watch-R-Patch dataset. See Sect. 4 for further details.

Shotton et al. [15] Oursorig Ourslast Oursblk Ours

APOKS=0.50 0.669 0.845 0.834 0.894 0.901

APOKS=0.75 0.618 0.763 0.758 0.837 0.839

mAP 0.610 0.729 0.726 0.792 0.797

mAP =
1
10

10∑

i=1

APOKS=0.45+0.05i (5)

The OKS is defined as

OKS =

∑K
i [δ(vi > 0) · exp −d2

i

2s2k2
i
]

∑K
i [δ(vi > 0)]

(6)

where di is the Euclidean distance between the ground-truth and the predicted
location of the keypoint i, s is the area containing all the keypoints, and ki is
defined as ki = 2σi. Finally, vi is a visibility flag: vi = 0 means that keypoint i
is not labeled while vi = 1 means that keypoint i is labeled.

The values of σ depend on the dimension of each joint of the human body.
In particular, we use the following values: σi = 0.107 for the spine, the neck, the
head, and the hip joints; σi = 0.089 for the ankle and the foot joints; σi = 0.087
for the knee joints; σi = 0.079 for the shoulder joints; σi = 0.072 for the elbow
joints; σi = 0.062 for the wrist and the hand joints.

5.2 Results

Following the evaluation procedure described in Sect. 5.1, we perform extensive
experimental evaluations in order to assess the quality of the proposed dataset
and method. Results are reported in Table 2.

Firstly, we have assessed the accuracy obtained by our architecture after a
training step employing the original Watch-n-Patch dataset. This experiment
corresponds to Oursorig in Table 2. As expected, when trained on the Kinect
annotations, our model is capable of learning to predict human body joints
accordingly to the Shotton et al. ’s method [15], reaching a remarkable mAP of
0.777 on the Watch-n-Patch testing set.

We also test the performance of the network employing our annotations as
the ground-truth. In this case, our method reach a mAP of 0.729, outperforming
the Shotton et al. ’s method with an absolute margin of 0.119. It is worth noting
that our method has been trained on the Kinect annotations only, but the overall
performance on the manually-annotated sequences is considerably higher than
the one of [15]. We argue that the proposed architecture has better generalization
capabilities than the method proposed in [15], even if it has been trained on the
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G.T. Shotton et al. [15] Ours

Fig. 4. Qualitative results obtained on the Watch-R-Patch dataset.
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Table 3. mAP of each body joint present in the Watch-R-Patch dataset.

Joint Shotton et al. [15] Oursorig Ours

SpineBase 0.832 0.841 0.905

SpineMid 0.931 0.911 0.935

Neck 0.981 0.975 0.978

Head 0.971 0.961 0.962

ShoulderLeft 0.663 0.673 0.819

ElbowLeft 0.490 0.635 0.772

WristLeft 0.456 0.625 0.677

HandLeft 0.406 0.599 0.680

ShoulderRight 0.538 0.547 0.782

ElbowRight 0.454 0.618 0.748

WristRight 0.435 0.642 0.727

HandRight 0.412 0.641 0.712

HipLeft 0.646 0.766 0.824

KneeLeft 0.494 0.743 0.788

AnkleLeft 0.543 0.771 0.800

FootLeft 0.497 0.743 0.801

HipRight 0.696 0.778 0.860

KneeRight 0.493 0.670 0.763

AnkleRight 0.508 0.630 0.648

FootRight 0.388 0.605 0.605

SpineShoulder 0.969 0.942 0.955

predictions of [15], therefore it obtains a higher mAP when tested on scenes with
actual body joint annotations.

Then, we report the results obtained applying different finetuning procedures.
In particular, we firstly train the proposed network on the original Watch-n-
Patch annotations then we finetune the model with the proposed annotations
updating different parts of the architecture. In the experiment Ourslast, we freeze
the parameters of all but the last repeated block, which means updating only
the parameters θ6 of the last convolutional block ψ6. In Oursblk, we freeze the
parameters of the feature extraction block, i.e. only the parameters θt of φ
and ψt are updated. Finally, we finetune updating the whole network in the
experiment Ours. As shown in Table 2, finetuning the whole architecture leads
to the highest APOKS=0.50, APOKS=0.75, and mAP scores. The proposed model,
trained on the original Watch-n-Patch dataset and finetuned on the presented
annotations, reaches a remarkable mAP of 0.797, outperforming the Shotton
et al. ’s method with an absolute gain of 0.187.
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Finally, we report per-joint mAP scores in Table 3. As it can be observed, the
proposed method outperforms the competitor and the baseline in nearly every
joint prediction, confirming the capabilities and the quality of the model and the
employed training procedure. Qualitative results are reported in (Fig. 4).

The model is able to run in real-time (5.37 ms, 186 fps) on a workstation
equipped with an Intel Core i7-6850K and a GPU Nvidia 1080 Ti .

6 Conclusions

In this paper we have investigated the human pose estimation on depth maps. We
have proposed a simple annotation refinement tool and a novel set of fine joint
annotations for a representative subset of the Watch-n-Patch dataset, which we
have published free-of-charge. We have presented a deep learning-based architec-
ture that performs the human pose estimation by means of body joints, reach-
ing state-of-the-art results on the challenging fine annotations of the Watch-R-
Patch dataset. As future work, we plan to publicly release the annotation tool
and to complete the annotation of the Watch-n-Patch dataset.
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