
Optimizing Exploratory Workflows
for Embedded Platform Trace Analysis
and Its Application to Mobile Devices

Jonathan Ah Sue1(&), Peter Brand2(&), Joachim Falk2(&),
Ralph Hasholzner1(&), and Jürgen Teich2(&)

1 Intel Deutschland GmbH, Munich, Germany
{jonathan.ah.sue,ralph.hasholzner}@intel.com

2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{peter.brand,joachim.falk,juergen.teich}@fau.de

Abstract. As 5G wireless communication technology is currently deployed, an
increasing amount of data is available from mobile devices out in the field.
Exploiting this data, also called system traces, recent investigations show the
potential to improve the wireless modem design and performance using data-
centric approaches. Such data-centric workflows are exploratory and iterative by
nature. For instance, time pattern identification is performed by domain experts
to derive assumptions on potential optimizations and these assumptions are
continuously refined during multiple iterations of data collection, visualization
and exploration. In this context, we propose three optimizations to increase the
exploration speed in iterative data-centric workflows. First, we present a
methodology based on persistent memoization in order to minimize the data
processing duration when additional event sequences need to be extracted from
a trace. We show that up to 84.5% of the event extraction time can be spared for
a typical modem trace data set. Secondly, we present a novel entropy-based data
interaction technique for visual exploration of event sequences and finally, a
similarity measure to perform subsequence matching in order to assist the user
when identifying frequent time patterns in a trace.

Keywords: Exploratory workflow � Iterative feature extraction �
Workflow optimization � Time-oriented data visualization � Visual interaction �
Zoom+Slant � Event sequence similarity measure � Categorical event sequence

1 Introduction

The increasing number of mobile devices out in the field generates a colossal amount of
data that can be used to optimize the design and behavior of existing and future
devices. As opposed to simulation-centric approaches, such data-centric approaches
allow to improve key performance indicators (KPIs) with respect to the user context or
behavior. For instance, a low priority data transfer to the network might be delayed if
the congestion of the network is expected to be high at a specific time of the day or in a
specific location. However, collecting data from mobile devices, also called traces,
often requires many efforts, e.g., implementing the tracing system or manually

© Springer Nature Switzerland AG 2019
C. Stephanidis (Ed.): HCII 2019, LNCS 11786, pp. 119–139, 2019.
https://doi.org/10.1007/978-3-030-30033-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30033-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30033-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30033-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-30033-3_10

collecting traces at different locations. Usually, a maximum amount of hardware and
software events is recorded to ensure that the required information is present in the
trace in case additional analyses are needed. Because of embedded storage require-
ments, the raw trace is therefore drastically compressed.

Using such raw traces as input, data-centric workflows, e.g., machine learning
workflows [1], often include three steps, as depicted in Fig. 1. In the following, we
provide a description of these three steps with related examples for modem power
optimization:

1. Trace processing. In order to extract meaningful event sequences from a raw trace,
computer processing time is required. This extraction usually consists in data
decompression, aggregation and sampling.
Example: In the context of modem power optimization, power-related event
sequences are extracted as well as event sequences representing the size of the data
packets that are exchanged with the network at different timestamps.

2. Visual exploration. The analysis typically starts with a visual exploration of the
event sequences. The goal is to identify potential optimizations and discuss them
with domain experts.
Example: Periods of high power consumption for specific components are
identified.

3. Relevance estimation. Once a time pattern of interest is identified, the relevance of
the proposed optimization is assessed, typically by finding a representative amount
of similar patterns in the trace.
Example: A time correlation between high power consumption periods and a
specific data packet time pattern is identified.

Finally, such workflows are iterative and exploratory by nature, as relevant opti-
mization proposals often raise questions that can be answered by a new iteration of
event sequence extraction and exploration.

Example: An additional event sequence representing the status of the data buffer is
extracted. From a domain expert point of view, a high data buffer usage due to
specific data packet patterns can lead to a high power consumption. In this case,
optimizing the power consumption consists in a modification of the buffer size.

In essence, we argue that optimizing the human-computer interactivity in such
iterative data-centric workflows relies on data processing time reduction, human
exploration time reduction and analysis time reduction. Therefore, in this paper, we
propose three optimizations to increase the exploration speed and improve the inter-
activity in such workflows. First, in Sect. 2, we present a methodology to minimize the
data pre-processing duration in each iteration. Secondly, in Sect. 3, we propose a novel
entropy-based data interaction technique for event sequence visual exploration. Finally,
in Sect. 4, we evaluate a similarity measure to perform subsequence matching in order
to identify frequent modem behaviors.

120 J. Ah Sue et al.

2 Iterative Trace Processing

A modem trace of a LTE/5G device typically contains information reaching 250 MB of
hardware and software events logged during 2 min. Due to embedded storage
requirements, this information needs to be drastically compressed and a significant
amount of pre-processing time is needed to extract and combine the raw data into
meaningful event sequences (around 10 min for 100 event sequences).

Basically, these event sequences are used as input data for many tasks such as
verification, system level optimization or machine learning. In most of the cases, these
tasks require multiple iterations of trace preprocessing. For instance, a verification
engineer would inspect a set of event sequences to derive some assumptions on the root
cause of an anomaly. To refine these assumptions, additional sets of event sequences
need to be extracted in order to finally identify the root cause. Similarly, in a machine
learning workflow, the initial set of event sequences might be iteratively expanded to
add new features that might improve the model performance. Even at early visual-
ization stages, the observation of an event sequence leads to questions that can be
answered by observing other event sequences, e.g., identifying causality between event
occurrences.

In essence, we argue that such iterative workflows often require multiple iterations
of trace processing. However, there are some cases where extracting all event
sequences at once is more efficient than iteratively extracting them only when needed,
i.e., on-the-fly extraction. Concretely, on-the-fly event sequence extraction is desirable
if one of the following conditions is fulfilled: (1) the set of required event sequences
can grow and is not fixed at the beginning of the workflow, (2) extracting every
possible event sequence leads to high disk space usage, or (3) trace processing duration
needs to be minimized. If none of these requirements is necessary, then extracting all

Collect system
traces

Process system
traces (1)

Visual explora on
of events (2)

Propose relevant
op miza on (3)

Addi onal informa on
needed ?

Start

End

Add onal traces or
addi onal event

sequences ?

No

Yes

Addi onal event sequences

Addi onal
traces

Op mized steps

Fig. 1. Exploratory and iterative workflow for modem trace data analysis.

Optimizing Exploratory Workflows for Embedded Platform Trace Analysis 121

event sequences at once is sufficient. In our case, the requirement 2 is desirable since
typical data sets could contain around 1000 traces of 2 min, leading therefore to more
than 250 GB of raw data. Finally, requirements 1 and 3 are entirely fulfilled since the
set of event sequences in iterative workflows is not fixed and minimizing the trace
processing time is crucial for the interactivity of such iterative workflows. Therefore,
on-the-fly event sequence extraction is desirable in our case.

In the following subsections, we describe our proposal to minimize iterative trace
processing time. Firstly, we define the event sequence extraction as data flow graph and
describe our optimization proposal: applying persistent memoization to each node of
the data flow graph. In essence, we propose to persist results of redundant and time-
consuming computations in order to re-use them if they are needed during a new
workflow iteration. Secondly, we present the structure of the data flow graph for
modem trace processing and thirdly, we provide a trace processing timing analysis.

2.1 Data Flow Graph and Persistent Memoization

The trace processing steps can be represented by a directed acyclic graph called data
flow graph (DFG) where nodes are data transformations, i.e., functions, and directed
edges represent intermediate data produced and consumed by the nodes, i.e., variables
[2]. In Fig. 2, we present an exemplary DFG with its associated nomenclature.

Fig. 2. Exemplary data flow graph. A node represents a function that produces only one output
variable and consumes variables produced by one or multiple nodes. Therefore, edges starting
from the same node represent the same data, but edges ending at the same node represent
different data. For instance, the node n1 produces the variable x which is consumed by the nodes
n2 and n3. The node n4 consumes both variables y and z. The blue subgraph denotes processing
steps already executed during the previous iteration whereas the red subgraph denotes additional
processing steps executed during the current iteration. Black nodes are not executed yet. (Color
figure online)

122 J. Ah Sue et al.

In Fig. 2, if the variables x and z, produced during the previous iteration (blue
subgraph), are persisted, i.e., saved to the disk, they can be retrieved and used during
the current iteration (red subgraph). For time-consuming node executions, retrieving
intermediate variable is often profitable. However, for fast node executions, the time
required to save and load variables might be longer and therefore, intermediate result
persistency is not optimal.

Variable persistency could be easily achieved by assigning unique names to files
containing persisted variables. If the file exists, the variable could be directly retrieved.
However, when designing a DFG for data processing, adjustments of the code often
need to be done across multiple iterations, e.g., bug fixing, code cleaning, etc.
Therefore, some nodes of the DFG are often modified between two iterations. This
leads to modifications of some output variables and possibly all output variables of the
child nodes. In this case, saving the node output in a file and checking the file existence
is not sufficient to decide whether a result should be retrieved or not. Essentially,
avoiding node re-computation only if the node and its input variables remain
unchanged can be achieved by memoization [3]. Memoization is often implemented by
caching the intermediate variables to the system memory. However, as described in [3],
these variables could be persisted, i.e., stored to the disk, in order to be retrieved even
across multiple program launches. Therefore, we propose to apply persistent memo-
ization to each node of a data processing DFG in order to avoid unnecessary re-
computations.

In order to check whether a variable changed, every time an output variable is
produced by a node, it is persisted together with its hash, typically a 128-bit or 160-bit
hash value. The more the hashing function is complex, the lower the chances of hash
collisions are. However, complex hashing function also take more time. Therefore, we
chose simple hashing functions like MD5 or SHA-1. The probability of hash collision
of two variables is still less than 1 over 1018. To decide whether a node needs to be re-
computed or not, the hashes of the input variables and the hash of the node code is
compared with the corresponding hash values stored during the previous execution. If
they differ, then we can conclude that either the input variables or the node code have
changed. In this case, the node is re-computed. Otherwise, nothing is done and we can
ensure that the output variable is up-to-date. Checking the mentioned hashes and
eventually re-computing a node is defined as node evaluation.

Depending on the results requested, some nodes of the DFG do not need to be
evaluated, e.g., in Fig. 2, the node n5 is not evaluated because the result of n4 only is
requested and does not depend on n5. Given the entire DFG, defined as G, we also
define as evaluated subgraph Gfx;zg, the subgraph composed by the nodes and all
parent nodes producing the output variables x and z. To obtain these variables, we
evaluate each node in Gfx;zg following their topological order.

2.2 Modem Trace Processing

In the context of modem trace processing, defining the computations as a DFG with
persistent memoization is well suited because of the architecture of the tracing system.
Usually, the formats of the trace messages logged from two sub-components belonging

Optimizing Exploratory Workflows for Embedded Platform Trace Analysis 123

to the same sub-system have some common semantics. For instance, the sub-
component timings will rely on the clock of the sub-system and, therefore, their
timeframe will have the same semantics. In Fig. 3, we present the DFG structure for
modem trace processing. In the depicted FDG, a node from layer B is typically
responsible to extract and retrieve the clock information for a specific sub-system.

2.3 Results

In the following, we provide specific trace processing timings recorded for a data set of
20 traces of around 100 MB.

First, the size of the variables produced by the nodes typically does not exceed
10 MB. Therefore, the time required to save a variable and compute its hash, evaluated
on a standard computer, typically does not exceed 250 ms. In comparison, the averaged
node processing time is 82 s for the layer A node, 11 s for layer B nodes, 3.4 s for layer
C nodes and 1.2 s for layer D nodes.

Secondly, we evaluate the iteration processing time by extracting 5 additional event
sequences for each trace processing iteration. We perform 19 iterations which finally
result in a total of 95 event sequences. In Fig. 4, we compare the processing time
between the standard sequence extraction without persistent memoization and our
proposed memoized sequence extraction.

We can observe that the first iteration takes a few more seconds for the memoized
trace processing compared to the standard one. This is additional overhead is due to
data saving and hashing. However, for the next iterations, we notice that up to 84.5% of
the processing time duration can be saved. This processing time optimization is crucial

Fig. 3. Data flow graph for modem trace processing. Following the notation of Fig. 2, the blue
subgraph denotes node evaluations performed during the previous iteration and the red subgraph
denotes additional node evaluations performed during the current iteration. The nodes in the
lower layer, i.e., layer D, produce the meaningful event sequences. They are fed by standardized
HW/SW modem events produced by layer C nodes. Layer B nodes produce sub-system-specific
data and the node in layer A is responsible to import the compressed raw data into the language-
specific data structure. (Color figure online)

124 J. Ah Sue et al.

when interacting with a trace data set, e.g., in order to iteratively observe additional
event sequences or to obtain fast results for a small set of event sequences.

3 Entropy-Based Visual Data Interaction

Visual exploration of a trace is a key step for many workflows. When dealing with a
modem trace, an efficient visual representation and data interaction mechanism allow to
rapidly navigate between key events in order to better understand what is happening in
the trace. For instance, a verification engineer needs to check that the connection
between the mobile device and the network is well set up, maintained and closed
properly. These mechanisms are constantly signaled in the modem trace by events
occurring throughout the data exchange. If some anomalies are detected, additional
event occurrences from other sub-components need to be visualized, in order to locate
the root cause of the anomaly. In general, trace visual exploration helps to understand
the behavior of a system in order to detect anomalies, identify possible optimizations or
even to ensure that tracing or trace processing is performed correctly. In machine
workflows, a predictive model might achieve bad accuracy on one trace compared to
the accuracy achieved on the entire data set. In such cases, visually exploring the trace
with domain experts is a crucial step to improve the accuracy of such outliers. In these

Fig. 4. Time required to iteratively extract 95 event sequences. In each iteration, 5 additional
random event sequences are extracted. The timing of each trace processing iteration is evaluated
on a data set containing 20 raw traces (100 MB) for both standard processing (without persistent
memoization) and optimized processing (with persistent memoization).

Optimizing Exploratory Workflows for Embedded Platform Trace Analysis 125

workflows, the interactivity highly depends on the ease of visual exploration of event
sequences. Therefore, we propose a data interaction mechanism, which we also called
slanting, that allows to vary the amount of information presented to the domain expert
without losing crucial patterns such as temporal periodicity.

In the following subsections, we first formalize the notion of event sequence and
describe the visual representation chosen for trace event sequences. Secondly, we
perform a literature review of popular interaction techniques for time-oriented data.
Finally, we describe our proposed slanting mechanism and perform a computational
complexity analysis of the slanting algorithm.

3.1 Event Sequences

Definition. Let etf gTt¼1 be an event sequence with a total number of T timestamps
(typically T � 2:105) such that et 2 H [NULLf g, where et NULL indicates no
event occurrence at timestamp t and H ¼ a1; . . .; aHf g � R is a finite set of possibly
unordered real symbols.

Representation. Typically, for visual exploration of a trace, over a hundred event
sequences might be observed simultaneously along the same time axis. For instance, in
the DFG of Fig. 3, more than 50 different event sequences might be extracted to be
observed together. We propose to use the lasagna representation [4]. It is well suited to
explore juxtaposition of dozens of event sequences (at most hundreds) as it encodes

Fig. 5. Modem trace chunk of length 2600 ms containing 8 event sequences. The white color
always denotes no event occurrences, i.e., NULL values. Some event occurrences are not
displayed due to image downsampling.

126 J. Ah Sue et al.

values in colors using a small and constant amount of vertical space. Essentially, each
event sequence is represented as a layer through time and can have its independent
color coding. In Fig. 5, we depict a lasagna representation of event sequences from an
exemplary modem trace.

3.2 Time-Oriented Data Interaction

Considering 50 event sequences sampled at millisecond scale and captured during
200 s, we obtain a visualization matrix of size 50 � 200000. From the higher level
perspective, i.e., when visualizing the entire time range, downsampling allows simple
overview of the data distribution with a loss of detailed information, e.g., isolated
events, and zoom-in enables quick inspection with a better precision at the cost of
context information loss.

In the literature [5], 2 popular interaction techniques for time-oriented data are
commonly used to present different levels of detail while preserving some context
information:

• Overview+Detail: This method simultaneously presents an overview and detailed
view of the information. The overview plot can be used to rapidly navigate to
interesting regions while the detailed plot provides precise insights. However, as
explained in [6], the mental effort required to integrate the distinct views as well as
the loss of screen space is a notable disadvantage of such approach.

• Focus+Context: This method smoothly integrates a distortion centered on the area
of interest, also called the focal region. The resulting visualization is a lens effect
that allows fast detail exploration when implemented dynamically. However, the
distortion effect might prevent the user to make relative spatial judgments [6].
Moreover, the longer the event sequence lasts and the higher the focal length is, the
more sensitive the focal region is, i.e., small shifts of a high zoom lens on a long
event sequence imply rapid moves of the focal region, which might not be suitable
for fine view adjustments.

In some cases, the row height can also be used as supplementary dimension to
encode high firing rates and therefore avoiding information loss when zooming out. In
CloudLines [7], each row is a white canvas where small colored shapes, usually dots,
represent events. When zooming out, nearby overlapping shapes are merged into an
equivalent shape of greater height. However, this visualization technique assumes by
default that higher firing rates should imply greater attention. In our case, an isolated
event might also be crucial for sequence inspection.

Optimizing Exploratory Workflows for Embedded Platform Trace Analysis 127

3.3 Zoom+Slant

To overcome the limitations highlighted in the previous subsection, we propose a Zoom
+Slant approach which combines the classical zoom interaction together with a slant
interaction, also called slanting, described in Fig. 6. Given an event sequence etf gTt¼1,
slanting applies such that etþ 1 et only if etþ 1 ¼ NULL and if et 6¼ NULL. For each
event sequence, this procedure is executed s times, with s 2 N

� defined as the slant

index. The resulting slanted event sequence will be written as e sh it
� �T

t¼1 in the rest of
the paper.

(b) Event sequence 7 with slant index 1.

(c) Event sequence 4 with slant index 2 and event sequence 7 with slant index 19.

(a) No slanting applied. For each event sequence, this is the default view.

Fig. 6. Slanting applied on the same set of event sequences at different slant indexes.

128 J. Ah Sue et al.

3.4 Algorithm and Computational Complexity

We formally describe the slanting procedure in Algorithm 1.

In practice, slanting can be applied to each event sequence separately and is con-
trolled by a slider. This allows the user to find the optimal slant index for each event
sequence. Since the entire line is modified at once, the computation duration can be
significantly long. Therefore, we perform a complexity analysis of the proposed
algorithm.

Let Nseq be the number of slanted event sequences, the algorithm time complexity is
OðsTNseqÞ. However, it is possible to vectorize the code to handle efficiently multiple
event sequence at the same time. Moreover, in Algorithm 1, it is also possible to
vectorize the loop from line 6 to 12. These optimizations can significantly optimize the
rendering time by reducing the complexity to OðsÞ. In Fig. 7, we summarize the
execution time of the vectorized algorithm, implemented with MATLAB® on a
2.80 GHz Intel® Core™ i5-7440HQ with 32 GB of RAM, each value being encoded
on 16 bits. A simple linear regression gives an accurate model (R2� 0:997) of the
execution time as a function of the slant index. We perform the analysis for different
number of event occurrences Nocc, different number of event sequences as well as
different trace lengths T . In general, we only observe significant variations of the
execution time when the slant index changes, which confirms the estimated complexity
result of OðsÞ. Typical slant indexes are not greater than 500, and therefore, the ren-
dering time rarely exceeds 3 s which does not harm the interactivity of the visual
exploration.

Optimizing Exploratory Workflows for Embedded Platform Trace Analysis 129

3.5 Slanting Usage

In this subsection, we present three different ways to use slanting as analytical tool:

• Event sequence magnification. In Fig. 8, we compare the default view with the
slanted view of the same set of event sequences. We can observe that the time
patterns are much more visible in the slanted view. Moreover, other meaningful
conclusions like anomaly detection can be rapidly drawn in the slanted view. For
instance, in Fig. 8b, a regular synchrony pattern can be observed between event
sequences 4 and 5. But at timestamp 111.2, we can observe that this synchrony is
broken. From a system engineering or verification point of view, such information
is crucial to identify potential optimizations or bugs.

• Periodicity anomaly detection. Increasing progressively the slant index allows to
detect fine periodicity inconsistencies as depicted in Fig. 9. In this case, it is pos-
sible to visually identify an atypical event interval of 13 ms when the standard event
periodicity is 12 ms.

• Contextual enhancement. When observing a small event sequence chunk, e.g.,
with a width of 100 ms, other events can occur before in the past, outside of the
observation window. Thus, they are not visible although they might indicate
important contextual information. For instance, in a modem trace, a buffer status
message containing information about the number of bits to be transmitted might
occur before the observed window containing the actual data transmission events.
When the buffer status event sequence is slanted, the buffer status message can be
visible in the observation window.

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900 1000 1100

N_indic

Series 2

Series 3

Series 4

,

,

,

,

Slant index

Time (s)

Fig. 7. Rendering time of slanting as a function of the slant index. The simulations are done
with event sequences of different lengths T , containing different numbers of event occurrences
Nseq and on different numbers of event sequences in parallel Nocc.

130 J. Ah Sue et al.

(a) No slanting applied. Some event sequences seem to be empty because of image
downsampling.

(b) Slanted view of event sequences with different slant indexes. Event occurrences are
visible even in long time chunks.

Fig. 8. Comparison of the default view and the slanted view of the same set of event sequences
in an observation window of 3621 ms.

(a) No slanting is applied.

(b) The slant index is equal to 10.

(c) The slant index is equal to 11. One event interval (13 ms) is greater than the others
which are all equal to 12 ms.

Fig. 9. Visual detection of fine periodicity anomalies using slanting.

Optimizing Exploratory Workflows for Embedded Platform Trace Analysis 131

3.6 Optimal Slant Index

In the previous subsections, we presented the slant interaction and its usage to support
analytical tasks such as periodicity detection or contextual enhancement. This assumes
that the user manually performs multiple slant index adjustments in order to find the
best slant index for his goal. However, as dozens of event sequences might be dis-
played simultaneously, slanting every event sequence can take a significant amount of
time. Therefore, for each event sequence, we propose to automatically increment the
slant index until a stop criteria is satisfied. In essence, we compute the entropy of the
slanted event sequence each time we increment the slant index. As the entropy is used
to quantify the amount of information in a sequence of symbols, we keep incrementing
the slant index of an event sequence until its entropy stops increasing.

Based on the definition given in Subsect. 3.1, we define the entropy of a slanted

event sequence e sh it
� �T

t¼1 taking values in the set A ¼ H [NULLf g as follow,

HeðsÞ ¼
X

a2A
NaðsÞ
T

log
T

NaðsÞ; ð1Þ

with s being the slant index, NaðsÞ being the number of occurrences of event a 2 H in

the event sequence e sh it
� �T

t¼1. Basically, the optimal slant index smax is obtained by
solving

smax ¼ argmaxsHe sð Þ: ð2Þ

We propose to start with s ¼ 1 and increment this slant index by one until the entropy
stops increasing. If the entropy does not stop increasing, we stop the slant index

increment procedure until 9a 2 Hj NNULL sð Þ�NaðsÞ. Therefore, given e sh it
� �T

t¼1, we
only explore the domain sjNNULL sð Þ[Na sð Þ; 8a 2 Hf g which we call the sparse
domain. It can be shown that the function s! He sð Þ is concave on the sparse domain

of e sh it
� �T

t¼1 by proving that the second derivative of a continuous version of He sð Þ is
negative. Therefore, by concavity, the maximum slant index found with our proposed
procedure is the global maximum on the sparse domain.

Using this entropy-based slant criteria ensures that a maximum amount of infor-
mation is presented to the user for each event sequence. In practice, for visualization,
we recommend to restrict the exploration domain to slant indexes smaller than svizmax, a
maximal visualization slant index such that an isolated event occurrence slanted at this
index is represented by only one or two pixels after image downsampling. Essentially,
as soon as isolated event occurrences are visible, there is no need to further increase the
slant index. Indeed, the more we increase the slant index, the higher the risk is that two
isolated event occurrences become visually contiguous, thus losing the information on
the absence of event occurrence in between. In Fig. 10, we compare the default view of
a trace together with its entropy-based slanted view.

132 J. Ah Sue et al.

4 Similarity Measure for Subsequence Matching

When exploring an event sequence etf gTt¼1, subsequence matching consists in finding
subsequences similar to a reference pattern xnf gNn¼1. This reference pattern can be a
subsequence extracted from etf gTt¼1 directly or from another event sequence. Subse-
quence matching is a common task in time-oriented data mining. In particular, for
modem traces that typically contain around T ¼ 105 timestamps, usual data mining
tasks often involve subsequence matching with reference patterns containing N ¼ 100
timestamps. For instance, in order to optimize timers of specific sub-components, e.g.,
defining the optimal timer duration before entering low power mode, a system engineer
would identify a reference pattern xnf gNn¼1 where the timer duration is too long. Based

(a) Default view. Some event occurrences are not visible.

(b) Entropy-based slanted view. The event occurrences are directly visible. The user can
identify the interesting chunks, zoom in and adapt the slant index once zoomed in the
chunk. In this case, the slant index is bound to for every event sequence.

Fig. 10. Two different views of a typical modem trace of length 81479 ms containing 21 event
sequences. In one click, it is possible to apply the entropy-based slant modification on every
event sequence independently in order to magnify the time patterns as depicted in (b) whereas
they are less visible without slanting as depicted in (a).

Optimizing Exploratory Workflows for Embedded Platform Trace Analysis 133

on this observation, the timer duration can be reduced in order to save power. However,
this optimization would only have a significant impact if the scenario represented by
the reference pattern xnf gNn¼1 is frequent enough along the entire trace. Therefore,
quantifying the density of similar patterns in the trace is a crucial step of such analyses.

Although the protocols in mobile communications are well defined, two time
patterns representing one specific scenario might be slightly different. For instance,
sending one IP packet and receiving its acknowledgment from the server might result in
slightly different event sequences for some modem components. Therefore, when
evaluating the similarity between time patterns, the similarity metrics usually take into
account possible jitters of event occurrences, i.e., the smaller the deviations in time are,
the more the time patterns are similar. In essence, a subsequence matching algorithm
has a temporal similarity component that takes into account the deviations along the
temporal dimension. Additionally, such an algorithm also has a spatial similarity
component which takes into account the similarity between values. Essentially,
quantifying the spatio-temporal similarity between two sequences can be done by
defining a distance between their mathematical representation. In such cases, the
similarity is a real scalar quantity which is inversely proportional to the distance.

However, event sequences extracted from modem traces have a particular mathe-
matical representation and classical similarity measures or distances cannot be directly
used and require some adaptations. First, as the set A ¼ H [NULLf g contains the
NULL element, indicating no event occurrence, common distances should be modified
as they usually work on sets like R or C. In our case, the lowest value of similarity
should be reached between the NULL element and every other element in A including
the NULL element itself. Secondly, modem traces typically contain mixed-type event
sequences, e.g., ordinal event sequences (H is an ordered set) or categorical event
sequences (H is an unordered set). Therefore, in this section, we propose and define a
similarity measure that can be applied on two sequences xnf gNn¼1 and ynf gNn¼1 both
taking values in A ¼ H [NULLf g with the set H ¼ a1; . . .; aHf g � R possibly
ordered or not.

4.1 Definition

Given two sequences xnf gNn¼1 and ynf gNn¼1 taking values in A ¼ H [NULLf g with
H ¼ a1; . . .; aHf g � R, we define the discrete signal Xh½n	 such that 8n 2 1;N½ 	½ 	 and
8h 2 1;H½ 	½ 	,

Xh n½ 	 ¼ e

xn
ahð Þ2

r2 if xn 2 H;
Xh n½ 	 ¼ 0 if xn ¼ NULL;

(
ð3Þ

134 J. Ah Sue et al.

with r the kernel width. Similarly, we obtain the discrete signal Yh n½ 	. As second step,
we perform the convolution of these two discrete signals with a Gaussian of width s
and obtain the convolved time series X̂h½n	 and Ŷh½n	. Finally, we define the similarity
measure between the two sequences xnf gNn¼1 and ynf gNn¼1 as follow,

Sðx; yÞ ¼ 1
H

XH

h¼1

PN
n¼1 X̂h½n	Ŷh½n	ffiPN

n¼1 X̂
2
h ½n	

q ffiPN
n¼1 Ŷ

2
h ½n	

q
0
B@

1
CA ð4Þ

4.2 Procedure

In this subsection, we discuss the three key steps involved in the computation of the
similarity measure. Essentially, we combine kernel methods and techniques from spike
train analysis [8]. First, we propose to map the values to a high-dimensional space to
handle non-linear relationships in the data using the kernel trick [9]. Then, as in [10],
we compute the correlation of the two high-dimensional signals convolved with a
Gaussian filter.

1. Kernel trick. Basically, in Eq. 3, using the radial basis function (RBF) kernel, i.e.,

k x; yð Þ ¼ exp
 x
 yð Þ2=r2
h i

with ðx; yÞ 2 H2, is equivalent to compute the cosine

similarity between u xð Þ and u yð Þ where u : x! uðxÞ is a mapping function into an
infinite-dimensional space [9]. It is possible to compute the scalar product
u xð Þ;u yð Þh i needed for the cosine similarity without computing explicitly u xð Þ and
u yð Þ. This is called the kernel trick. As the kernel width r sets the level of inter-
action between the symbols, it is tuned according to the statistical data type. For
ordinal values, we set r in the order of the standard deviation of the symbols in H.
However, for categorical values, there is no interaction between symbols as they
cannot be ordered and r is kept very low, typically 1% of the minimum symbol
distance. Essentially, in this first step, we quantify the spatial similarity between
values in H and obtain a H-dimensional real-valued discrete signal without NULL
element.

2. Convolution with Gaussian. In this second step, we set the time scale of inter-
action for the temporal similarity between two event sequences as described in [10].
Basically, the greater the Gaussian width s is, the lower is the influence of the event
occurrence time jitter. In essence, we transform the multi-dimensional discrete
signal in order to enable the application of distances typically used on classical real-
valued time series.

3. Correlation measure. This last step is described in Eq. 4. For each symbol ah, we
compute the correlation between the two convolved signals, X̂h½n	 and Ŷh½n	, and
average on the set H. It can be shown that 0� S x; yð Þ� 1 and that S x; xð Þ ¼ 1. In
particular, we have S x; yð Þ � 1 for similar event sequences, and S x; yð Þ � 0 for
dissimilar event sequences.

Optimizing Exploratory Workflows for Embedded Platform Trace Analysis 135

In particular, given the two sequences xnf gNn¼1 and ynf gNn¼1, if one of these two
sequences is empty, e.g., xn ¼ NULL for all n in 1;N½ 	½ 	, we have the lowest similarity
value S x; yð Þ ¼ 0. Therefore, our proposed similarity measure implicitly assumes that
an event occurrence, i.e., xn 6¼ NULL, is always more similar to another event
occurrence than to an absence of event occurrence, i.e., xn ¼ NULL.

4.3 Experimental Setup

We propose to compare our approach with two other methods based on classical
distance measures, dynamic time warping (DTW) and short time series (STS) distances
[11]. Basically, for these two methods, we apply the following procedure. We iden-
tically reproduce step 2 and 3 in order to obtain the real-valued time series without
NULL element and then, instead of using the correlation measure (COR) described in
step 3, we evaluate the DTW or the STS distance averaged over the h dimensions.

In order to compare the COR, DTW and STS-based measure, we propose to apply
them for a binary classification task. Given a reference pattern xnf gNn¼1, we construct a
labelled data set containing both random sequences and sequences similar to xnf gNn¼1,
in total M sequences ymn

� �N
n¼1 with m 2 1;M½ 	½ 	. Then, we compute the similarity or

distance of each sequence with the reference pattern. Because the DTW and STS-based
measures represents positive distances, we apply a strictly decreasing mapping function
to obtain the equivalent similarity measure such that the biggest distance corresponds to
a similarity of 0 and the smallest distance to a similarity of 1. Then, for the three
similarity measures, as evaluation metric, we compute the area under the receiver
operating characteristics (ROC) curve, or AUC [12]. The AUC has the desirable
property to be independent of the mentioned mapping function chosen for the DTW
and STS-based similarities.

Given a threshold 0� a� 1, the sequence ymn
� �N

n¼1 is considered as similar to the

reference pattern xnf gNn¼1 if S x; ymð Þ� a and dissimilar otherwise. Given a, the true
positive rate (TPR) and false positive rate (FPR) are defined as follow,

TPRa ¼ Number of similar sequences correctly classified
Number of similar sequences

; ð5Þ

FPRa ¼ Number of dissimilar sequenceswrongly classified
Number of dissimilar sequences

: ð6Þ

The ROC curve is defined by the points ðFPRa;TPRaÞ when sweeping a from 0 to
1. The AUC, i.e., the area under this curve, is equal to 1 for a perfect classifier, 0:5 for a
random classifier and 0 in the worst case.

136 J. Ah Sue et al.

4.4 Event Sequence Data Set

In this subsection, we describe the surrogate data sets used for the AUC comparison
that we proposed in the previous subsection. First, we generate reference patterns of
length N ¼ 440 with two parameters:

• Set cardinality, or Hj j. Based on typical modem event sequences, we randomly
pick the symbols from sets of different cardinality, Hj j 2 f2; 5; 10g.

• Occurrence ratio, or qocc. We vary the number of event occurrences as a ratio of
the pattern length, qocc 2 f1=3; 1=5; 1=10g.
For each possible combination of Hj j and qocc, we randomly generate 5 reference

patterns. Therefore, in total, we have 90 reference patterns with varying set cardinality
and occurrence ratio. From each reference pattern, we generate similar event sequences
by, first, adding Gaussian distributed jitters with standard deviation rj 2 f2; 4; 8; 16g,
secondly, removing randomly n
 2 f0; 2; 4; 8; 16g event occurrences and thirdly,
adding randomly nþ 2 f0; 2; 4; 8; 16g event occurrences. In total, with every possible
combination of rj, n
 and nþ , we generate 500 similar sequences for each reference
pattern. We extend the data set with 500 dissimilar sequences randomly generated with
the parameters Hj j and qocc as defined previously.

4.5 Results and Discussion

In total, we generate 90 data sets containing 1000 sequences and compute the AUC on
each data set using the COR, DTW and STS-based similarity measures as defined in
Subsect. 4.3. The Gaussian filter width is chosen in the order of the standard deviation
of the jitter, i.e., s ¼ 6.

We compute the AUC averaged on the 90 data sets and obtain AUCCOR ¼
98:6% ð�1:4%Þ for the COR-based similarity, AUCDTW ¼ 94:7% ð�4:5%Þ for the
DTW-based similarity and AUCSTS ¼ 92:2% ð�4%Þ for the STS-based similarity.
From these results, we can observe that the classifier using our proposed COR-based
similarity outperforms the other ones on average. Also, we notice that the COR-based
classifier has a lower standard deviation and thus, is more reliable than the other ones.
In Fig. 11, we depict the ROC curves obtained for one of the data sets.

The step 3 of the procedure described in Subsect. 4.2 has a time complexity of
OðHNÞ for the COR-based similarity, OðHN2Þ for the DTW-based similarity and
OðHNÞ for the STS-based similarity. Therefore, from a computational complexity point
of view, the COR-based approach is also better than the DTW-based approach and
equivalent to the STS-based one.

From a human-computer interaction point of view, it is crucial to reduce the
similarity computation time while preserving the relevance of the results presented to
the user. With a time complexity of OðHNÞ and a AUC of 98.6%, our proposed COR-
based similarity measure achieves the best complexity-accuracy trade-off.

Optimizing Exploratory Workflows for Embedded Platform Trace Analysis 137

5 Conclusion

In this paper, we propose three possible optimizations to improve the interactivity of
data-centric iterative workflows with an application to modem trace analysis. First, we
present a methodology based on persistent memoization of intermediate results in order
to reduce the trace processing time during a workflow iteration. We show that up to
84.5% of the event extraction time can be spared for a typical modem trace data set. We
make available the source code used to implement persistent memoization in data flow
graphs1. Secondly, we present the Zoom+Slant visual interaction for exploratory
analysis of time-oriented data as an alternative to the classical Overview+Detail and
Focus+Context interactions. To increase the amount of information shown to the user,
we propose an entropy-based algorithm to automatically adjust the slant index. Finally,
we present our proposed correlation-based similarity measure for mixed-type event
sequences. For a binary classification task, we obtain an averaged AUC of 98.6% with
our proposed measure compared to the 94.7% of the DTW-based similarity and the
92.2% of the STS-based similarity.

We believe that our proposed optimizations can efficiently reduce data processing
time, data exploration time and analysis time in order to improve the interactivity of
iterative workflows. Finally, we think that further real-life experiments shall be

Fig. 11. ROC curves for the COR, DTW and STS-based similarities for one data set generated
from one randomly generated reference pattern. The higher the area under the ROC curve is, the
better the classifier is. For this data set, the classifier using the COR-based similarity clearly
outperforms the classifiers using the DTW-based or the STS-based similarities.

1 Explore: automatic persistent memoization for compute-intensive experiments, Github repository,
https://github.com/jahsue78/explore, last accessed 2019/06/24.

138 J. Ah Sue et al.

https://github.com/jahsue78/explore

conducted with a representative set of users in order to quantify the overall time
reduction. In particular, the mental effort to integrate the Zoom+Slant mechanism shall
be evaluated in future studies.

References

1. Ah Sue, J., Brand, P., Brendel, J., Hasholzner, R., Falk, J., Teich, J.: A predictive dynamic
power management for LTE-Advanced mobile devices. In: 2018 IEEE Wireless Commu-
nications and Networking Conference (WCNC), pp. 1–6. IEEE (2018)

2. Dennis, J.: Data flow graphs. In: Padua, D. (ed.) Encyclopedia of Parallel Computing,
pp. 512–518. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-09766-4

3. Guo, P.J., Engler, D.: Using automatic persistent memoization to facilitate data analysis
scripting. In: Proceedings of the 2011 International Symposium on Software Testing and
Analysis, pp. 287–297. ACM (2011)

4. Swihart, B.J., Caffo, B., James, B.D., Strand, M., Schwartz, B.S., Punjabi, N.M.: Lasagna
plots: a saucy alternative to spaghetti plots. Epidemiology (Cambridge, Mass.) 21(5), 621
(2010)

5. Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-Oriented Data.
Springer, London (2011). https://doi.org/10.1007/978-0-85729-079-3

6. Cockburn, A., Karlson, A., Bederson, B.B.: A review of overview+detail, zooming, and
focus+context interfaces. ACM Comput. Surv. (CSUR) 41(1), 2 (2009)

7. Krstajic, M., Bertini, E., Keim, D.: CloudLines: compact display of event episodes in
multiple time-series. IEEE Trans. Visual Comput. Graphics 17(12), 2432–2439 (2011)

8. Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple neural spike train data analysis: state-of-the-
art and future challenges. Nat. Neurosci. 7(5), 456 (2004)

9. Schölkopf, B.: The kernel trick for distances. In: Leen, T.K., Dietterich, T.G., Tresp, V.
(eds.) Advances in Neural Information Processing Systems, pp. 301–307. MIT Press,
Cambridge (2001)

10. Schreiber, S., Fellous, J.M., Whitmer, D., Tiesinga, P., Sejnowski, T.J.: A new correlation-
based measure of spike timing reliability. Neurocomputing 52, 925–931 (2003)

11. Zolhavarieh, S., Aghabozorgi, S., Teh, Y.W.: A review of subsequence time series
clustering. Sci. World J. (2014)

12. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

Optimizing Exploratory Workflows for Embedded Platform Trace Analysis 139

http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1007/978-0-85729-079-3

	Optimizing Exploratory Workflows for Embedded Platform Trace Analysis and Its Application to Mobile Devices
	Abstract
	1 Introduction
	2 Iterative Trace Processing
	2.1 Data Flow Graph and Persistent Memoization
	2.2 Modem Trace Processing
	2.3 Results

	3 Entropy-Based Visual Data Interaction
	3.1 Event Sequences
	3.2 Time-Oriented Data Interaction
	3.3 Zoom+Slant
	3.4 Algorithm and Computational Complexity
	3.5 Slanting Usage
	3.6 Optimal Slant Index

	4 Similarity Measure for Subsequence Matching
	4.1 Definition
	4.2 Procedure
	4.3 Experimental Setup
	4.4 Event Sequence Data Set
	4.5 Results and Discussion

	5 Conclusion
	References

