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Abstract. A Recurrent Neural Network (RNN) trained with a set of
molecules represented as SMILES strings can generate millions of differ-
ent valid and meaningful chemical structures. In most of the reported
architectures the models have been trained using a canonical (unique for
each molecule) representation of SMILES. Instead, this research shows
that when using randomized SMILES as a data amplification technique,
a model can generate more molecules and those are going to accurately
represent the training set properties. To show that, an extensive bench-
mark study has been conducted using research from a recently published
article which shows that models trained with molecules from the GDB-
13 database (975 million molecules) achieve better overall chemical space
coverage when the posterior probability distribution is as uniform as pos-
sible. Specifically, we created models that generate nearly all the GDB-13
chemical space using only 1 million molecules as training set. Lastly, mod-
els were also trained with smaller training set sizes and show substantial
improvement when using randomized SMILES compared to canonical.
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1 Introduction

Molecular deep generative models have emerged as a powerful tool to generate
chemical space [6] and obtain optimised compounds [2,5]. Models trained with a
set of drug-like molecules can generate molecules that are similar but not equal
to those in the training set, thus spanning a bigger chemical space than that of
training data. The most popular architecture uses Recurrent Neural Networks
(RNNs) and the SMILES syntax [7] to represent molecules. Nevertheless, a recent
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publication [1] shows that this architecture introduces bias to the generated
chemical space. To be able to prove that, models were created with a subset
of GDB-13 [4], a database that holds most drug-like molecules up to 13 heavy
atoms, and sampled with replacement 2 billion times. At most, only 68% of GDB-
13 could be obtained from a theoretical maximum of 87%, which would be from
a sample of the same size from an ideal model that has a uniform probability of
obtaining each molecule from GDB-13.

This study uses the previous research as a starting point and focuses on
benchmarking RNN with SMILES trained with subsets of GDB-13 of different
sizes (1 million and 1000 molecules) and with different variants of the SMILES
notation. One of those variants, randomized SMILES, can be used as a data
amplification technique and is shown to generate more diversity [3]. When the
right data representations and hyperparameter combinations are chosen, models
are able to generate more diversity and learn to better generalise the training
set information.

2 Methods

The model architecture used is similar to the one used in [1,5]. The training
set sequences are pre-processed, and for each training epoch the entire training
set is shuffled and subdivided in batches. The encoded SMILES strings of each
batch are input token by token to an embedding layer, followed by several layers
of RNN cells. Between the inner RNN layers there can be dropout layers. Then,
the output from the cells is squeezed to the vocabulary size by a linear layer and
a softmax is performed to obtain the probabilities of sampling each token in the
next position. This is repeated for each token in the entire sequence.

Table 1. Hyperparameter combinations for both the 1M model and the 1 K model.
Notice that the 1 K model also optimises the network topology, this was possible due
to shorter training times.

Model Cells Num. layers Layer size Dropout Batch

1M GRU, LSTM 3 512 0, 0.25, 0.5 64, 128, 256, 512

1K LSTM 2, 3, 4 128, 192, 256 0, 0.25, 0.5 4, 8, 16

The models were optimised for the hyperparameter combinations shown in
Table 1. Also, training sets were set up with canonical SMILES and randomized
SMILES. In the case of the randomized SMILES, each training epoch had a
different permutation. For each combination of hyperparameters a model was
trained and a sample with replacement of 2 billion SMILES strings was per-
formed (Fig. 1). Then, three ratios were calculated from the percentages obtained
that characterise the three main properties that the output domain should
have: uniformity (even posterior probability for each molecule), completeness
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(all molecules from GDB-13) and closeness (no molecules outside of GDB-13
should be generated). Lastly, the UCC, a ratio obtained from the other three
was used as a sorting criteria for all the models.

Fig. 1. Training and sampling process used for each model in the benchmark and the
formulas for the ratios calculated from the sample.

3 Results

Table 2 shows the results for the models with highest UCC score of each training
set size with each SMILES variant. 1M models trained with randomized SMILES
are overall better than those trained with canonical SMILES. This might be due
to the additional information the model has from molecules in the training set
when they are input as different randomized SMILES each epoch. Notice espe-
cially that the completeness is at 0.95, which indicates that the model is theo-
retically able to reproduce mostly all of GDB-13 given enough sampling. On the
other hand, models trained with 1000 SMILES have much lower performance,
as there is not enough information in the training sets to be able to generalise
the entire database. Nevertheless, the randomized SMILES model has an even
better performance compared to the canonical SMILES one. Namely, a model
trained with canonical SMILES can only reach 52% valid molecules, whereas
the randomized SMILES model learns much better (82%). This shows that ran-
domized SMILES add more information to the model and effectively increase its
learning capability without having to add additional data to the training set.
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Table 2. Results for the best canonical and randomized SMILES models for both the
1M and 1 K training set benchmarks.

Model SMILES Cell Dropout Batch Validity Uniformity Completeness Closeness UCC

1M Canonical LSTM 0.25 64 0.9941 0.8788 0.8361 0.8613 0.6328

1M Random LSTM 0 512 0.9986 0.9765 0.9525 0.9250 0.8604

1K Canonical LSTM 0.5 4 0.5236 0.6114 0.1669 0.1325 0.0135

1K Random LSTM 0.5 16 0.8207 0.7902 0.3915 0.2757 0.0852
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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