Skip to main content

Bioactive Compounds of Longkong Fruit (Lansium domesticum Corr.)

  • Reference work entry
  • First Online:
Bioactive Compounds in Underutilized Fruits and Nuts

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Longkong (L. domesticum) is an economically important tropical fruit that is widely grown in Southeast Asia, and it is very famous because of its bioactive compounds, including phenols, flavonoids, lipids, and triterpene glycosides. These compounds exhibited various biological functions, and longkong fruit pericarp and seeds demonstrated higher level of bioactivities as compared to the flesh. This chapter provides comprehensive and updated information on the biological functions and their association with the bioactive compounds in longkong fruit and its parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABTS:

2,2′-Azino-bis

Cis:

Configurational isomerism

CoA:

Coenzyme A

Cx:

Cellulases

DNA:

Deoxyribonucleic acid

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

E. coli :

Escherichia coli

GPX:

Glutathione peroxidase

GSH:

Glutathione

HDL:

High-density lipoprotein

LDSK50EA:

Lansium domesticum skin extracted by 50% ethyl acetate

LOX:

Lipoxygenase

MMC:

Mitomycin C

MMP-2:

Nanoscale gelatinase A

NADPH:

Nicotinamide adenine dinucleotide phosphate

PAL:

Phenylalanine ammonia lyase

PE:

Pectinesterase

PG:

Polygalacturonase

PME:

Pectin methyl esterase

POD:

Peroxidase

PPO:

Polyphenol oxidase

QE:

Quercetin

ROPT:

Repeated opened patch test

ROS:

Reactive oxygen specie

S. aureus :

Staphylococcus aureus

SOD:

Superoxide dismutase

Sp.:

Species

UV:

Ultraviolet

VOCs:

Volatile organic compounds

References

  1. Venkatachalam K (2016) Postharvest physiology and handling of longkong fruit: a review. Fruits 71(5):289–298

    Article  Google Scholar 

  2. Solidum NJ (2012) Potential nutritional and medicinal sources from fruit peels in Manila, Philippines. Int J Biosci Biochem Bioinform 2(4):270–274

    Google Scholar 

  3. Klungsupya P, Suthepakul N, Muangman T, Rerk-Am U, Thongdon AJ (2015) Determination of free radical scavenging, antioxidative DNA damage activities and phytochemical components of active fractions from Lansium domesticum Corr. Fruit. Nutrients 7(8):6852–6873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manosroi A, Chankhampan C, Manosroi W, Manosroi J (2013) Anti-proliferative and matrix metalloproteinase-2 inhibition of Longkong (Lansium domesticum) extracts on human mouth epidermal carcinoma. Pharm Biol 51(10):1311–1320

    Article  PubMed  Google Scholar 

  5. Lee PR, Tan RM, Yu B, Curran P, Liu SQ (2013) Sugars, organic acids, and phenolic acids of exotic seasonable tropical fruits. Nutr Food Sci 43(3):267–276

    Article  Google Scholar 

  6. Alimon H, Sani A, Azziz AS, Daud SS, Arrifin MN, Bakri M (2014) Antimicrobial activities of three different seed extracts of Lansium varieties. Pertanika J Sci Technol 22(2):529–540

    Google Scholar 

  7. Manosroi A, Jantrawut P, Sainakham M, Manosroi W, Manosroi J (2012) Anticancer activities of the extract from Longkong (Lansium domesticum) young fruits. Pharm Biol 50(11): 1397–1407

    Article  CAS  PubMed  Google Scholar 

  8. Sangkasanya S (2014) Flavor and its related quality in longkong (Aglaia dookkoo Griff.) during on-tree maturation and storage. Dissertation, Prince of Songkla University

    Google Scholar 

  9. Marfori CE, Kajiyama IS, Fukusaki E, Kobayashi A (2015) Lansioside D, a new triterpenoid glycoside antibiotic from the fruit peel of Lansium domesticum Correa. J Pharmacogn Phytochem 3(5):140–143

    CAS  Google Scholar 

  10. Nishizawa M, Nishide H, Hayashi Y, Kosela S (1982) The structure of Lansioside A: a novel triterpene glycoside with amino-sugar from Lansium domesticum. Tetrahed Lett 23(13): 1349–1350

    Article  CAS  Google Scholar 

  11. Ragasa CP, Labrador, Rideout J (2006) Antimicrobial terpenoids from Lansium domesticum. Philipp Agric Sci 89(1):101–105

    Google Scholar 

  12. Dong SH, Zhang CR, Dong L, Wu Y, Yue JM (2011) Onoceranoid-type triterpenoids from Lansium domesticum. J Nat Prod 74(5):1042–1048

    Article  CAS  PubMed  Google Scholar 

  13. Munir T, Munawar SK, Mohyuddin A (2018) An overview of the antibacterial implications of Lansium domesticum. J Basic Appl Sci 14:206–209

    Article  CAS  Google Scholar 

  14. Mayanti T, Tjokronegoro R, Supratman U, Mukhtar MR, Awang K, Hadi AH (2011) Antifeedant triterpenoids from the seeds and bark of Lansium domesticum cv Kokossan (Meliaceae). Molecules 16(4):2785–2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mayanti T, Sianturi J, Harneti D, Darwati, Supratman U, Rosli MM, Fun HK (2015) 9,19-Cyclolanost-24-en-3-one,21,23-epoxy-21,22-dihydroxy (21R, 22S, 23S) from the leaves of Lansium domesticum Corr cv Kokossan. Mol Bank 4:M880

    Google Scholar 

  16. Lim KT (2012) Meliacea. In: Lim KT (ed) Edible medicinal and non medicinal parts. Springer Netherlands, Dordrecht

    Google Scholar 

  17. Ramadhan R, Worawalai W, Phuwapraisirisan P (2019) New onoceranoid xyloside from Lansium parasiticum. Nat Prod Res 33(20):1–8

    Google Scholar 

  18. Tilaar M, Wih LW, Ranti SA, Wasitaatmadja SM, Junardy FD, Maily M (2008) Review of Lansium domesticum Corrêa and its use in cosmetics. Bol Latinoam Caribe de Plantas Med Aromát 7(4):183–189

    CAS  Google Scholar 

  19. Apridamayanti P, Fajriaty I, Hatita E (2018) Antioxidant activity and analgesic assessment of Lansium domesticum stem bark infusion. Nusantara Biosci 10(2):71–75

    Article  Google Scholar 

  20. Pooasa S (2019) Limonoids from the timbers of Lansium domestium Corr. and the stem barks of Xylocarpus rumphii. http://org.rbru.ac.th/~science/FILE/Research/PDF/22_sakid.pdf. Accessed 1 June 2019

  21. Awal P, Supriyati N (2015) The analysis of chemical and physical properties of Lansium domesticum cortex, from Palu-Central Sulawesi. J Tumbuhan Obat Indones 8(2):41–46

    Google Scholar 

  22. Chairgulprasert V, Krisornpornsan B, Hamad A (2006) Chemical constituents of the essential oil and organic acids from longkong (Aglaia dookkoo Griff.) fruits. Songlanakarin J Sci Technol 28(2):321–326

    Google Scholar 

  23. Omar S, Marcotte M, Fields P, Sanchez PE, Poveda L, Mata R, Jimenez A, Durst T, Zhang J, MacKinnon S, Leaman D, Arnason JT, Philogene BJR (2007) Antifeedant activities of terpenoids isolated from tropical Rutales. J Stored Prod Res 43(1):92–96

    Article  CAS  Google Scholar 

  24. Tanaka T, Ishibashi M, Fujimoto H, Okuyama E, Koyano T, Kowithayakorn T, Hayashi M, Komiyama K (2002) New onoceranoid triterpene constituents from Lansium domesticum. J Nat Prod 65(11):1709–1711

    Article  CAS  PubMed  Google Scholar 

  25. Shankar S, Jaiswal L, Aparna RSL, Prasad RGSV (2014) Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater Lett 137:75–78

    Article  CAS  Google Scholar 

  26. Techavuthiporn C (2018) Langsat – Lansium domesticum. In: Rodrigues S, Silva O, de Brito ES (eds) Exotic fruits. Academic, Cambridge, UK

    Google Scholar 

  27. Venkatachalam K, Meenune M (2012) Changes in physiochemical quality and browning related enzyme activity of longkong fruit during four different weeks of on-tree maturation. Food Chem 131(4):1437–1442

    Article  CAS  Google Scholar 

  28. Lichanporn I, Srilaong V, Wongs-Aree C, Kanlayanarat S (2009) Postharvest physiology and browning of longkong (Aglaia dookkoo Griff.) fruit under ambient conditions. Postharv Biol Technol 52(3):294–299

    Article  CAS  Google Scholar 

  29. Charoensiri R, Kongkachuichai R, Suknicom S, Sungpuag P (2009) Beta-carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits. Food Chem 113(1):202–207

    Article  CAS  Google Scholar 

  30. Mokhtar S, Zakaria F, Amizi M, Woon Soon S, Nurshahida AS, Latiff AAAZ (2016) Study on the nutritional values and customer acceptance of Lansium domesticum & Nephelium lappaceum newly fermented natural fruit vinegars in Malaysia. Asia Pac J Adv Bus Soc Stud 2(2):402–413

    Google Scholar 

  31. Charoensiri R, Kongkachuichai R (2009) Sugar profiles and soluble and insoluble dietary fiber contents of fruits in Thailand markets. Int J Food Sci Nutr 60(S4):126–139

    Article  CAS  Google Scholar 

  32. Phantumas A (1998) Longkong planting. Askorn Publishing Company, Bangkok

    Google Scholar 

  33. Tee ES, Noor MI, Azudin MN, Idris K (1997) Nutrient composition of Malaysian foods. Dissertation, Institute for Medical Research

    Google Scholar 

  34. Venkatachalam K (2013) Changes in quality and enzymes of longkong (Aglaia dookkoo Griff.) fruit during storage as affected by maturation, package and methyl jasmonate treatment. Dissertation, Prince of Songkla University

    Google Scholar 

  35. Meenune M, Jongpanja H, Kongsuwan S (2013) Influence of methyl jasmonate on quality changes in longkong fruit during storage under low temperature (Lansium domesticum Corr.) bunches during storage. Agric Sci J42:291–294

    Google Scholar 

  36. Mortan FJ (1987) Langsat. In: Mortan FJ (ed) Fruits of warm climates. Echo Point Books & Media, Miami

    Google Scholar 

  37. Onthong J, Tirapt P, Sukmee K (2007) Tentative standard concentration values of iron, manganese, zinc, copper and boron in longkong (Aglaia dookkoo Griff.) leaves. Songklanakarin. J Sci Technol 29:287–296

    Google Scholar 

  38. Abad CTA, Luis RM (2013) Antipyretic activity of lanzones Lansium domesticum, correa, 1807, seed extract on male rabbits. Dissertation, University of San Carlos

    Google Scholar 

  39. Natta L, Orapin K, Frank BM, Juan LS, William EH (2007) Postharvest survey of volatile compounds in five tropical fruits using headspace-solid phase microextraction (HS-SPME). HortSci 42(2):309–314

    Article  Google Scholar 

  40. Venkatachalam K, Meenune M (2015) Effect of methyl jasmonate on physiological and biochemical quality changes of longkong fruit under low temperature storage. Fruits 70(2): 69–75

    Article  CAS  Google Scholar 

  41. Sangkasanya S, Lertsiri S, Meenune M (2014) Changes in fruit quality and volatile flavor compounds during on-tree maturation of longkong. Int Food Res J 21:1659–1665

    CAS  Google Scholar 

  42. Lichanporn I, Techavuthiporn C (2013) The effects of nitric oxide and nitrous oxide on enzymatic browning in longkong (Aglaia dookkoo Griff.). Postharv Biol Technol 86:62–65

    Article  CAS  Google Scholar 

  43. Venkatachalam K (2018) Exogenous nitric oxide treatment impacts antioxidant response and alleviates chilling injuries in longkong pericarp. Sci Horticult 237:311–317

    Article  CAS  Google Scholar 

  44. Lichanporn I (2018) Effect of ethylene and temperature on physiological and biochemical changes during fruit drop of longkong postharvest. Acta Hortic 1213:411–416

    Article  Google Scholar 

  45. Kaewsuksaeng S, Techavuthiporn C, Somvisai Y (2010) Effect of UV-C radiation on biochemical changes of longkong (Aglaia dookkoo Griff.) after harvesting. Acta Hortic 875:133–136

    Article  Google Scholar 

  46. Chakraborty TK, Ghosh S, Jayaprakash S (2002) Sugar amino acids and their uses in designing bioactive molecules. Curr Med Chem 9(4):421–435

    Article  CAS  PubMed  Google Scholar 

  47. Lim YY, Lim TT, Tee JJ (2007) Antioxidant properties of several tropical fruits: a comparative study. Food Chem 103(3):1003–1008

    Google Scholar 

  48. Okonogi S, Duangrat C, Anuchpreeda S, Tachakittirungrod S, Chowwanapoonpohn S (2007) Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem 103(3):839–846

    Article  CAS  Google Scholar 

  49. Subandrate S, Sinulingga S, Wahyuni S, Altiyan FM, Fatmawati F (2016) Antioxidant potential of Lansium domesticum Corr. seed extract in white male rate (Rattus norvegicus) induced by alcohol. Mol Ther 11(1):1–8

    CAS  Google Scholar 

  50. Vythalingam LM (2014) Comparative study on total antioxidant capacity and phenolic content of Lansium Domesticum fruit. Dissertation, Universiti Malaysia Kelantan: Kelantan Malaysia

    Google Scholar 

  51. Kee ME, Khoo HE, Sia CM, Yim HS (2015) Fractionation of potent antioxidative components from langsat (Lansium domesticum) peel. Pertanika J Trop Agric Sci 38(1):103–112

    Google Scholar 

  52. Samuagam L, Sia MC, Akowuah AG, Okechukwu NP, Yim SH (2015) In vivo antioxidant potentials of rambutan, mangosteen, and langsat peel extracts and effects on liver enzymes in experimental rats. Food Sci Biotechnol 24(1):191–198

    Article  Google Scholar 

  53. Chairin T, Vasun P (2017) Induction of defence responses in longkong fruit (Agalaia dookkoo Griff.) against fruit rot fungi by Metarhizium guizhouense. Biol Conserv 111:40–44

    Google Scholar 

  54. Saewan N, Sutherland JD, Chantrapromma K (2006) Antimalarial tetranortriterpenoids from the seeds of Lansium domesticum Corr. Phytochemistry 67(20):2288–2293

    Article  CAS  PubMed  Google Scholar 

  55. Alfonso ED, Fernando DIS, Pineda SP, Divina CC (2017) Antibacterial activity and genotoxicity assays of lanzones (Lansium domesticum) seeds extract. Int J Agric Technol 13(7.3):2427–2434

    Google Scholar 

  56. Yapp DT, Yap SY (2003) Lansium domesticum: skin and leaf extracts of this fruit tree interrupt the lifecycle of Plasmodium falciparum, and are active towards a chloroquine-resistant strain of the parasite (T9) in vitro. J Ethnopharmacol 85(1):145–150

    Article  PubMed  Google Scholar 

  57. MacKinnon S, Durst T, Arnason JT, Angerhofer C, Pezzuto J, Sanchez-Vindas PE, Poveda LJ, Gbeassor M (1997) Antimalarial activity of tropical Meliaceae extracts and gedunin derivatives. J Nat Prod 60(4):336–341

    Article  CAS  PubMed  Google Scholar 

  58. Khalili MR, Noratiqah MJ, Norhaslinda R, Norhaslinda R, Amin AB, Roslan A, Zubaidi AL (2017) Cytotoxicity effect and morphological study of different Duku (Lansium domesticum corr.) extract towards human colorectal adenocarcinoma cells line (HT-29). Pharmacogn J 9(6):757–761

    Article  CAS  Google Scholar 

  59. Nishizawa M, Nademoto Y, Sastrapradja S, Shiro M, Hayashi Y (1988) Dukunolide D, E and F: new tetranortriterpenoids from the seeds of Lansium domesticum. Phytochemistry 27(1): 237–239

    Article  CAS  Google Scholar 

  60. Rohin KAM, Noratiqah MJ, Norhaslinda R, Norhayati HA, Ismali S, Hussin RAMT, Taib WRW, Rahman AIN, Latif AZA (2016) Anti-proliferative effect of duku (Lansium domesticum Corr) extracts on human colorectal adenocarcinoma cell lines. Res J Pharm Biol Chem Sci 7(2):1078–1083

    Google Scholar 

  61. Samuagam L, Khoo HE, Akowuah GA, Okechukwu PN, Yim SH (2014) HPLC analysis of antioxidant compounds in some selected topical fruits peel. Innov Rom Food Biotechnol 14:61–68

    CAS  Google Scholar 

  62. Arung ET, Kusuma IW, Christy EO, Shimizu K, Kondo R (2009) Evaluation of medicinal plants from Central Kalimantan for antimelanogenesis. J Nat Med 63(4):473–480

    Article  CAS  PubMed  Google Scholar 

  63. Itsarasook K (2015) Free radical scavenging and tyrosinase inhibitory activity of longkong leaves extract. SDU Res J 8(3):81–96

    Google Scholar 

  64. Hanum L, Kasiamdari SR, Santosa S, Rugayah R (2018) The phylogenetic relationship among varieties of Lansium domesticum Correa based on ITS rDNA sequences. Indones J Biotechnol 18(2):123–132

    Article  Google Scholar 

  65. Arung ET, Suwinarti W, Hendra M, Supomo S, Kusuma IW, Puteri DCN, Eroglu HA, Kim Y, Shimizu K, Ishikawa H (2015) Determination of antioxidant and anti-melanogenesis activities of Indonesian Lai, Durio kutejensis fruit extract. Trop J Pharm Res 14(1):41–46

    Article  Google Scholar 

  66. Arnason JT, Philogene B, Dongkov N, Kubo I (1987) Limonoids from the Meliaceae and Rutaceae reduce feeding, growth and development of Ostrinia nubilalis. Entomol Exp Appl 43(3):221–226

    Article  Google Scholar 

  67. Klungsupya P, Suthepakul N, Laovitthayanggoon S, Thongdon-A J, Trangwacharakul S, Phornchirasilp S (2012) Investigation on antioxidant, antimutagenic and cytotoxic properties of active fractions of Thai Long-Kong (Lansium domesticum Corr.) fruits. J Ethnobiol Ethnopharmacol 1(1):1–9

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Prince of Songkla University and also express the gratitude to Food Innovation and Product Development (FIPD) laboratory for provided resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Venkatachalam .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Venkatachalam, K. (2020). Bioactive Compounds of Longkong Fruit (Lansium domesticum Corr.). In: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-30182-8_11

Download citation

Publish with us

Policies and ethics