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Abstract. Trustworthy Machine Learning (ML) is one of significant
challenges of “black-box” ML for its wide impact on practical appli-
cations. This paper investigates the effects of presentation of influence of
training data points on machine learning predictions to boost user trust.
A framework of fact-checking for boosting user trust is proposed in a pre-
dictive decision making scenario to allow users to interactively check the
training data points with different influences on the prediction by using
parallel coordinates based visualization. This work also investigates the
feasibility of physiological signals such as Galvanic Skin Response (GSR)
and Blood Volume Pulse (BVP) as indicators for user trust in predictive
decision making. A user study found that the presentation of influences of
training data points significantly increases the user trust in predictions,
but only for training data points with higher influence values under the
high model performance condition, where users can justify their actions
with more similar facts to the testing data point. The physiological sig-
nal analysis showed that GSR and BVP features correlate to user trust
under different influence and model performance conditions. These find-
ings suggest that physiological indicators can be integrated into the user
interface of AI applications to automatically communicate user trust
variations in predictive decision making.

Keywords: Influence · Machine Learning · Trust ·
Physiological features

1 Introduction

We have witnessed a rapid increase in the availability of data sets in various fields,
for example in infrastructure, transport, energy, health, education, telecommuni-
cations, and finance. Together with the dramatic advances in Machine Learning
(ML), getting insights from these “big data” and data analytics-driven solu-
tions are increasingly in demand for different purposes. While we continuously
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find ourselves coming across ML-based Artificial Intelligence (AI) systems that
seem to work or have worked surprisingly well in practical scenarios (e.g. the self-
driving cars, and the conversational agents for self-services), ML technologies still
face prolonged challenges with low user acceptance of delivered solutions as well
as seeing system misuse, disuse, or even failure. These fundamental challenges
can be attributed to the nature of the “black-box” of ML methods for domain
experts when offering ML-based solutions [36]. For example, for many non-ML
users, they simply provide source data to an AI system, and after selecting some
menu options, the system displays colorful viewgraphs and/or recommendations
as output [37]. It is neither clear nor well understood why ML algorithms made
this prediction, or how trustworthy this output or decision based on the prediction
was. These questions demonstrate that both the explanation of and trust in ML
play significant roles in affecting the user acceptance of ML in practical applica-
tions. The explanation is closely related to the concept of interpretability, which
is referred to as the ability of an agent to explain or to present its decision to
a human user, in understandable terms [5,29]. Trust is defined as “the attitude
that an agent will help achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability” [22].

As a result, recent research suggests model interpretability/explanation as a
remedy for the “black-box” ML methods [24,26,36]. While there is much work
in progress towards improving ML interpretability [15,18,30], the ideal state of
having explainable, evidence driven ML-based decisions still remains a challenge
[26]. To date, most of the work on ML interpretability has focused explicitly
on ML model explanation itself, developing various explanation approaches to
show why a prediction is made. However, the ML model explanation is just one
component of the ML pipeline. Furthermore, what and how explanation infor-
mation are presented to end users for the deployment to boost user trust plays
significant roles in an ML-based intelligent (AI) system. Taking the influence
of training data points on predictions [18] in supervised learning as an exam-
ple, the explanation with influence allows to capture the weight/contribution
of each training data point on the prediction of a testing data point. However,
these explanations are highly biased towards ML experts’ views, and are largely
dependent on abstract statistical algorithms, which introduce further complexi-
ties to domain users. While domain users are more interested in what influence
information affect and how these influence information are presented to them to
boost their trust in predictions or decisions based on predictions.

Therefore, besides explanation, Mannarswamy et al. [26] proposed that the
ability to provide justifiable and reliable evidences for ML-based decisions would
increase the trust of users. Yin et al. [32] found that the stated model accuracy
had a significant effect on the extent to which people trust the model, suggest-
ing the importance of communication of ML model performance for user trust.
Recently, fact-checking, which provides “evaluation of verifiable claims made in
public statements through investigation of primary and secondary sources” [19],
is increasingly used to check and debunk online information because of credibil-
ity challenges of the internet content [7]. Furthermore, previous research found
the physiological correlations with decision making [39], it is possible that user
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trust in predictive decision making can be evaluated by monitoring specific phys-
iological signals for intelligent user interface of AI applications.

Motivated by these investigations, this paper introduces fact-checking into
ML explanation by referring training data points as facts to users to boost user
trust. These training data points are selected based on their influence level of
predictions. We aim to investigate what influence of training data points and how
they affect user trust in order to enhance ML explanation and boost user trust.
We tackle this question by allowing users check the training data points that have
the higher influence on the prediction and the training data points that have the
lower influence on the prediction. The model performance is also introduced
into the pipeline to find how both the influence and model performance affect
user trust. Physiological signals are also collected and analysed to find their
correlations to trust under different influence and model performance conditions.

2 Related Work

2.1 Explanation for Machine Learning

In the early years, visualization is primarily used to explain simple ML algo-
rithms. For example, different visualization methods are used to examine spe-
cific values and show probabilities of selected objects visually for Näıve-Bayes [4],
decision trees [2], or SVMs [9]. Advanced visualization techniques are then used
as an interaction interface for users in data analysis. Guo et al. [13] introduced
a graphical interface named Nugget Browser allowing users to interactively sub-
mit subgroup mining queries for discovering interesting patterns dynamically.
Zhou et al. [37] revealed states of key internal variables of ML models with
interactive visualization to keep users aware what is going on inside a model.
More recent work tries to use visualization as an interactive tool to facilitate
ML diagnosis. ModelTracker [1] provides an intuitive visualization interface for
ML performance analysis and debugging. Chen et al. [10] proposed an interac-
tive visualization tool by combining ten state-of-the-art visualization methods
in ML to help users interactively carry out multi-step diagnosis for ML models.
Recently, visualization approaches are also proposed to explain complex deep
neural networks [14]. For example, saliency maps are used to explain contribu-
tions of different points of a data to predictions [6].

Besides visualization, various mathematical approaches are proposed to
explain ML models. Robnik-Sikonja et al. [30] explained classification models
by evaluating contributions of features to classifications based on the idea that
importance of a feature or a group of features in a specific model can be esti-
mated by simulating the lack of knowledge about the values of the feature(s).
Besides feature contributions, explanation of individual instance contributions
to ML models was investigated to allow users to understand why a classifica-
tion/prediction is made. For example, Landecker et al. [21] developed an app-
roach of contribution propagation to give per-instance explanations of a net-
work’s classifications. Koh et al. [18] used influence functions to evaluate influ-
ence of each training data point on predictions.
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These approaches explain ML models mostly from an ML expert’s perspec-
tive, which introduce further complexities to domain users and make users more
difficult to understand complex algorithms. Furthermore, these explanations
mostly focus on the stage of ML models and pay less attention to the stage
of deployment of ML models.

2.2 User Trust in Machine Learning

As the ultimate frontline users of ML-based systems, humans are the key stake-
holders and human factors such as user trust are essential in extracting and
delivering more sensible and effective insights from data science technologies
[12]. From this perspective, Zhou et al. [35,39] argued that communicating user
cognitive responses such as trust benefits the evaluation of effectiveness of ML
approaches. Therefore, different approaches are investigated to reveal human
cognition states such as trust in predictive decision making scenarios [35,37].

Moreover, various researches have been investigated to learn user trust varia-
tions in ML. Ye and Johnson [31] experimented with three types of explanations
(trace, justification and strategy) for an expert system, and found that justifi-
cation (defined as showing the rationale behind each step in the decision) was
the most effective type of explanation in changing users’ attitudes towards the
system. Kizilcec [17] proposed that the transparency of algorithm interfaces can
promote awareness and foster user trust. It was found that appropriate trans-
parency of algorithms through explanation benefited the user trust. However,
too much explanation information on algorithms eroded user trust. Ribeiro et
al. [28] explained predictions of classifiers by learning an interpretable model
locally around the prediction and visualizing importance of the most relevant
features to improve user trust in classifications. Other studies that empirically
tested the importance of explanation to users, in various fields such as the health
informatics, consistently showed that explanations significantly increase users’
confidence and trust [8].

2.3 Physiological Responses in Decision Making

In Human-Computer Interaction (HCI), physiological responses are used to
understand an individual’s decision making process [39]. For example, GSR refers
to how well the skin conducts electricity when an external direct current of con-
stant voltage is applied [11]. It yields continuous signals that are related to activ-
ity in the sympathetic branch of the anatomical neural system during tasks. It
is well established that skin conductance covaries with the arousal dimension of
affect, indexing its intensity. The Iowa Gambling Task (IGT) [3] demonstrated
that GSR can be used as a process indicator of affective processes when mak-
ing decisions. Zhou et al. [39] showed that decision making can be measured
with GSR in order to allow users to perceive the quality of their decisions and
the level of difficulty involved in making decisions. Therefore, GSR can serve
as an objective, non-verbal, non-voluntary indicator and a physiological mea-
sure that is relatively free from demand characteristics and reporting biases in
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decision making. However, little work has been investigated on the variations of
GSR in user trust in a predictive decision making scenario under various condi-
tions such as uncertainty. Furthermore, sympathetic activation has been found
to cause changes in heart rate, stroke volume and peripheral cardiovascular resis-
tance [25]. These effects can be sensed by Blood Volume Pulse (BVP), which
measures the blood volume in the skin capillary bed in the finger with photo-
plethysmography (PPG). BVP is often used as an indicator of affective processes
and emotional arousal, which play an essential role in rational decision making,
learning and cognitive tasks [33]. Zhou et al. [16] showed a set of BVP features
for indexing cognitive load.

These previous work motivates us to consider both algorithmic explanations
and model performance in the interpretability of ML, aiming to find what expla-
nations and how these explanations affect user trust in ML. We also aim to
investigate physiological indicators which may correlate with user trust in pre-
dictive decision making. This paper uses the influence of training data points as
an example and investigates what influence and how they affect user trust in a
predictive decision making scenario.

3 Hypotheses

The following hypotheses are posed in this study:

– H1: The presentation of influence of training data points on predictions will
affect the user trust and result in the increase of user trust in predictions;

– H2: The training data points which have the higher influence on predictions
will have the higher effect on user trust than those with the lower influence;

– H3: Higher model performance together with the presentation of influence of
training data points will result in the higher user trust;

– H4: There are correlations between physiological indicators and user trust
under different influence and model performance conditions.

4 Method

In this section, a framework of fact-checking for boosting user trust is firstly
presented. A case study is then introduced. After that, the influence of training
data points is formulated to understand contributions of training data points
to test data predictions. Finally, the fact-checking visualization is proposed to
present influence of training data points on test data predictions to users.

4.1 Framework of Fact-Checking for Boosting User Trust

We present a framework of fact-checking for boosting user trust in a predictive
decision making scenario (see Fig. 1). In a typical conventional ML pipeline, a
training data is used to train an ML model and predictions are made based
on the trained model (as shown in the lower unshaded part in Fig. 1). There is



Physiological Indicators for User Trust in Machine Learning 99

no information on the ML explanation in order to promote the trustworthiness
of the prediction. Motivated by the online fact-checking services for strength-
ening trust [7], an influence-enhanced fact-checking approach is added on the
top of the conventional ML pipeline in the proposed framework (as shown in
the upper shaded part in Fig. 1) to explain predictions and boost user trust in
predictions. Firstly, the influence of all training data points for the prediction
of a testing data point is calculated with influence functions as presented in
the following subsection. All training data points are then ranked in descending
order based on the calculated influence values. Training data points which have
the higher influence values (e.g. the top 10 training data points in the ranking)
and training data points which have the lower influence values (e.g. the bottom
10 training data points in the ranking) are obtained respectively based on the
ranking. These training data points function as facts which are the most similar
points to the testing data point and the least similar points to the testing data
point respectively. The parallel coordinate based visualization as presented in
the following subsection is used to visualize these selected ranked training data
points allowing users to compare the facts with the testing data points to boost
trust in predictions.

Fig. 1. A framework of fact-checking for boosting user trust.

4.2 Case Study

This paper used water pipe failure prediction as a case study for predictive deci-
sion making (replicated in lab environment). Water supply networks constitute
one of the most crucial and valuable urban assets. The combination of growing
populations and aging pipe networks requires water utilities to develop advanced
risk management strategies in order to maintain their distribution systems in a
financially viable way [23,40]. Pipes are characterized by different attributes,
referred as features, such as laid year, material, diameter size, etc. If pipe fail-
ure historical data is provided, future water pipe failure rate is predictable with
respect to the inspected length of the water pipe network [23,40]. Such mod-
els are used by utility companies for budget planning and pipe maintenance.
However, different models with various presentation of influence of training data
points and various prediction performance (accuracy) may be achievable result-
ing in different possible management decisions. The experiment is then set up to
determine what influence and model performance may affect the user trust.
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4.3 Influence of Training Data Points

Consider a machine learning based prediction problem from an input space X ∈
R

D (e.g. water pipe attributes of D dimensions) to an output space Y ∈ {0, 1}
(e.g. labels on failures of water pipes), with given training data points z1, ..., zN ,
where zi = (xi , yi) ∈ X × Y , each yi is a failure observation of each pipe in
one year. Based on the data points, a model parameter θ̂ ∈ Θ can be learned
by minimizing the loss function

∑N
i=1 L(zi, θ). The influence is then defined as

how important is a training data point ztrain to the prediction of a testing data
point ztest. The influence is then calculated for each pair of (ztrain, ztest).

The intuitive way to get influence is to compare the difference of the predic-
tion results, i.e. ytest with and without ztrain used in the training. The method
cannot be scaled up as it requires retraining the model for all training data points
for each testing data, which means N +1 retraining are needed. This is infeasible
for large datasets usually with millions of data points. In this study, the influence
function is used to avoid the retraining. It is used to trace a model’s prediction
through the learning algorithm and back to its training data, thereby identifying
training data points most responsible for a given prediction [18]. For any training
data point ztrain, if its weight is to be upweighted by an infinitesimal amount
ε > 0 from 1

N , the influence to θ̂ will be quantified as:

I(ztrain) =
dθ̂ε,ztrain

dε
= −H−1

θ̂
∇θL(ztrain, θ̂) (1)

where Hθ̂ = 1
n

∑n
i=1 ∇2

θL(zi, θ̂) is the Hessian. Then the influence by remov-
ing ztrain can be approximated by − 1

N I(ztrain) and chain rule, for ztest, it is
proportional to a close-form expression:

Iremoving(ztrain, ztest) ∝ ∇θL(ztest, θ̂)I(ztrain) (2)

which can be used in our influence evaluation as we only need the influence
ranking of all training data points in the user trust evaluation. The details of
these influence functions can be found in [18].

4.4 Fact-Checking Visualization

A training data point in ML usually has multiple features/attributes. The
parallel-coordinates is one classical approach to visualize multi-attribute data
points. One advantage of this technique is that it can provide an overview of
data trend, where each attribute is represented with one axis in parallel coordi-
nates. In this study, we present a visualization approach for presenting multiple
data attributes based on parallel coordinates as shown in Fig. 2: each vertical axis
represents one data attribute with the sorted descending order, and a polyline
connecting points on each vertical axis represents a data point. In this study,
each polyline represents one water pipe with various attributes. Various pipe
attributes belonging to one pipe are encoded with the same color. Testing pipe
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is encoded with red color. The influence of each training pipe on the predic-
tion of a test is encoded with the width of polylines, the wider the polyline, the
higher the influence. Such color and line width encoding approach provides an
overview of data trend of pipes and their associated attribute details, which can
improve the information browsing efficiency. For example, Fig. 2 demonstrates
how similar the training pipes are with the testing pipe in red color. If training
pipes are considered as facts for predictions, this parallel coordinates based visu-
alization is fact-checking visualization. The pipe attributes visualized in Fig. 2
include pipe size, length, pipe age, failure times during the observation period,
and whether it was failed in the checked year (0 means no failure and 1 means
failure occured).

Fig. 2. Fact-checking visualization.

5 Experiment

This section sets up an experiment to examine our hypotheses with the case
study of a decision making scenario on water pipe management.

5.1 Experimental Data

Water pipe failure prediction uses historical pipe failure data to predict future
failure rate [23]. The historical data contain failure records of water pipes, and
various attributes of water pipes, such as laid year, length, diameter size, sur-
rounding soil type, etc. In this study, actual water pipe attributes (features) and
the associated historical failure data from a region of a city were used in this
experiment. The pipe features used in the experiment include the pipe age, pipe
size (diameter), length, and failure times during the observation period. There
are 108,745 failure records with 9,062 pipes. 80% of data was used to train the
model and the rest was used for the testing. Convolutional neural network (CNN)
[20,38] was trained to model the water pipe failures.
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In this study, two CNN models (Model 1: 3 hidden layers with number of
units of 64, 128, 256, and max iteration number of 1300 respectively; Model 2: 3
hidden layers with number of units of 32, 64, 128, and max iteration number of
700 respectively) were trained using different network settings, resulting in the
model accuracy of 90% and 55% respectively. These two model performances
were used as high model performance (90%) and low model performance (55%)
respectively to find differences of user responses in the experiment. Furthermore,
the influence of each training pipes on a prediction was calculated with the use
of influence functions introduced in the previous section.

5.2 Task Design

Tasks are designed to investigate how influence of training data points and model
performance affect user trust. In this experiment, the training pipes are ranked
in the descending order based on their influence values. Based on the ranking, the
top 10 (TOP10) and bottom 10 (BOT10) training pipes, which have the highest
and lowest influence on predictions respectively, are selected. The fact-checking
visualization based on parallel coordinates introduced in the previous section is
then used to visualize the TOP10 and BOT10 pipes respectively. Based on the
TOP10 and BOT10 pipes’ visualization, this experiment divides fact-checking
visualization settings for tasks into four categories: (1) TOP10, (2) BOT10, (3)
TOP10&BOT10 which includes both TOP10 and BOT10 visualizations in tasks,
and (4) Control which does not include any influence visualization on training
pipes. By considering both model performance cases (high and low performance)
and fact-checking visualization conditions, we finally got 8 tasks as shown in
Table 1. These 8 tasks were conducted two rounds with all same settings except
testing pipes used. Two training tasks were also conducted by each participant
before formal tasks. In summary, there were 18 tasks conducted (8 tasks × 2
rounds + 2 training tasks = 18 tasks) by each participant.

Table 1. Task setup in the experiment.

Influence

TOP10 BOT10 TOP10&BOT10 Control

Model performance High T1 T2 T3 T4

Low T5 T6 T7 T8

The decision tasks investigated are: each participant was told that he/she
would take the asset management responsibility of a water company. The water
company plans to repair pipe failures in the next financial year. He/she was asked
to make a decision on whether to replace a testing pipe, using water pipe failure
prediction models learned from the historical water pipe failure records. Each
task was divided into three stages: at the beginning of each task, participants
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were told that a pipe is predicted to fail next year with a prediction accuracy
of 90% (High) or 55% (Low); then different fact-checking visualizations based
on task settings (see Table 1) are displayed; lastly, participants were asked to
make a decision of whether or not to replace the pipe based on the prediction.
Participants were told that they were competing against other people to reach
the best budget plan in a given time period in order to push them to make their
efforts for tasks. The task orders were randomized during the experiment.

5.3 Participants and Data Collection

22 participants were recruited, who are mainly researchers and students with
the range of ages from twenties to forties and an average age of 30 years. Of all
participants, 5 were females. After each decision making task, participants were
asked to rate the trust level of predictions on which decisions were made using
a 9-point Likert scale (from 1: least trust, to 9: most trust). Participants were
asked to rate how helpful the presentation of influence is for decision making.
At the end of each round, participants were also asked to rate the usefulness of
influence on helping them more confident in decision making. Besides subjective
ratings, skin conductance responses of subjects with GSR sensors and blood
volume pulse information with BVP sensors from ProComp Infiniti of Thought
Technology Ltd were collected during task time.

6 Analysis of Subjective Ratings

In this study, we aim to understand: (1) the effects of influence on user trust
under a given model performance, and (2) the effects of model performance
on user trust under a given influence condition respectively. Therefore, for the
evaluation of each aims, we first performed Friedman test and then followed it
up with post-hoc analysis using Wilcoxon signed-rank tests (with a Bonferroni
correction) to analyze differences in participant responses of trust under a fixed
condition (e.g. trust changes with different influence types under the fixed high
model performance). Trust values were normalized with respect to each subject
to minimize individual differences in rating behavior (see Eq. 3):

TN
i =

Ti − Tmin
i

Tmax
i − Tmin

i

(3)

where Ti and TN
i are the original trust rating and the normalized trusting rating

respectively from the user i, Tmin
i and Tmax

i are the minimum and maximum of
trust ratings respectively from the user i in all of his/her tasks.

6.1 Influence and Trust

Figure 3(a) shows mean normalized trust values over different influence settings
under high model performance (error bars represent the 95% confidence interval
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of a mean and it is same in other figures). Friedman’s test gave statistically
significant differences in trust among four influence conditions, χ2(3) = 21.675,
p = .000. Then post-hoc Wilcoxon tests (with a Bonferroni correction under
a significance level set at p < .013) was applied to find pair-wise differences
between influence conditions. The adjusted significance alpha level of .013 was
calculated by dividing the original alpha of .05 by 4, based on the fact that we
had four influence conditions to test.

(a) Normalized trust by influence under
high model performance.

(b) Normalized trust by different model
performance.

Fig. 3. Normalized trust values.

The post-hoc tests found that participants had significantly higher trust in
predictions when influences of TOP10 training pipes were presented than those
without influence information presentation (Control condition) (Z = 102.0, p <
.001). Participants also showed significantly higher trust in predictions when
influences of both TOP10 and BOT10 were presented than that without influ-
ence information presentation (Control condition) (Z = 120.5, p < .004). The
results suggest that the presentation of influence of training data points on pre-
dictions significantly increases the user trust in predictions as we hypothesized
(H1). It was also found that participants had significantly higher trust in predic-
tions when influences of TOP10 training pipes were presented than that when
influences of BOT10 training pipes were presented (Z = 61.5, p < .001). This
implies that the training data points having the higher influence on predictions
have the higher effect on user trust than that having the lower influence (H2).

However under low model performance, statistically significant differences of
trust among different influence conditions have not been found.

These results suggest that the presentation of influence of training data points
on predictions significantly increases the user trust in predictions, but only for
training data points with higher influence values under the high model perfor-
mance condition.
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6.2 Model Performance and Trust

Figure 3(b) shows mean normalized trust values under two model performance
conditions (high and low). A Wilcoxon test found that participants had statisti-
cally higher trust in predictions under high model performance than that under
low model performance (Z = 854.5, p = .000). This result confirms the find-
ings in [32]. We then further drilled down to compare user trust differences
over model performance under different influence conditions. Figure 4 shows
mean normalized trust values over two model performance conditions (high and
low) under different influence settings. It was found that participants showed
significantly higher trust under high model performance than that under low
model performance over all four influence settings (TOP10: Z = 11.5, p < .000;
BOT10: Z = 52.0, p < .000; TOP10&BOT10: Z = 77.5, p < .000; Control:
Z = 77.5, p < .001). The results suggest that high model performance together
with influence information result in the higher user trust in predictions (H3).
These findings go on to support the idea that people trust more in predictions
with high model performance.

Fig. 4. Normalized trust by model performance under different influences.

7 Physiological Indicators

In this section, GSR and BVP signals are analyzed to investigate their variations
under different conditions. The GSR and BVP data analysis process is divided
into following steps: (1) signal smoothing, (2) data normalization, (3) feature
extraction, and (4) feature significance test.

Similar to the analysis of subjective ratings in the previous section, various
GSR and BVP features are also analysed to find: (1) the effects of influence on
GSR and BVP features under a given model performance, and (2) the effects of
model performance on GSR and BVP features under a given influence condition
respectively. Therefore, for the evaluation of each aims, we first performed one-
way ANOVA test and then followed it up with post-hoc analysis using t-test
(with a Bonferroni correction) to analyze differences in physiological features
under a fixed condition.
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7.1 Signal Smoothing

The first step of physiological signal analysis is the signal smoothing. For GSR
signals, we use convolution filter (similar to a low pass filter) to remove noise. All
GSR signals are convoluted to a Hann window function to remove the noise [34].
For BVP signals, we use spectrogram to detect corrupt signals and abnormal
outliers, then remove all corrupt data from the dataset [25].

7.2 Normalization

After signal smoothing, we normalize smoothed signal using subject-wise Z-
Normalization to omit subjective differences between different signals [34]. The
subject-wise normalization means that the mean and variance used in the nor-
malization as in Eq. 4 are from signals of all tasks from each subject.

SN =
S − μ

σ
(4)

where S is the original GSR/BVP value, SN is the normalized GSR/BVP value,
μ and σ are mean and variance respectively of GSR/BVP signals among all tasks
conducted by each subject.

7.3 GSR

Fig. 5. An example of GSR signals after noise filtering. (Color figure online)

GSR Feature Extractions. In this paper, GSR features are defined based on
signal extremas. The extremas are extracted from the normalized GSR signal.
Figure 5 shows an example of extremas (red star as local maxima and yellow
star as local minima) of GSR. We extracted and analysed both extreme-based
and statistical features. All the features are listed in Table 2 [39]. The definition
of duration Sdi and magnitude Smi are shown in Fig. 5. t is the time spent on
each task. The estimated area can be regarded as the area of the triangle made
by Sd and Sm, which is Sa = 1

2SdSm [39].
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Table 2. GSR features

GSR features Notes

Mean of GSR μg Summation of all GSR values divided by task time

GSR variance σg Variance of GSR values over task time

Number of peaks Sf Number of peaks in a GSR signal

Sum of duration Sd Sum of duration time of all tasks: Sd =
∑

Sdi

Sum of magnitude Sm Sum of magnitude: Sm =
∑

Smi

Estimated area Sa Sum of estimated area: Sa =
∑

Sai

Number of response per second Sfs Sfs = Sf/t

Duration per second Sds Sds = Sd/t

Magnitude per second Sms Sms = Sm/t

Maximum of duration Smax
d Smax

d = max(Sd)

Maximum of magnitude Smax
m Smax

m = max(Sm)

Maximum of estimated area Smax
a Smax

a = max(Sa)

Average gradient Ga Ga = 1
Sf

∑
Smi/Sdi

Maximum gradient Gmax Gmax = max(Smi/Sdi)

(a) Sum of duration over different
influence conditions.

(b) Sum of duration over different
model performance conditions.

Fig. 6. GSR feature of sum of duration.

GSR Features and Influence. Under the high model performance, one-
way ANOVA tests found that there are significant differences in GSR values
among different influence conditions for GSR sum of duration Sd (F (3, 112) =
2.874, p = .039) (see Fig. 6(a)). The post-hoc t-tests (with a Bonferroni correc-
tion under α = .05/4 = .013, based on the fact that 4 levels were tested) was
used to examine the pair difference between influence conditions in GSR fea-
ture of Sd. The post-hoc tests found that participants had significantly lower
GSR Sd values when influences of TOP10&BOT10 training pipes were pre-
sented than that without influence information presentation (Control condition)
(t = −3.039, p < .004). Participants also showed relatively lower GSR Sd values
when influences of TOP10&BOT10 training pipes were presented than that when
BOT10 training pipes were presented. The results suggest that the presentation
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of influence of training data points on predictions especially TOP10 training
points significantly decreases the GSR Sd values under high model performance.

GSR Features and Model Performance. Figure 6(b) shows mean GSR Sd

values over two model performance conditions (high and low). Although there
is no significant difference found in GSR Sd values over two model performance
conditions, a trend shows that GSR Sd values under high model performance
condition is relatively lower than that under low model performance condition.
The findings suggest that the high model performance condition has a trend to
decrease GSR values.

7.4 BVP

BVP Features. BVP is a periodical signal and associated with three major fre-
quency bands: Very Low Frequency (VLF) (0.00–0.04 Hz), Low Frequency (LF)
(0.05–0.15 Hz), and High Frequency (HF) (0.16–0.40 Hz). The LF/HF ratio is
calculated by finding the ratio of low frequency energy to high frequency energy
in the spectrum. Furthermore, the BVP sensor measures one of physiological
changes known as Heart Rate Variability (HRV). HRV is known to be closely
related to Respiratory Sinus Arrhythmia (RSA) which can be used as a measure-
ment to quantify the activity of the parasympathetic activity [25,27]. Therefore,
both statistical and frequency domain features of BVP are extracted for analysis
in this section. Table 3 lists BVP features extracted in this study.

Table 3. BVP features

BVP features Notes

Mean of BVP μb Summation of all BVP values divided by task time

BVP variance σb Variance of BVP values over task time

Number of peaks Sp Number of peaks in a BVP signal

BVP peak mean μbp Summation of all BVP values divided by number of peaks

BVP peak variance σbp Variance of BVP peak values

LF Power Spectral Density (PSD) for low frequency

HF Power Spectral Density (PSD) for high frequency

LF HF ratio Sr Sr = LF/HF

BVP Features and Influence. Under the high model performance, one-
way ANOVA tests found significant differences in BVP peak mean μbp values
(F (3, 120) = 4.705, p = .004) and BVP peak variance σbp values (F (3, 120) =
4.961, p = .003) among different influence conditions respectively. Figure 7
shows BVP peak mean values over four influence conditions. The post-hoc
t-tests(with a Bonferroni correction as mentioned previously) were conducted
to examine the pairwise difference between influence conditions in BVP fea-
tures. For the BVP peak mean μbp, it was found that there were statistically
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significant lower values in TOP10&BOT10 than that in other three influence
conditions TOP10 (t = −2.921, p = .005), BOT10 (t = −3.45, p = .001),
and Control (t = −3.644, p = .001) respectively. Similarly, The BVP peak
variance σbp showed significantly lower values in TOP10&BOT10 than that
in other three influence conditions TOP10 (t = −2.947, p = .005), BOT10
(t = −3.57, p = .001), and Control (t = −3.788, p = .000) respectively.

Fig. 7. BVP feature of BVP peak mean over four influence conditions.

These results show that the presentation of influence of training data points
on predictions especially both TOP10 and BOT10 training points at the same
time significantly decreases BVP values such as μbp under high model perfor-
mance. However, all extracted BVP features did not show significant differ-
ences over model performance conditions, despite the trend with relative lower
GSR values under high model performance related to influence presentations of
TOP10 training points.

In summary, we found that the presentation of influence of training data
points on predictions especially TOP10 training points significantly decreases
both GSR and BVP values such as μbp, but only under high model performance.
Furthermore, a trend shows that both GSR and BVP values are relatively lower
under high model performance than that under low model performance. By con-
sidering the relations between trust and influence/model performance concluded
in the previous section, the findings in this section on GSR and BVP features can
be used as indicators of user trust in predictive decision making under different
influence and model performance conditions as we expected in H4.

8 Discussions

As discussed in earlier sections, trust is a challenging concept to investigate in
machine learning based solutions. This paper intends to study human-machine
trust in a specialized predictive decision making scenario. As machines are
becoming more intelligent, however in many scenarios, instead of full auton-
omy, Human-Machine Teaming (HMT) is required, where humans interact with
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the intelligent (AI) system to understand why the AI system is suggesting some-
thing that the human should do or not do. Therefore, both interaction with and
transparency of the system help humans make effective uses of the AI system
for trusting decisions.

In the water pipe failure prediction example as mentioned, when pipe man-
agement staff want to use an AI tool to make decisions on pipe replacement,
they need to be confident that there is a clear rationale for the ML to predict a
pipe’s future failure, in order to build trust. Therefore, similar to precedent that
humans justify actions by analogy, the pipe management staff interact with such
kind of AI system to find similar cases (based on pipe features such as material,
age, size, and length) to support a planned pipe management protocol. In our
approach, the influence values of training pipes on the prediction were used to
help users to locate/identify pipes having higher influence values (which may
show more similar feature patterns to the testing pipe) or pipes having lower
influence values (which may show more dissimilar feature patterns to the testing
pipe). These pipes were presented to users with parallel coordinates based visu-
alizations to help users easily get the overall patterns of features of pipes. The
interaction with the visualization of pipes functioned as the fact-checking for
the prediction to help users understand why a similar or different decision was
made, thereby increases the transparency of the system and boosts user trust.

As we have seen that participants showed significantly higher trust when
TOP10 visualization was presented. It was also found that participants showed
significantly higher trust under high model performance. GSR and BVP features
showed correlation to both influence and model performance conditions, suggest-
ing that GSR and BVP features can be used as indicators for trust variations in
predictive decision making.

In order to make ML-driven AI applications not only intelligent but also
intelligible, the user interface of AI applications needs to allow users to access the
most influential facts to predictions by visualizations. Such influence-enhanced
fact-checking allows users find similar facts to the testing data point to get the
rational behind for the justification of their actions, therefore boosting user trust.

A weakness of this training data based influence interpretation approach is
the privacy issue of training data. The proposed approach is not applicable if the
training data is sensitive and/or needs to be made private. However, there are
still many applications where it is not an issue (such as the water pipe failures).

9 Conclusions and Future Work

This paper investigates the influence enhanced fact-checking for the ML explana-
tion to boost user trust in a predictive decision making scenario. Both influence
of training data points on predictions and model performance were examined to
find their effects on trust. Physiological features were analysed and showed their
correlations to influence and model performance conditions. A user study found
that the presentation of influence of training data points on predictions signifi-
cantly increased the user trust in predictions, but only for training data points
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with higher influence values under the high model performance condition, where
users were expected to be able to justify their actions with more similar facts
to the testing data point. These findings suggested that the access of the most
influential facts to predictions by users in the user interface of AI applications
would help users get the rational behind their actions and therefore benefit the
user trust in predictions.

Our future work will focus on the setup of ML models to automatically
predict user trust in decision making based on physiological features, which
contributes to the ultimate goal of intelligent user interface of AI applications.
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