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Abstract. Building an informative graph over a collection of images or
signals is one of the most important tasks in semi-supervised learning
(SSL). Local Hybrid Coding (LHC) was recently proposed as an alterna-
tive to the sparse coding scheme that is used in Sparse Representation
Classifier (SRC). The LHC blends sparsity and bases-locality criteria
in a unified optimization problem. This paper introduces a data-driven
graph construction method that exploits and extends the LHC scheme.
We propose a new coding scheme coined Adaptive Local Hybrid Coding
(ALHC). The main contributions are as follows. First, the proposed cod-
ing scheme automatically selects the local and non-local bases of LHC
using data similarities calculated by Locality-constrained Linear code.
Second, the estimated similarities are used in the regularization of the
final solution. Third, the proposed ALHC scheme is used in order to con-
struct graphs over image datasets. For SSL tasks adopting label propa-
gation, we show that the proposed graph outperforms many state-of-the
art graphs on three public face datasets.

Keywords: Graph construction · Sparse coding · Local hybrid code ·
Label propagation

1 Introduction

Semi-supervised learning is one of the most important fields in machine learning.
It is mainly used in the cases where there are a huge amount of labeled samples,
but very few labeled ones.

It can be an interesting solution specially in the cases where acquiring unla-
beled data is easy and cheap but obtaining labeled data is difficult which is the
case in many real world problems such as: (i) image classification, (ii) webpage
classification, (iii) speech recognition, (iv) person emotion recognition in videos
[1], and (v) protein sequence classification.

Graph-based semi-supervised learning which adopts an affinity graph to rep-
resent the relation between the samples has gain a lot of attention in the last
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decade (e.g., [4,6]). Indeed, graph-based algorithms are widely used nowadays in
a variety of machine learning tasks such as: (i) semi-supervised learning for label
propagation and regression [7], (ii) feature selection, (iii) graph-based embed-
ding [8], and (iv) spectral clustering [14]. Over the past decade, several graph
construction techniques have been proposed. In this paper, we propose a new
technique to construct a graph based on the Local Hybrid Coding [18]. Con-
sidering both the bases-locality and sparsity constraints in a unified framework,
LHC obtains the advantages of both types of coding. Dense coding with �2 reg-
ularization can better represent the geometric structure of data manifold which
can increase the accuracy of classification due to better discrimination power
[15]. At the same time, the �1-sparsity guarantees the correct representation of
input data in case very few samples are available [12,17].

The main differences between our approach and the LHC scheme of [18]
are as follows. Firstly, in our work, we construct a data-driven graph using
data self-representativeness whereas in [18], the authors propose a variant of
the Sparse Representation Classifier that uses the hybrid coding instead of the
sparse coding. Hence, in our work the adopted dictionary is obtained from the
data whereas in [18] they use a pre-trained database. Secondly, in our work the
similarity between the samples are derived from the coefficients that are obtained
from a coding scheme namely, Locality-constrained Linear Coding (LLC) while
in [18] the selection of local and non-local bases is based on Euclidean distance.

Thirdly, we adopt a biased weight for the coefficients of the local bases.
The remainder of this paper is organized as follows. Section 2 provides a brief

review of graph construction and reviews the Local Hybrid Coding scheme. Our
proposed method is introduced in Sect. 3. In Sect. 4, we present some exper-
imental results obtained with three benchmark face image datasets. Section 5
concludes the paper. In this paper, capital bold letters denote matrices and
small bold letters denote vectors.

2 Related Work

This section describes some existing methods for graph construction. Then, it
will present a review of the recent Local Hybrid Coding scheme. k-nearest neigh-
bor and ε-neighborhoods are two traditional graph construction methods. Let
the original data set be denoted by X = [x1,x2, . . . ,xn] ∈ R

d×n.
Locally Linear Embedding (LLE) focuses on preserving the local structure

of data [11]. LLE formulates the manifold learning problem as a neighborhood-
preserving embedding, which learns the global structure by exploiting the local
linear reconstructions. It estimates the reconstruction coefficients by minimizing
the reconstruction error of the set of all local neighborhoods in the dataset. It
turned out that the linear coding used by LLE can be used for computing the
graph weight matrix. Thus, LLE graph can be obtained by applying two stages:
adjacency matrix computation followed by the linear reconstruction of samples
from their neighbors. The adjacency matrix can be computed using the KNN or
ε-Neighborhood method. In [5], the authors utilize LLC for graph construction.
They propose a graph construction method that is based on a variant of LLC.
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On the other hand, sparsity representation based graph is parameter-free. [10]
and [19] proposed sparsity representation based graph construction methods in
which every sample is represented as a sparse linear combination of the rest of
input samples and the coefficients are considered as weights.

min ‖wi‖1, s.t.xi = Xwi, (1)

where wi = [wi1, . . . , wi,i−1, 0, wi,i+1, . . . , win]T is an n-dimensional vector with
the i-th element being zero (implying that the xi is removed from X), ‖.‖1 is the
�1 norm of a vector or matrix, and the elements wij , j �= i denote the contribution
of xj in the reconstruction of xi.

After the weight vector wi for each xi, i = 1, 2, . . . , n is obtained, the affinity
matrix W = (wij)n×n is obtained as:

W = [w1,w2, . . . ,wn]T , (2)

where wi is the optimal solution of Eq. (1) problem: A robust version of the
sparse graph can be obtained by solving the following problem:

min ‖wi‖1 + ‖e‖1, s.t.xi = Xwi + e. (3)

In this article, we call the graph that is constructed by the weights obtained
from Eq. (1) as standard sparse graph (�1-s) and the graph obtained by solving
the Eq. 3 as robust sparse graph (�1-r).

2.1 Review of Local Hybrid Coding

The authors in [18] propose a Local Hybrid Coding scheme to encode image
descriptors by taking into account the bases-locality and �1-sparsity. Hence their
proposed method retains the advantages of Least Square coding scheme and
�1-sparsity.

Let B = [b1,b2, . . . ,bn] ∈ R
d×n denote a pre-trained dictionary which con-

tains n samples each with dimensionality of d. Let x ∈ R
d denote a test sample.

The objective is to project this sample onto the bases of B via computing a code
vector c such that x ≈ Bc. LHC ensembles the �1-sparsity and bases-locality
criteria into a unified optimization problem. The coding of sample x with respect
to the dictionary B can be obtained by applying two steps.

In the first step, based on the distance between the sample x and the atoms of
the dictionary, the pre-trained dictionary is divided into two disjoint sets of B(l)

that contain the k-nearest-neighbor (KNN) atoms (kl) and B(s) that contains the
non-k-nearest-neighbor (ks) atoms. The B(l) which contains the local samples
are used for local coding and B(s) that contains non-local samples are used for
sparse coding.

In the second step, based on the local codes c(l) that are obtained from the
local bases B(l) and the sparse codes c(s) that are obtained from the B(s) basis,
a hybrid code will be constructed by:

min
c

‖x − [B(l), B(s)] [c(l)T , c(s)T ]T ‖22 + γ ||c(l)||22 + λ ||c(s)||1 (4)
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where c = [c(l)T , c(s)T ]T is the hybrid code formed from two parts, local code
c(l) and sparse code c(s). ||.||1 and ||.||2 denote the �1-norm and �2-norm of a
vector, respectively. Criterion 4 has three terms: the first term is the residual
error of the sample reconstruction, the second term is the �2 norm of local basis
coefficients and the third term is the �1 norm of the non-local bases coefficients.

Although the dictionary B is partitioned into two disjoint subsets, their coef-
ficients c(l) and c(s) are coupled, thus the convex optimization problem (4) is
solved in an alternating optimization procedure. The two sets of unknown coef-
ficients are then iteratively obtained by alternating regularized �2 coding and
�1 coding over the local bases and the non-local bases, respectively. Note that
when the sparse code c(s) is constant, the minimization problem in Eq. (4)
reduces to a regularized Least Square problem that can be solved using a
closed-form solution. Let x(l) = x − B(s)c(s). The optimal c(l) is then given
by c(l) ← (B(l)TB(l)+γ I)−1B(l)Tx(l). When the local part c(l) is constant, then
the minimization problem in Eq. (4) reduces to a �1 regularized sparse coding
problem that can be efficiently solved by the feature-sign search method [9].

Algorithm 1 describes the procedure of the proposed method. The
FeatureSign() function is the algorithm described in [9] which computes the
sparse code of a given sample w.r.t. a given dictionary. It should be noted that
in each iteration only the local code (i.e. c(l)) and sparse code (i.e. c(s)) change.
According to [18], convergence can be obtained in five iterations.

Input: Dictionary matrix B ∈ R
d×n, sample x, γ, λ, kl, and ks.

Output: LHC Code vector c

c(s) ← 0 ;
Sort the vectors of B in ascending order of their distances to x and obtain
basis vectors into the matrix B ;

Split B into KNN bases B(l) (kl bases) and non-KNN bases B(s) (ks bases) ;
repeat

x(l) ← x − B(s)c(s) ;

c(l) ← (B(l)TB(l) + γ I)−1B(l)Tx(l) ;

x(s) ← x − B(l)c(l) ;

c(s) ← FeatureSign(B(s),x(s)) ;

until Convergence;

c = [c(l)T , c(s)T ]T

Algorithm 1: Local Hybrid Coding.

3 Proposed Approach: Adaptive LHC (ALHC) Graph

In this paper, we propose an adaptive graph construction method that is based on
data self-representativeness and adopted a modified version of the LHC method.
The proposed method is different from LHC is several aspects. First, in our work,
we construct a data-driven graph using data self-representativeness whereas in
[18], the authors target a coding scheme that can replace the sparse coding stage



168 F. Dornaika and A. Bosaghzadeh

in the Sparse Representation Classifier. Hence, the dictionary in the proposed
method is constructed from the data themselves, compared to a pre-trained dic-
tionary in [18]. Second, while [18] determined the similarity between the samples
(and the selection of local and non-local bases) adopting Euclidean distance, in
this article we use the similarity coefficients obtained by a Locality-constrained
Linear Code (LLC) method. Third, our proposed scheme is able to adaptively
select the local and non-local bases without any user-defined parameter. Fourth,
our coding introduces weights for the local bases coefficients.

To construct the graph, for every sample, we estimate its code with respect
to the rest of the samples in the database. Let Xi ∈ R

d×(n−1) denote the data
matrix associated with the set Si = {x1,x2 . . . ,xi−1,xi+1, . . . ,xn}. The whole
process has two steps. In the first step, based on the similarity between a sample
(i.e. xi) and the rest of the samples (i.e. Si), the local and non-local bases are
selected. In the second step, we obtain a hybrid code from the local and non-local
sets. We proceed as follows.

First Step. We first estimate the coding of the sample xi with respect to the
data matrix Xi using LLC. Let a ∈ R

n−1 denote this code. This vector is given
by minimizing the LLC criterion:

a = arg min
a

(‖xi −Xi a‖22 +σ

n−1∑

j=1

pj a2
j ) = arg min

a

(
‖xi − Xi a‖22 + σ ‖P1/2 a||2

)

(5)
where P is a diagonal matrix with elements Pjj = pj . Any formula which forms
a distance criterion between the sample xi and the sample xj can be used to
calculate pj . In our work, we use the following formula:

pj = 1 − exp(−‖xi − xj‖2) (6)

By using simple linear algebra calculations, the solution to (5) has a closed-form
solution:

a =
(
XT

i Xi + σP
)−1

XT
i xi (7)

Since the score |aj | encodes the similarity between the sample xi and the sample
xj ∈ Si = {x1,x2 . . . ,xi−1,xi+1, . . . ,xn}, it is expected to be much better than
the classic Euclidean distance ‖xi − xj ||2. Thus, |aj | can be a good measure of
locality between samples xi and xj .

We use the |aj |, j = 1, ..., n − 1 to split the data matrix Xi (equivalently the
set Si) into two disjoint sets of local X(l)

i and non-local X(s)
i bases.

The scores |aj | are sorted in a descending order (i.e. decreasing the similarity)
and correspondingly the samples in the set Si are sorted into the set Ŝi.

An adaptive threshold can be the result of applying any statistical function
on the coefficients as:

t(xi) = f(|a1|, . . . , |an−1|), (8)

where f(|a1|, . . . , |an−1|) is a statistical function that returns a scalar that
depends on the set of |aj |. One possible choice for this function can be the
average of the obtained coefficients:
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t(xi) =
1

n − 1

n−1∑

j=1

|aj |. (9)

Based the estimated threshold t(xi), we can generate from the original set
Si = {x1,x2 . . . ,xi−1,xi+1, . . . ,xn} the local set S

(l)
i and the non-local set S

(s)
i .

The local set S
(l)
i = {xj} is determined by selecting the samples who coding

coefficient satisfies |aj | > t(xi).
The non-local set is given by S

(s)
i = Si − S

(l)
i . It should be noticed that the

cardinality of both S
(l)
i and S

(s)
i depends on the current sample xi. However, in

the case of LHC the cardinality of both local and non-local bases is fixed a priori
for the whole dataset. Furthermore, the samples in S

(s)
i are ordered according to

their scores |aj |. Let kl denote the size of the local bases (i.e., the size of S
(l)
i ),

and ks the size of the non-local bases (the size of S
(s)
i ).

Second step. In this step, we estimate the hybrid code ci for every sample xi

using a modified LHC scheme.
For the sake of clarity, the subscript i is omitted in Eqs. (10) and (12). The

hybrid code is obtained by:

min
c

‖x − [X(l), X(s)][c(l)T , c(s)T ]T ‖22 + γ ||Dc(l)||22 + λ ||c(s)||1 (10)

where D ∈ R
kl×kl is a diagonal matrix containing the weights Djj associated

with each jth component of the local code c(l)i . In our work, we use the following
expression for Djj :

Djj = 1/|aj |, j = 1, ..., kl (11)

The solution to the above minimization can be obtained by Algorithm 1 where
the solution for the local part is now given by:

c(l) = (B(l)TB(l) + γ D)−1B(l)Tx(l) (12)

The ALHC is summarized in Fig. 1. We stress the fact that in the proposed
method the size of local and non-local basis is sample dependent.

3.1 Kernel Variant of ALHC

The motivation behind using kernel representation relies on the fact that a lin-
ear model for data self-representation cannot be the best model. Therefore, by
adopting non-linear models for data self-representation, it is expected that the
estimated coding coefficients could better quantify the dependency and rela-
tion among samples and hence, better graph coefficients can be derived. Let
Φ : X → Φ(X) be a non-linear mapping that projects original data samples onto
a space of high dimension. Following the Kernel theory, it is not necessary to
know the explicit function Φ since what is really needed is the dot product among
the projected samples. In this new space, the data samples are represented by the
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Adaptive LHC graph

Input: Data matrix X = [x1, . . . ,xn] ∈ R
d×n, parameters σ, γ and λ.

Output: Affinity matrix W (constructed graph)

For each sample xi, i = 1, ..., n:
- Form the coding dictionary Xi from Si = {x1,x2 . . . ,xi−1,xi+1, . . . ,xn}
- Compute the diagonal matrix P such that P (j, j) = 1 − exp(−‖|xi − xj ||2),
j = 1, ..., n − 1.
- Estimate the coding vector a using Eq. (7)
- Calculate the adaptive threshold t(xi) using Eq. (9)
- Form the set S

(l)
i by selecting the samples of Si whose |aj | > t(xi)

- Set the set S
(s)
i to Si − S

(l)
i

- Form the local bases X(l)
i and non-local bases X(l)

i from S
(l)
i and S

(s)
i , respec-

tively
- Form the diagonal kl × kl matrix D using Eq. (11)
- Estimate the hybrid code vector ci using Algorithm 1 (Eq. (10)) in which the
identity matrix is replaced by D
- The ith row of W is given by Wi∗ = |ci|T

Fig. 1. The proposed ALHC graph.

matrix Φ = [φ(x1), φ(x2), ..., φ(xn)]. Let Kij = φT (xi)φ(xj) be the dot product
of the projection of two samples xi and xj . This dot product quantifies a simi-
larity measure between samples xi and xj . The kernel matrix K(., .) can be built
using Gaussian, polynomial, or any other function that satisfies Mecer’s condi-
tions. It is easy to show that the matrix K will be given by ΦT Φ. By adopting
the mapped data, Φ, the kernel variant of the proposed method can be obtained
by replacing the data with their non-linear projections. Thus, the code vector
associated with each sample will be estimated by minimizing the following:

min
c

‖φ(x) − [Φ(X(l)), Φ(X(s))][c(l)T , c(s)T ]T ‖2
2 + γ ||c(l)||22 + λ ||c(s)||1 (13)

4 Performance Evaluation: Graph-Based Label
Propagation for Image Classification

The graph-construction method is assessed by the performance of the post-graph
construction task. The latter is given by label propagation over the graph. In the
experiments, we will use the Gaussian Fields and Harmonic Functions (GFHF)
method [21] since it is non-parametric.

We used the following three public face datasets:

1. Extended Yale - part B1: It contains images of 38 human subjects. Each
subject has about 60 images. The images are resized to 32 × 32 pixels.

1 http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.

http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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Table 1. Recognition performance (Mean recognition accuracy %) on the Extended
Yale, PF01 and FERET datasets over ten different random splits.

Ext. Yale

Method
Lab.

q = 9 q = 14 q = 20

KNN 80.55 82.06 83.25
GoLPP [20] 35.85 48.62 59.65
LNP [13] 93.45 94.23 95.05
�1 − s [3] 82.15 86.59 89.98
�1 − r [19] 93.19 95.01 96.35
�1 − c [2] 80.15 84.44 87.76
LLC [5] 88.57 92.34 95.37
LHC [18] 87.56 89.72 92.45
SRLS [16] 91.44 93.80 95.22
ALHC 94.79 96.06 97.15

PF01

Method
Lab.

q = 5 q = 8 q = 12

KNN 44.38 49.44 52.17
GoLPP [20] 42.81 61.32 73.91
LNP [13] 64.07 72.61 74.47
�1 − s [3] 53.81 59.33 62.39
�1 − r [19] 72.06 79.53 84.00
�1 − c [2] 53.80 60.65 64.50
LLC [5] 72.87 79.57 83.25
LHC [18] 66.85 75.14 80.39
SRLS [16] 71.55 76.61 78.17
ALHC 74.07 80.92 85.53

FERET

Method
Labeled

q = 2 q = 3 q = 4

KNN 31.33 38.96 49.70
GoLPP [20] 12.05 17.31 25.00
LNP [13] 56.20 70.24 77.95
�1 − s [3] 55.93 66.59 74.78
�1 − r [19] 55.05 69.13 81.27
�1 − c [2] 51.18 61.01 72.50
LLC [5] 57.06 71.09 80.25
LHC [18] 56.81 70.59 82.00
SRLS [16] 57.36 68.62 73.55
ALHC 61.65 74.72 83.93

2. PF012: It contains the true-color face images of 103 people, 53 men and
50 women, representing 17 different images (1 normal face, 4 illumination
variations, 8 pose variations, 4 expression variations) per person.

3. FERET3: In our experiments, we use a subset of FERET. This subset con-
sists of 1400 images for 200 different person (7 images per person).

4.1 Method Comparison

For quantitative evaluation of the proposed method, we compare the perfor-
mance of the classification of the graph obtained from the proposed method
with the ones obtained from several state of the art graph construction tech-
niques. We divide the database into two sets of labeled and unlabeled, and then
construct the graph using the union of both sets.
2 https://sites.google.com/site/postechimlab2012/databases/face-database-2001.
3 http://www.itl.nist.gov/iad/humanid/feret.

https://sites.google.com/site/postechimlab2012/databases/face-database-2001
http://www.itl.nist.gov/iad/humanid/feret
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For every database, we randomly select q samples in each class as labeled
samples and leave the rest as unlabeled samples.

The adopted graph construction methods are: KNN graph, LNP graph [13],
GoLPP graph [20], standard �1 Graph (�1-s), Robust �1 Graph (�1-r), constrained
�1 graph (�1-c) [2], LHC graph, SRLS [16], and our proposed construction method
ALHC. In each database, q labeled samples are selected and the label of the rest
of the nodes (samples) are estimated using (GFHF) [21] method adopting the
constructed graph of every graph construction technique. The process is repeated
ten times for ten different combinations of labeled/unlabeled samples and the
average classification accuracy is reported. The above process is repeated for
three different q values, corresponding to three numbers of labeled samples.

KNN and LNP methods have the neighborhood size parameter k. The stan-
dard and robust �1 graphs have λ (�1-sparsity). The constrained sparse graph has
α and β. The LHC method has γ (local regularization), λ (�1-sparsity), kl and
ks. The LLC method has σ. The proposed ALHC method has σ, γ (local regu-
larization), and λ (�1-sparsity). In our experiments, k is chosen from 5 to 60 with
a step of 5 for kNN and LNP graph construction methods. σ is set to one. The
�1-sparsity parameter λ used in �1-s and �1-r is fixed to 0.1. For LHC and ALHC,
this parameter is chosen from {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.1, 0.15, 0.2}. The
parameter γ is tuned from {0.03, 1}. kl is chosen from {10, 20, 30, 40, 50, 100} and
ks is chosen from {50, 100, 150, 200, 250, 300}. We used the regularization param-
eters of the �1-c and SRLS graphs as the ones suggested in [2] and [16].

For every graph construction method, several values for the parameter are
used. We then report the best recognition accuracy of each method from the best
parameter configuration. Table 1 illustrates the average classification rate in %
of label propagation using different graph construction methods for Extended
Yale, PF01, and FERET datasets.

We can observe that the proposed ALHC method outperformed other graph
construction techniques and obtained the highest accuracy in all databases and
different number of labeled samples. It demonstrates that the graph constructed
by the proposed method is very informative. Moreover, we can see that the
performance of the graph obtained by the proposed method is better than that
of standard and constrained �1 graphs and outperforms the three types of sparse
graphs.

4.2 Sensitivity to Parameters

In this section, we evaluate the sensitivity of the proposed method with respect
to the variation of its parameters, namely σ, γ, and λ. The goal is to study
the performance of the proposed method when these parameters vary. The first
parameter is a simple regularization parameter in Locality-constrained coding–
the phase in which similarities are computed. The last two parameters are two
regularization parameters that are used in the hybrid coding scheme where γ
penalizes a weighted �2 norm and λ penalizes the �1 norm. Figure 2 (left) illus-
trates the variation of the recognition rates as a function of σ for the PF01
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Fig. 2. Performance variation (recognition rate) as a function of the regularization
parameter σ (Left) and of the two regularization parameters γ and λ (Right).

dataset. In this experiment, we use 12 labeled samples per class and fixed the
other two parameters.

Figure 2 (right) illustrates the variation of the recognition rates as a function
of γ and λ for the PF01 dataset. In this experiment, the parameter σ was kept
fixed to one since this value seems to be a near optimal value. From the above
observations, we can conclude that it is easy to define a near optimal domain for
all parameters.

5 Conclusion

In this paper, we have proposed a new graph construction method that is based
on data self-representativeness. The main contribution of this paper is the adap-
tive selection of local and non-local bases for the Local Hybrid Coding. The
proposed method simultaneously takes into account the locality and sparsity
in the graph construction. Thus, the adaptively constructed graph can be very
informative.

Experimental results obtained on image databases, demonstrate that in the
task of graph-based label propagation, the graph constructed by the proposed
method can give better results compared to many state-of-the art graph con-
struction techniques. Currently, we are quantifying the improvement of results
trough the use of the kernel variant.
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