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Abstract. Processing and exploring large quantities of electronic data
is often a particularly interesting but yet challenging task. Both the lack
of statistical and mathematical skills and the missing know-how of han-
dling masses of (health) data constitute high barriers for profound data
exploration — especially when performed by domain experts. This paper
presents guided visual pattern discovery, by taking the well-established
data mining method Principal Component Analysis as an example. With-
out guidance, the user has to be conscious about the reliability of com-
puted results at any point during the analysis (GIGO-principle). In
the course of the integration of principal component analysis into an
ontology-guided research infrastructure, we include a guidance system
supporting the user through the separate analysis steps and we intro-
duce a quality measure, which is essential for profound research results.

Keywords: Principal Component Analysis -+ Data Quality -
Guidance + Visual Analytics + Data mining - Doctor-in-the-Loop

1 Introduction

Due to the steadily rising amount of data in varying research domains, visual
data analytics is becoming increasingly important. In complex research domains
(such as biomedical research), deep integration of the domain expert into the data
analysis process is required [1]. A major technical obstacle for these researchers lies
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not only in handling, processing and analyzing complex research data [2], but also
in giving chapter and verse for exploiting results. Since conclusions can be no bet-
ter than the received input, users also have to be aware of this GIGO (“Garbage-
In-Garbage-Out”) principle when applying analytics methods.

With our work we aim to assist the domain expert in the whole process
of data modeling, processing, analysis, and interpretation. In particular we are
aspiring to increase interpretability and understanding of advanced analysis tech-
niques, such as the Principal Component Analysis (PCA), which serves as an
example for evaluating our approach. Preliminary work on this topic by Wartner
et al. [3] has focused on the integration of basic PCA functionality, enabling its
use by domain experts without assistance of a data scientist. Moreover, it has
introduced the concept of quality of the result, by a preliminary selection of
certain quality criteria, such as the sample size, the ratio between the number
of observations and variables, and the properties of the correlation matrix. In
this paper, an ascertainment of the quality criteria summarized and combined in
an assessment scheme is presented. Finally, the guided PCA is applied on data
from the MICA (Measurements for Infants, Children, and Adolescents) project
which was performed in cooperation with the Kepler University Hospital Linz.

1.1 An Ontology-Based Research Platform

In order to address the issue of handling, processing, and analyzing complex
research data, we have been working on an ontology-based research platform for
domain-expert-driven data exploration and research. The key idea behind the
platform is that, while being a completely generic system, it can be adapted to
any specific research domain by modeling its relevant aspects (classes, attributes,
relations, semantic rules, constraints, etc.) in the form of a domain ontology. The
whole system adapts itself to this domain ontology at run-time and appears to
the user like an individually developed system. Moreover, the elaborate struc-
tural meta-information about the research data is used to actively support the
domain-expert in challenging tasks such as data integration, data processing,
and finally data exploration.

For a more detailed description on the platform itself and the usage of the
domain-ontology for data exploration the reader is kindly referred to [3-5].

1.2 The Nuts and Bolts of Principal Component Analysis

Multidimensional data can be hard to explore and visualize. Methods such as the
Principal Component Analysis (PCA) are used for simplifying this challenging
task by decreasing the dimensions of the data set. Dimensionality reduction
aims to reduce the number of variables in the data set without significant loss
of information. The new (fewer) variables — in the case of PCA called principal
components — are linear combinations of the original variables, capturing most
of the variation of the original data set. For an introduction to PCA see for
example [6-8].
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Based on the centered covariance or correlation matrix of numeric variables,
PCA works as a solution to the eigenvalue problem. The newly obtained orthog-
onal (i.e., uncorrelated) axes constitute linear combinations of the original vari-
ables and are referred to as principal components. The corresponding eigenvalue
is a measure of importance of the principal component, describing the amount
of variation in the original data explained by the principal component. When
projecting data into a lower dimensional space, the primary motivation is to
preserve most of the variation — the direction with maximum variation is found
in the first principal component, while successive principal components account
for less variance than the previous ones. As a result the least important prin-
cipal components are discarded. What we receive is a data set with a reduced
number of variables. The proportion of a component’s variation, respectively,
sums up to the explained variance of the new system. Eventually, the procedure
is completed as soon as a predefined percentage of the original system’s variance
or number of components has been reached.

There are different ways of visualizing PCA results. Score plots depict the
transformed data points, and thus are used to find patterns and clusters in the
data and to detect outliers within the model, i.e., observations which scatter far
from the data center (see also Fig. 10). Ideally, the majority of data lie around the
origin of the new coordinate system and spread just slightly. Further advantages
arise when chronological sequences are to be analyzed. The analyst is able to
determine when a process is getting out of control by tracking the time-related
course of the transformed observations. In the event that the position of the
observation is increasingly migrating from the origin and out of the control ellipse
(see also Sect. 2.2), there is a high chance that one or more variables are taking
on unfavorable values. Likewise, in non-sequential data (as in our experimental
data), points of large deviation to the center of the hyperplane of the PCA
model (and/or outside the control ellipse) differ more strongly from the rest of
the observations. While score plots are used for examining the similar behavior
of observations, loadings plots are used to investigate the influence of variables
on a certain principal component (see also Fig.9). A variable’s position (weight)
close to zero indicates little importance, whereas high weights emphasize the
contribution to the component. For pattern recognition, the relative positions
of the variables to each other also play a pivotal role (close locations imply
high correlation and vice versa). Merging both, the sample scores and variable
loadings, in one visualization, the resulting visualization is called a biplot. In
order to find observations which are not explained well by the model, samples
can be colored by the squared prediction error (SPE) to graphically represent
the size of the residuals.

2  Quality Measure

To the author’s knowledge, no previous work has proposed the assessment of
PCA result quality by a single metric. As a result, we develop an expansive eval-
uation scheme, modifiable for versatile types of analysis. In fact, we differentiate
between the quality of a criterion and that of the entire data set, where the lat-
ter comprises the assessment of all quality criteria. Furthermore, the procedure
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of quality assessment also comprises quality criteria not assigned a grade, such
as linearity or normality. However, the system makes domain experts aware of
checking these requirements.

2.1 A Polymorphic Evaluation Scheme

Firstly, each quality criterion is graded as good, ok, and bad. Secondly, the overall
quality is determined according to the subsequent rules:

— If more than 50% of the quality criteria are graded as good, and no bad has
been given, the result quality is graded as good.

— If at least 50% of the quality criteria are graded as ok and no bad has been
given, ok is awarded.

— If at least one criterion is graded as bad, the quality of the result is marked as
inadequate (bad quality). This is because when at least one quality test fails,
severe side effects might arise in interpreting the results.

It is worth noting that the choice of 50% is not restrictive, but merely reflects the
experience of the authors in certain studies. One major benefit of this evaluation
scheme is its polymorphism, as each data mining method and statistical analy-
sis has most diverse requirements to the underlying data structure and quality.
A tailor-made solution can be achieved by cobbling together various key fig-
ures in order to meet method dependent requirements. In the following section,
the quality criteria specifically used for determining the PCA result quality are
described.

2.2 Quality Criteria and User-Interpretable Assessment Methods
for Model Quality

This section provides an overview of the quality criteria specifically when apply-
ing PCA.

Sample Size and Ratio Between Number of Samples and Variables.
A study by Osborne et al. [9] has shown that PCA results of data with both
large sample sizes and high ratios had superior quality to those where the data
had large sample sizes only. In the following table, as well as in the upper part
of Fig. 7, we adapt their proposed sample guidelines to our assessment scheme,
where n denotes the number of observations and r the ratio between the number
of observations and variables (Table1).

Table 1. Assessment scheme of the sample size quality criterion, where n denotes the
number of observations. This classification is partially summarized from recommenda-
tions by [9].

Assessment | Sample size Ratio
Good n > 500 r > 10

Ok 200 <n <500 5<r<10
Bad n < 200 r<5
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Communalities. The communality 72 of a variable = is computed as the sum
of the squared correlations between the extracted principal components and the
variable . When using standardized data, the communality of a variable is
computed as the sum of the squared loadings for this variable. It indicates how
good the variable is explained by the extracted components. The closer the value
to 1 is, the better the observed data for the variable is reflected in the model
[10]. To the user, the communality for each selected variable is shown within the
numeric output section (see last column in the result view section of Fig. 8).

Correlation. In a study conducted by Dziuban et al. [11], the importance of
prior inspection of the correlation matrix, as well as the major interpretation
pitfalls on examples of random data have been shown. It has been suggested
that enough entries beyond the diagonal have to be greater or equal to 0.3 —
raising a difficult question here in defining what is meant by “enough” [12].
To that end, the Kaiser-Meyer-Olkin test (KMO) has been introduced [13] to
measure the sampling adequacy which gives, prior to analysis, an indication
to the meaningfulness of applying PCA to the data set. It was later modified
in Kaiser et al. [14] to the forms in Eqgs. (1) and (2) to improve stability. A
major advantage over other methods (e.g., the Bartlett’s test) is the possibility
of simultaneously interpreting individual features and the overall quality of the
correlation matrix [11].

Let (r;;) denote the correlation matrix, (s;;) the inverse of the correlation
matrix and (g;;) the partial correlation (or anti-image correlation) matrix of the
input variables, where

Sij

Then the overall measure of sampling adequacy (KMO) is defined as:

qij = —

L i jFi
RS SO ED o B

e e

The partial correlation estimates the relationship between two statistical vari-
ables while controlling for the effect of one or more other variables. Equation (2)
provides the computation of the KMO for each variable separately:
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In contrast to traditional measures of sampling adequacy, which have been
proven to be unstable for poor data, this instability has been corrected through
normalization by Olkin, hence any result value must lie between zero and one.
Following Kaiser [14], the assessment scheme is shown in the correlation part in
Fig. 7. The closer the value is to 1, the more suitable the variables are (Table 2).
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Table 2. Rule for the interpretation of the overall KMO measure after Kaiser [14] and
the related assessments integrated in the quality measure.

Assessment | Evaluation KMO
Good Marvelous >0.9
Meritorious | > 0.8
Ok Middling >0.7
Mediocre > 0.6
Bad Miserable > 0.5
Unacceptable | < 0.5

Linearity. Another procedure of human supported quality assessment involves
the inspection of the structure the data follows [15]. Linearity is given in case
there is constant spread in data, i.e., data is homoscedastic, and no (strong)
outliers are detected in the data set. This quality criterion is not assigned any
grade, but is rather to be examined by the user. A simple and effective way
of investigation is offered by a scatter plot matrix, showing n - (n — 1)/2 plots,
where n is the number of variables. The variables names are written in a diagonal
line from top left to bottom right. Each bivariate plot delineates the association
between two variables of the data set — desirably the vast majority should show
linear relationship, i.e., the plot should look like a line. Non-linear patterns
between variables can not be detected by PCA (see Fig.1 for an example to
interpret).

Fig. 1. Scatter plots showing the relationship between a pair of variables, each. In the
first plot it is probably safe to say that there is a correlation between the variables,
whereas the second plot does not show recognizable correlation.

Normally Distributed Data. Although PCA can be performed on data that
is not normally distributed, it might overlook patterns since it only handles
first and second order dependencies like mean and variance. If the data is not
normally distributed, higher order dependencies might be present but are not
detected by PCA. Furthermore, independence of the components is only guaran-
teed in case of normality. If the data is not normally distributed, other methods
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like independent component analysis (ICA) may give further insight [16]. Auto-
matic grading of normality is not included in the combined quality metric, but
it is recommended to the user to investigate normality plots or normality tests
(see also Thode [17]) in the detailed quality description listing. To easily assess
whether data fits a normal distribution or not (and to which extent), an addi-
tional scatter-chart related visualization is provided in the research infrastruc-
ture rather than normality tests. In this plot, the normal theoretical quantiles
are plotted against each variable (see Fig.2). According to the resulting curve
characteristics, conclusions of the distribution can be drawn, including also sup-
plementary information on kurtosis or skewness. If data follows a straight, linear
pattern, it can be assumed that data is approximately normally distributed.

Fig. 2. The normality plots for the weight of the mother (on the left) and the age at
measurement time (on the right). On the left-hand side graph, data follows approx-
imately the normal distribution, except for the outlier on the top right corner. The
right-hand side graph shows heavy tails, thus this variable doesn’t follow the normal
distribution.

Outliers. For determining the suitability of samples for inclusion, outliers can
be distinguished as:

— outliers within the model, detected by the control ellipse by the visual assess-
ment of unusual points (see Fig. 10), and,

— outliers between the model and the measured data, examined by the squared
prediction error (SPE, see also Fig. 3).

Like all linear methods PCA is very sensitive to outliers. Hence, a lot of attention
has to be given to proper outlier handling.

Control Ellipse. The control ellipse is an addition to the score plot. Its aim
is to visually identify potential outliers within the model. The control ellipse is
derived via Hotelling’s 72, which indicates if a certain observation conforms to
the mean of observations. In other words, it measures if an observation is in
control. According to [6],
k(n—1
T? .= 2L 7 2 = g Fk,nfk,aa
n—k
where z is the score vector of said observation, L is the diagonal matrix of
eigenvalues, k the number of principal components, n the number of observations,
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o the significance level and F}, 1 o the critical value of the F-distribution with
respect to the parameters k and n — k. Since we only draw two-dimensional
control ellipses for principal components PC; and PCj, this formula reduces to
2
3

72 _ 2 k(n—1)

22
—*""*]:7 k.n—k,a
bJ )\7. )‘j n—k ’ ’

with A denoting the eigenvalues. Hence the control ellipse’s center is 0 and its
half-axes lengths HA(7) and HA(j) are

k(n—1)

—k
for [ = 4, j. Most commonly used values for « are 0.05 or 0.01, depicting a control
ellipse of 95% or 99%, respectively.

HA(l) = \/)\l Fin—k,a

Squared Prediction Error. The squared prediction error (SPE or Q-statistic)
for an observation is defined as the squared difference between its actual value
and the value predicted by the model, i.e., the scalar product of the error vector
of the predicted vs. the actual observation vector with itself. It gives an indication
for the model fit (see Fig. 3).

12 PCA ! =0

Visualization of SPE values
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Fig. 3. The squared prediction error information board of the PCA result. The line
chart shows that some SPE values are exceeding the 95% limit (orange horizontal line)
or even the 99% limit (red horizontal line). The table below illustrates the numeric
SPE values for each observation, numbered from 1 to n. According to the limit the
record exceeds, the record is colored either orange or red. Further the observed and
predicted values for each variable are listed. (Color figure online)
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Contribution Plots. Contribution plots are a simple graphical way of inves-
tigating the contribution of a variable to the PCA model (see Miller et al. [18]).
The aim here is to find the variable(s) that contribute most to unusual values
detected in the model and to investigate how these values have been achieved. A
variable’s influence can either be positive or negative and vary in the strength of
its contribution. Commonly, bar charts are used for illustration. In our system,
those plots have been realized for score values and the squared prediction error
of an observation.

Score Contribution Plot. The score of an observation is a vector whose
dimension equals the number of principal components. The individual entries
of a score vector are computed as a linear combination of the original vari-
ables, i.e., as a weighted sum of the original variables. The terms in this
weighted sum are the contributions of the original variables to this observa-
tion with respect to the principal component and they can be visualized in a
score contribution plot, which looks similar to the SPE contribution plot in
Fig. 4.

SPE Contribution Plot. Every observation has an SPE value. This SPE
value is the sum of squares of the entries in the error vector of the predicted vs.
the actual observation vector. The individual summands of the SPE value each
depend on an original variable and are called the SPE contributions of the
individual original variables. They can be visualized in an SPE contribution
plot (see Fig.4).

SPE Contribution Plot of Measurement 1234

Contributions

size of mother body height  headsize  head width head length  hipwidth lower legsize foot length ~ 8estation " birth weight * weightof  weight of SEg Bt
period of child mother father father

Variables

Fig. 4. A squared prediction error contribution plot example of the red marked mea-
surement in Fig.3 on the first principal component. As shown by the figure, the foot
length contributes the most to this record. When going back to the raw data, this
record shows a rather high value in the variable foot length compared to the other
observations. (Color figure online)
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It should be noted that the quality criteria listed above include a selection of
the most important prerequisites for PCA quality assessment, but may not com-
prise all relevant prerequisites. If necessary, additional quality criteria may be
embedded steadily into the proposed quality measure.

3 Results and Discussion

3.1 Data Set

The MICA (Measurements for Infants, Children, and Adolescents) project start-
ed in 2010 with the aim of acquiring detailed demographic and biometric data
of children and thus to determine the body surface of children more accurately
[19]. In cooperation with the Kepler University Hospital Linz about 3200 chil-
dren aged 0 to 18 were measured by nurses in the outpatient department of the
hospital. Those measurements contain more than 30 variables describing bio-
metric variables, such as weight, length and circumference of the child’s head,
lower legs, hands and feet. Most of the variables are numeric, which have been
included in the principal component analysis.

€ Principal Component Analysis Wizard [m]
Settings 1/2 - Missing Values
A Data Mining Algorithm for Dimensionality Reduction and Pattern Discovery.
Note: 9% entries are currently missing.
Variables
Incl.. Name Missing Values (%) Recommended
7] size of father 29 i
V] weight of father 2784 V/'N
U] size of mother 1857 Q
7] weight of mother 239 Vi N
V]  birth weight of child 29 b
U] gestation period 2063 A
7]  body height 226 Q
Y] headsize 0.34 Q
Y] head width 017 Q
V] head length 017 Q
Y| hipwidth 024 Q
] 2ge at measurement time 0.0 \)
7] lowerlegsize 0.1 Q
7]  footlength 0.13 Q
V] waistsize 0.1 Q
7] forearm size 0.13 Q
At least 2 variables have to be selected.
Observations
Exclude observations exceeding | 20 12 % missing values.
Method
(@) Variable Mean
Replace Missing Values by
O Exclude Observation

Fig. 5. On the first page of the wizard available numeric variables and the correspond-
ing ratio of null values are shown. Though some of the variables are rated with a
warning sign, we consider them to be sufficient for analysis. In this PCA run, missing
values will be replaced by the variable mean.
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€ Principal Component Analysis Wizard o X

Settings 2/2 - P <al
A Data Mining Algorithm for Dimensionality Reduction and Pattern Discovery.

Matrix @® Correlation
O Covariance

Note: the correlation matrix should be used in case variables are measured by different scales,
variances differ widely between variables or they should be standardized.

Compute PCby (@ Explained Variance (sum up variances until components exceed threshold) | 0.95
(O Defined (max.) Number of Components (2 recommended)

Note: The number of comp is dep on the cal » type. Also
take the scree plot into consideration for choosing the defined (max) number
of components.

Scree Plot
Note: The Scree Plot depicts eigenvalues in descending order and gives an indication for choosing the number of

comp: . Keep above the Kaiser Criterion, discard the rest.
Precompute
Scree Plot C  Eigenvalue A
. 1 ram47
55 2 10207
H 3 08426
;" === Kaiser Crterion 4 04412
" 5 033902
e e B e
d =z 8 48 06 75 oD 6 03301
Components 7 0289 v
Nex Finish Cancel

Fig. 6. The second page of the wizard. The top of the graph illustrates the matrix type
selection. Beneath, options for specifying a stopping rule are provided. For support, a
scree plot can be precomputed. Within this graph, the Kaiser criterion is illustrated
as a second indicator for showing the recommended number of components to be kept.
This threshold is visualized by the horizontal line in the chart. In this example, two out
of 15 principal components fulfill the requirements, as their eigenvalues are exceeding
the threshold (highlighted table entries).

3.2 Approaching Reliable Data Quality

One of the most essential steps in profound data analysis is the preliminary
work of data cleansing. Though principal component analysis aims at detecting
outliers in data, it is important to remove obviously incorrect data already in
advance. Referring to this medical data set obviously erroneous records including
values such as negative age at the time of measurement or zero-values in size or
weight of the parents have been discarded. Another hot topic is how to handle
missing values. Rather than forcible discarding an observation holding at least
one single missing value, a softer and more dynamic approach of managing the
affected observations is proposed to the user. Scheffer [20] suggests applying
single or multiple imputation methods, i.e., to fill in missing values by including
means, medians or modes, computed by all known values of the corresponding
variable. The default setting in our implementation is the replacement of missing
values by the variable mean. If missing values are not to be imputed, the system
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proposes an alternative configuration — variable and observation exclusion. Both
exclusion thresholds can be adapted dynamically by the researcher. However,
according to Nelson et al. [21], a higher threshold than 20% missing values leads
to losses in performance when applying missing data algorithms (see also Figs. 5
and 6).

~

@ Resut cuatty:8aD I

Size of Dataset
\) Ratio between number of observations and number of variables
Additional Information: The data set is sufficiently big.

Assessment  Range Current Value
Good x>=10 47.9474

Ok 5<=x<10

Bad x<5

Sampling size
Q

Additional Infe

ion: Enough ples are provided.

Assessment Defined Quality Range  Samples

Good excellent >=1000 18220
very good >= 500
Ok good >=300
fair >= 200
Bad poor >= 100
very poor <100
Correlation

\) Enough correlation
Additional Information: The form of the correlation matrix is appropriate. (Tested by KMO)

Assessment  Defined Quality Range Overall MSA  size of father weight of father  size of mother weight of mother  birth

Good marvelous >=09 0.98049
meritorious >=08
Ok middling >=0.7 0.71004 0.79138
mediocre >=06 0.63575 0.60056
miserable >=05 0.548
Bad unacceptable <05
0 Cor b

Additional Information: There is a high chance that there are multiples of variables, distorting the result (untrustworthy).

Fig. 7. Excerpt of the detailed quality description listing shown to the user. The over-
all quality is computed as bad (red highlighting on the top of the figure). Assessment
scheme classification (good, ok, bad) of the actual computed key numbers are high-
lighted in light gray. As an additional information a short and comprehensible descrip-
tion is provided to the user. (Color figure online)

Regarding the medical data set, a vast majority of the variables describe
measurements of the children. As a matter of fact, some parts of the body grow
more or less at the same rate — resulting in similar proportions and therefore
multiples in their correlation.
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The aim of this evaluation primarily is to showcase the practical use of the
quality measure, to illustrate how to derive new hypotheses from the data, and
to compare and validate them with existing knowledge, rather than acquiring
new medical knowledge or testing hypothesis on a confidence level.

In a first PCA run, including all of the measurement variables, the corre-
lation quality criterion of the quality measure indicated untrustworthy results
(see Fig.7). After revising the input variables for achieving reasonably good
correlation values, i.e., the occurrence of multiples of variables is very unlikely,
the following 15 variables have been included in analysis (see guided parameter
selection in Fig.5):

— parent related information such as the weight and height of the child’s mother
and father,

— gestation period, and

— child/adolescent related information such as birth weight, head width, head
length, head size, hip width, waist size, forearm size, body height, lower leg
size as well as the foot length.

In order to facilitate the application of advanced data mining methods for domain
experts, data preparation and parameter selection is intended to be automated
as far as possible. In case of PCA, this means choosing the right data matrix as
well as an adequate number of principal components. Hence, this is necessary for
achieving a good fit of the model while keeping as few components as required for
simplifying the model. The substantial challenge here lies in finding the optimal
number of principal components to keep. However, a great number of commonly
used criteria such as significance tests or graphical procedures are available and
may be combined [6]. Thus, a selection of those criteria has been integrated in
the research infrastructure.

A further graphical approach is provided by the scree test. On the x-axis,
all principal components are depicted, whereas the y-axis shows the eigenvalues
in descending order. The rationale for this method is that few eigenvalues show
particularly high values, accounting for the most variance with a subsequent
sudden drop in the eigenvalues. Either the components up to this drop or those
with eigenvalues at least as high as a specified threshold (Kaiser criterion [13,
22]) are recommended to retain (see Fig.6). This rule should just serve as an
approximate value, as it tends to overfactor [23].

In their review, Hayton et al. [23] summarize the benefits from the more
accurate factor retention method parallel analysis. The basic idea is to compare
the eigenvalues of the sample data to those of a number of random generated data
(exhibiting the same size and number of variables). What is expected here is,
that observed eigenvalues of valid principal components are larger in comparison
to the average of the eigenvalues of the parallel components. This method will
be provided to users as a supplementary factor recommendation method.

Finally, all necessary input parameters are set to start PCA.
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3.3 The Infinite Thirst for Knowledge

Interpreting a PCA output on a numeric base has proven to be complex and
difficult for domain experts who are not trained in the fields of mathematics or
statistics. When the result is computed, a result package including all relevant
information and visualizations of the aforesaid sections is shown to the user.

€
File Edit Tools W fo Help
QlYosomy 08 1 | @ Ontology (G Data ] Exploration | & User
5] Records for Messung | Global Search Record View| Bl Event Log @ =0
4/2966 records selected Configure view fitter.. P Fd
B ogeotm. [@ sweoffet. [ weightof.. W sizeofm.. [ weightof.. @ bithwei. [ gestation.. @ bodyhei. [ hesdsie [ he”
106108447488... 1730 580 1680 590 32000 20 1327 520 140
049577625570... 1810 670 10 80 3500 Q0 670 1} 19
. 1.25205479452... 1600 80 1500 80 33000 20 20 470 10
Data View 8.05753424657... 1790 200 1650 520 34000 20 1208 525 120
12.3998958447... 1820 720 1670 70 <null> <null> 1500 535 140
11.7917808219... 1730 680 1760 650 27000 360 <null> 525 150
483276255707... 1700 670 1720 650 35200 0 1100 515 140
secomnemen  onn nen een cn aconn nn o en s
2l PCA
Correlation Matrix e
. Principal Components ¥
Result View <—— |———= s
Eigenvalues, Explained Variznce and Significance ¥
Loadings and Communalities 2
Loadings 6 Loadings 7 Loadings 8 Loadings 9 Loadings 10 Loadings 11 Attributes *Communalities A
Result -0676 0145 -0.065 -0.027 00 0024 weight of father  0.99998
| tigati Tab 0583 0066 -0023 -0063 0037 001 weight of mother 0.99892
nvestigation labs 0197 0269 0024 0027 0013 002 szeofmother 099992
«  Visualization 0289 0063 0008 -0014 0006 -0002 size of father 099985
& -0.049 -0.065 -0.464 <0123 0.035 0.045 gestation period 0.99964
.
Qua“ty -0.083 0.034 0462 016 -0.049 -0.057 birth weight of .. 099938
*  Numeric Output 0022 0553 -0.065 0247 0295 0078 head width 099436
ioti 0021 048 0047 025 -031 018 head length 099454
.
Squared Prediction 0017 006 0.147 045 0205 -0.194 head size oseit
Error 0073 -0128 -0.119 0.187 -0.265 -0.306 hip width 095408
-0031 0234 008 0038 0134 0245 waist size 091135
-0002 -0074 0006 0133 -0008 0201 forearm size: 091284
00 0134 -0019 -003 -0007 -0082 body height 091048
0017 -0.162 -0002 0089 -0004 0084 lower leg size 09428 2
C\ < > |,
& Visualization | () Quality [ Numeric Output| @ Squared Prediction Error

Fig. 8. Holistic view of the entire system and the integrated result of a PCA run

The holistic view is shown in Fig. 8. On top of the graph the data is shown.
The bottom section (see Result View) opens subsequently to PCA computation,
containing four tabs for result examination. On the present image, the numeric
output tab is opened. In the visualization section, scores, loadings, and biplot are
shown. The quality tab lists automatically computed quality criteria (see also
Fig. 7). The last tab shows a view for the squared prediction error (see Fig.3).
In order to ensure correct results, all outputs of the implementation have been
validated using the R language [24].

In order to facilitate access to interpretations, three types of plots described
in Sect. 1.2 had already been integrated previously in the research infrastructure
(see [3]).

In Fig.9, loadings plots of the current PCA result are depicted. The first
graph shows the transformed variables of the data set with the first principal
component as the x-axis and the second principal component as the y-axis.
Since rather all child related variables are located far from the origin, a strong
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Fig. 9. Loadings plots based on the second PCA result computed in Sect. 3.2. The first
graph illustrates the loadings plot of the first and the second principal component, char-
acterizing the x-axis and y-axis. On the second graph, the x-axis and the y-axis depict
the first and the third principal component. The location of the PCA-transformed vari-
ables plotted on the graph provides insight into the strength of correlation between the
original variables and the influence of a variable on the specific component.

influence exists by those measurement variables on the first principal component.
According to the graph, the child’s proportions are correlating strongly with
each other, as anticipated. When regarding the second principal component (y-
axis), variables contributing to pregnancy and childbirth are described, as they
delineate high weights according to this component. Based on our experimental
data, due to their proximity, the birth weight of the child and the gestation
period show high positive correlation, i.e., the longer a woman is pregnant, the
heavier the child is at birth. It is also apparent that maternal height seems to
have positive association with the gestation period, i.e., that the gestation length
is increased for taller women. Literature research actually has shown that this
slight influence has already been found in other experiments [25]. Additionally,
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the third principal component has been evaluated as it gives an indication of
the parental influence on the child related data (see Fig.9). According to the
positions of parental body height and weight divergent to duration of pregnancy,
influences of maternal and paternal properties are emerging (see also Morrison
et al. [26]).

Result Quality: ()

2] (10,3 ) U1] (43,92 0004

139.455

Fig. 10. The score plot (based on the second PCA result computed in Sect. 3.2) of
the first and the second principal component, characterizing the x-axis and y-axis.
The color scheme represents the SPE-values of each record. Small deviations (between
the actual and the predicted model) are colored white, whereas high differences are
highlighted in darker color. (Color figure online)

In Fig. 10 a score plot of the experimental data is shown. Each point is
colored after the squared prediction error. The color represents the distance of
the observation to the hyperplane — the darker a point, the higher the distance.
In this case, the specified observation is badly explained by the model and is
an indication for a potentially corrupted record. It might also be worth to take
a closer look at this specific record and to find out why it differs so greatly
from the remaining records. Generally, the interactive implementation of the
charts provides the connection from drawn points selected in the visualization
to the raw data. The corresponding records are then highlighted in the data
view (for an example of the data view see Fig. 8). Further investigations of the
experimental data showed the expected outcome and how to interpret PCA
results (see Fig. 11). Positive correlations between the growth of included body
regions and the stages of age are apparent in each of the plots.

Recall that projections by PCA are only applicable to numeric variables. In
case other data types such as categorical variables should be incorporated into
analysis, scores can be colored in the corresponding colors and therefore used,
e.g., for cluster analysis. Further analysis on comparing the behavior of various
subgroups follows the same procedure as introduced, by using subsets of interest
based e.g. on gender, ethnicity, or other characteristics. However, it is important
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to bear in mind the possible bias in these responses as well as the fact that
PCA merely can find linear patterns, it is not applicable for detecting non-linear
relationships.

Result Quality: ()

20364

—
N

2] (10,3%) ‘ ’ “ : ‘ 1) (43,92 0on

Result Quality: ) G

e i D
Fig. 11. Age graded score plot (first graph) and measurement graded score plot (second
graph). The points are colored from white to blue, whereby the white points on the
first graph represent children measured in early years, bluish points represent older test
persons. On the second graph white points depict smaller children, the bluish points
depict taller children. (Color figure online)

4 Concluding Remarks and Future Work

We integrated PCA with an augmented guidance system into an ontology-guided
research platform — starting with the control for appropriate input variables
and reasonable hyperparameters, going ahead with informing the user about
the reliability of the received output and recommendations on how to approach
a more trustworthy result, and providing interactive visualizations and result-
related information for investigating data patterns and creating new hypotheses.
Technically, we introduced a quality measure for PCA which supports the domain
expert in checking if the data have the necessary quality and structure for a
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meaningful application of PCA, and in improving the data in order to increase
its quality, e.g., gather more data, remove essentially duplicate variables, etc.
We also showed how this guidance works by applying it to the MICA data set.
Overall, it is crucial to reach higher interpretability from data mining techniques,
so that humans can understand the path from data to results and — by far more
important — the meaning and reliability of the result. Further developments
of the linkage between ontologies and probabilistic machine learning is a hot
future topic and may lead to profound contributions in terms of explainable Al
[27]. Future work includes an usability study with medical doctors to evaluate
how good the guidance system works in practice. We also plan to integrate other
methods augmented with a guidance system like mixed factor analysis, regression
and different clustering methods. Another component to include will be support
for the user in the choice of the correct statistical test for a problem, depending
on (amongst other) what the user wants to examine, the number of variables
or the data type of the chosen variables. Therefore the user will be asked the
necessary questions in a wizard in advance and a selection of possible tests will
be given as a result.
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