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Abstract. The role of decisions made by machine learning algorithms in
our lives is ever increasing. In reaction to this phenomenon, the European
General Data Protection Regulation establishes that citizens have the
right to receive an explanation on automated decisions affecting them.
For explainability to be scalable, it should be possible to derive explana-
tions in an automated way. A common approach is to use simpler, more
intuitive decision algorithms to build a surrogate model of the black-box
model (for example a deep learning algorithm) used to make a decision.
Yet, there is a risk that the surrogate model is too large for it to be really
comprehensible to humans. We focus on explaining black-box models by
using decision trees of limited size as a surrogate model. Specifically, we
propose an approach based on microaggregation to achieve a trade-off
between comprehensibility and representativeness of the surrogate model
on the one side and privacy of the subjects used for training the black-box
model on the other side.

Keywords: Explainability · Machine learning · Data protection ·
Microaggregation · Privacy

1 Introduction

Since the turn of the century, big data are a reality. One of the main uses of this
wealth of data is to train machine learning algorithms. Once trained, these algo-
rithms make decisions, and a good number of decisions affect people: credit grant-
ing, insurance premiums, diagnosis, etc. While transparency measures are being
implemented by public administrations worldwide, there is a risk of automated
decisions becoming an omnipresent black box. This could result in formally trans-
parent democracies operating in practice as computerized totalitarian societies.

To protect citizens, explainability requirements are starting to appear in legal
regulations and ethics guidelines. For example, article 22 of the EU General Data
Protection Regulation (GDPR, [6]) states the right of citizens to an explanation
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on automated decisions. Also, the European Commission’s Ethics Guidelines for
Trustworthy AI [5] urge organizations making automated decisions to be ready to
explain them on request of the affected citizens, whom we will call also subjects
in what follows.

To be scalable, explanations must be automatically generated: even if a
human auditor was able to produce a compelling explanation, one cannot assume
that such an auditor will be available to explain every automated decision to the
affected subject. Older machine learning models, based on rules, decision trees
or linear models, are understandable by humans and are thus self-explanatory,
as long as they are not very large (i.e. as long as the number of rules, the size of
the decision trees or the number of explanatory attributes stay small). However,
the appearance of deep learning has worsened matters: it is much easier to pro-
gram an artificial neural network and train it than to understand why it yields
a certain output for a certain input.

Contribution and Plan of this Paper

A usual strategy to generate explanations for decisions made by a black-box
machine learning model, such as a deep learning model, is to build a surrogate
model based on more expressive machine learning algorithms, such as the afore-
mentioned decision rules [10,14], decision trees [1,12], or linear models [13]. The
surrogate model is trained on the same data set as the black-box model to be
explained or on new data points classified by that same model. Global surrogate
models explain decisions on points in the whole domain, while local surrogate
models build explanations that are relevant for a single point or a small region
of the domain.

We present an approach that assumes that the party generating the expla-
nations has unrestricted access to the black-box model and to the training data
set. We will take as surrogate models decision trees trained on disjoint subsets
of the training data set. We focus on the comprehensibility of the models which
we measure as the inverse of the number of nodes of the trained decision trees.
In general, the fewer the nodes of a decision tree, the easier it is to comprehend
it.

Section 2 characterizes the type of explanations we seek to generate and the
risks of generating them through straighforward release of surrogate models.
Section 3 describes our microaggregation-based approach to generate explana-
tions of limited size. Experimental results are provided in Sect. 4. Finally, Sect. 5
gathers conclusions and future research directions.

2 Explanations via Surrogate Models

2.1 Machine Learning Explanations

According to [9], an explanation for a black-box machine learning model should
take into account the following properties:
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Accuracy. This property refers to how well an explanation predicts unseen
data. Low explanation accuracy can be fine only if the black-box model to be
explained is also inaccurate.

Fidelity. The explanations ought to be close to the predictions of the explained
model. Accuracy and fidelity are very related: if the black-box model is very
accurate and the explanation has high fidelity, then the explanation has also
high accuracy.

Consistency. Explanations should apply equally well to any model trained on
the same data set.

Stability. When providing explanations to particular instances, similar
instances should produce similar explanations.

Representativeness. A highly representative explanation is one that can be
applied to several decisions on several instances.

Certainty. If the model at study provides a measure of confidence on its deci-
sions, an explanation of this decision should reflect this.

Novelty. This property refers to the capability of the explanation mechanism
to cover instances far from the training domain.

Degree of Importance. The explanation should pinpoint the important
features.

Comprehensibility. Explanations should be understandable to humans. This
depends on the target audience and has psychological and social implications,
although short explanations generally go a long way towards comprehensibility.

Miller analyzes explainability from the social sciences perspective [8] and
makes four important observations: (i) people prefer contrastive explanations,
i.e. why the algorithm took a certain decision does not matter as much to us
as why did it not take a different decision instead; (ii) people select only a few
causes from the many causes that make up an explanation, and personal biases
guide this selection; (iii) referring to probabilities or statistical connections is
not as effective as referring to causes; and (iv) explanations are social, and thus
should be part of a wider conversation, or an interaction between the explainer
and the explainee.

In [7], the authors emphasize the importance of human field experts guiding
the development of explanation mechanisms, given that current machine learning
systems work on a statistical and/or model-free mode, and require context from
human/scientific models to convey convincing explanations (especially for other
field experts).

No single explanation model in the current literature is able to satisfy all
the above properties (refer to [2,9] for extensive surveys on explainable artificial
intelligence techniques). In what follows we will focus on accuracy, fidelity, sta-
bility, representativeness and comprehensibility, to which we will add privacy.
See Sect. 2.2 about the privacy risks of explanations.



18 A. Blanco-Justicia and J. Domingo-Ferrer

2.2 Risks of Surrogate Model Release

A common strategy to provide explanations satisfying the above properties is
via a surrogate model based on intrinsically interpretable algorithms. However,
care must be exercised to ensure that the surrogate model does not violate trade
secret, privacy and explainability.

Trade Secret Risks. A very detailed surrogate model may reveal properties of
the data set that was used to train the black-box model. This may be in conflict
with trade secret. Indeed, training data are often the result of long-term corporate
experience and reflect successes and failures. It takes time to accumulate good
training data. Thus, organizations owning such data regard them as a valuable
asset they do not want disclosed to competitors.

At the same time, too much detail in the released surrogate model may
reveal more about the black-box model to be explained than its owner is willing
to disclose. Traning complex models, like for example deep models, requires a
costly process involving time and computing power. Hence, a well-trained black-
box model is also a highly valued asset that organizations view as a trade secret.

Privacy Risks. If the released surrogate model leaks information on the train-
ing data and these contain personally-identifiable information, then we have a
conflict with privacy legislation [6].

Comprehensibility Risks. A complex surrogate model, even if based on intrin-
sically interpretable algorithms, may fail to be comprehensible to humans. We
illustrate this risk in Figs. 1 and 2.

Figure 1 shows a simple data set with two continuous attributes, represented
by the two dimensions of the graph, and a binary class attribute, represented
by the color of points in the graph. Thus, points represent the records in the
data set. Figure 2 shows a surrogate model consisting of a decision tree trained
on the example data set. With 303 nodes, this model is not very useful as an
explanation to humans: it is very hard to comprehend it.

3 Microaggregation-Based Surrogate Models

To avert the risks identified in Sect. 2.2 while achieving as many of the properties
listed in Sect. 2.1 as possible, we need a method to construct surrogate models
that keep at bay leakage and complexity. To that end, we propose to provide sub-
jects with partial or local explanations, that cover an area of the original training
data set close to the subject (that is, attribute values similar to the subject’s).
Algorithm 1 describes a procedure for the owner of the training data and the
black-box model to generate cluster-based explanations. Then, Protocol 1 shows
how a subject obtains an explanation close to her. The fact that explanations
are cluster-based favors stability: all instances in the cluster are similar and they
are explained by the same interpretable model, so explanations can be expected
to be similar.
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Fig. 1. Example data set

Fig. 2. Decision tree trained on the example data set

Algorithm 1: Generation of cluster-based explanations
Input: Training data set X

1 Compute a clustering C(X) for X based on all attributes except the class
attribute

2 for each cluster Ci ∈ C(X) do
3 Compute a representative, e.g. the centroid or average record c̃i
4 end
5 for each cluster Ci ∈ C(X) do
6 Train an interpretable model, such as a decision tree DTi

7 end

Protocol 1 (Provision of explanations)

1. A subject submits a query x̂ to the black-box model.
2. The black-box model returns to the subject:

(a) A decision d = f(x̂);
(b) The closest representative c̃x = arg minc̃idist(c̃i, x̂) for some distance dist;
(c) The interpretable model DTx corresponding to the cluster represented by

c̃x.
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A shortcoming of Protocol 1 is that the decision output by the interpretable
model DTx on input x̂ may not match the decision d = f(x̂) made by the black-
box model. This is bad for fidelity and can be fixed by returning the closest
representative to x̂ whose decision tree yields d. In this way, the explanation
provision is guided by the black-box model. The search for a valid representative
is restricted by a parameter N : if none of the decision trees associated with the
N closest representatives to x̂ matches the decision of the black-box model, the
decision tree corresponding to the closest representative is returned. While this
may hurt the fidelity of the explanations, returning the tree of an arbitrarily
distant cluster representative would be of little explanatory power. The guided
provision is formalized in Protocol 2.

Protocol 2 (Guided provision of explanations)

1. A subject submits a query x̂ to the black-box model.
2. The black-box model owner does:

(a) Compute the decision d = f(x̂) using the black-box model;
(b) let U be the list of cluster representatives c̃i ordered by their distance to

x̂, being c̃1 the closest representative;
(c) let i = 1;
(d) let found = 0;
(e) repeat

i. let DTi be the interpretable model corresponding to the cluster repre-
sented by c̃i;

ii. if DTi(x̂) = d then found=1 else i = i + 1;
until found = 1 or i > N ;

(f) if found = 1 then return d, c̃i and DTi

else return d, c̃1 and DT1

We choose microaggregation [3,4] as the type of clustering in Algorithm 1,
because it allows enforcing that clusters consist of at least a minimum number
k of records. This minimum cardinality allows trading off privacy and represen-
tativeness for comprehensibility of explanations:

– Parameter k ensures that returning the representative c̃x in Protocol 1 is
compatible with k-anonymity [4,11] for the subjects in the training data set.
Indeed, the representative equally represents k subjects in the training data
set. In this respect, the larger k, the more privacy.

– Additionally, large values of k result in clusters that contain larger parts of
the domain, thus yielding explanations with higher representativeness.

– While choosing large values for k has a positive effect on privacy and repre-
sentativeness, it does so at the expense of comprehensibility. A small k results
in very local explanations, that have the advantage of consisting of simpler
and thus more comprehensible surrogate models.

Specifically, we compute microaggregation clusters using MDAV (Mean Dis-
tance to Average Vector), a well-known microaggregation heuristic [4]. We recall
it in Algorithm 2.
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Algorithm 2: MDAV
Input: X, k
Output: C: set of clusters

1 C ← ∅
2 while |X| ≥ 3k do
3 xc ← mean record(X)
4 xr ← argmaxxi

distance(xi, xc)

5 xs ← argmaxxi
distance(xi, xr)

6 Cr ← cluster(xr, k,X) // Algorithm 3

7 Cs ← cluster(xs, k,X)
8 C ← C ∪ {Cr, Cs}
9 X ← X \ Cr \ Cs

10 end
11 if 2k ≤ |X| < 3k then
12 xc ← mean record(X)
13 xr ← argmaxxi

distance(xi, xc)

14 Cr ← cluster(xr, k,X)
15 C ← C ∪ {Cr}
16 X ← X \ Cr

17 else
18 C ← C ∪ {X}
19 end
20 return C

Figure 3 depicts the representatives (centroids) of clusters computed by
MDAV with k = 200 on the example data set of Fig. 1. The figure also shows
the decision trees that are obtained as explanations for three of the clusters.

Algorithm 3: cluster
Input: x, k, X
Output: C: cluster

1 C ← {x}
2 while |C| < k do
3 xi ← argminxi

distance(xi, x)

4 C ← C ∪ {xi}
5 X ← X \ {xi}
6 end
7 return C

4 Empirical Work

We generated a data set consisting of 30,000 records, each with 10 numeric con-
tinuous attributes and a single binary class label using the make classification
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method from Scikit-learn1. Out of the 30,000 records, we reserved 2/3 to train
the models, and the remaining 1/3 to validate them. The code to generate the
data set and conduct all the experiments reported in this section is available as
a Jupyter notebook2.

We took as a black-box model a neural network denoted by ANN with three
hidden layers of 100 neurons each, which achieves 94.22% classification accuracy.
We also trained a decision tree on the whole data set, to check its accuracy and
its number of nodes. The classification accuracy of this global decision tree is
88.37%, and it has 2,935 nodes. We expected our local decision trees (trained
on a single cluster) to achieve a similar accuracy on average, although it could
happen that clusters containing points from a single class would produce more
accurate classifiers.

Then, we tested our cluster-based mechanism for different values of k. As
stated in Sect. 3, smaller values of k could be expected to produce simpler clas-
sifiers. Instead of directly choosing arbitrary values for k, we chose several per-
centages of the 20,000 records of the training data set that we wanted the clusters
to contain, ranging from 0.1% to 50%; this translated to k values ranging from
20 to 10,000.

Fig. 3. Left, clusters produced by MDAV with k = 200 for the data set of Fig. 1; for
each cluster, points are in a different color and the centroid is depicted. Right, decision
tree-based explanations generated for the three clusters whose centroids have been
marked with � symbols on the left figure. (Color figure online)

1 https://scikit-learn.org/stable/index.html.
2 Download address: https://www.dropbox.com/s/ex46twifl780fj4/MDAV-DT-

Explainability.ipynb?dl=0.

https://scikit-learn.org/stable/index.html
https://www.dropbox.com/s/ex46twifl780fj4/MDAV-DT-Explainability.ipynb?dl=0
https://www.dropbox.com/s/ex46twifl780fj4/MDAV-DT-Explainability.ipynb?dl=0
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The experiment was as follows. For each value of k, we used MDAV to obtain
a clustering of the training data set. Then we computed the centroid represen-
tatives of clusters, and we trained a decision tree for each cluster. After that, we
measured the classification accuracy and the fidelity of the explanations. Classifi-
cation accuracy was computed in the usual manner, with the ground truth being
the labels in the evaluation data set (1/3 of the original data set, that is, the
10,000 records not used for training). Fidelity was computed as the classification
accuracy with respect to the decisions made by the black-box model.

Figure 4a shows the accuracy of our local explanations, which for all values
of k is lower than the accuracy of the black-box model ANN by around 5% in the
unguided approach (Protocol 1) and by only around 2% in the guided approach
(Protocol 2, with N = 3). On the other hand, the accuracy of the unguided
approach of Protocol 1 was basically the same as that of the global decision tree
mentioned above, with the guided approach of Protocol 2 clearly outperforming
both.

Moreover, it is important to note that accuracy is not very affected by the
value of k, although very small values of k seem to produce slightly better results.
This same behavior has been observed for several different generated data sets,
so it cannot be attributed to randomness. In fact, even our unguided approach
outperforms the global decision tree by around 5% in classification accuracy
when trained on very small clusters (0.1% to 1%, or k = 20 to k = 200 for our
data set size). The most plausible reason for this phenomenon is that for these
small values of k, a substantial number of clusters are such that all records in
the cluster have the same class attribute value. For these clusters, the decision
tree is trivial. This hypothesis is further supported by Fig. 5, discussed in more
detail below, where for small values of k we find decision trees containing 0
nodes: these must correspond to clusters whose records all belong to the same
class. Whether this is beneficial from the point of view of explainability is to be
further explored.

(a) Accuracy (b) Fidelity

Fig. 4. Accuracy and fidelity of the decision trees for each value of k. For the guided
approach N = 3 was used.
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Figure 4b, on the other hand, depicts the fidelity of our explanations with
respect to the black-box model. For Protocol 1 (unguided approach) the expla-
nations coincide with the black-box model for 90% of the decisions. When using
Protocol 2 (guided by the ANN with N = 3), these results improve to up to 97%
coincidence, which demonstrates that our method achieves a high accuracy and
fidelity with respect to the black-box model.

Figure 5 deals with the comprehensibility of the explanations, by depicting
the number of nodes of the decision trees trained for each choice of k: since there
is one decision tree per cluster, the box plot represents for each k the median
and the upper and lower quartiles of the number of nodes per decision tree. We
can see that for small k (up to 1% of the training set, in our case k = 200),
the number of nodes per decision tree is well below 100. We argue that decision
trees with 100 or more nodes are not very useful as explanations of a decision.
Since according to Fig. 4a k does not significantly affect accuracy, one should
take the smallest k that is deemed sufficient for privacy (explanations are best
understood if trees have no more than 10 or 20 nodes).

Fig. 5. Comprehensibility of explanations: the box plot represents for each k the median
and lower and upper quartiles of the number of nodes per decision tree.

5 Conclusions and Future Research

We have presented an approach based on microaggregation that allows deriv-
ing explanations of machine learning decisions while controlling their accuracy,
fidelity, representativeness, comprehensibility and privacy preservation. In addi-
tion, being based on clusters our explanations offer stability by design.
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Future research will involve trying different distances in Protocols 1 and 2
and also in the microaggregation algorithm, in order to improve the trade-off
between the above properties. Options to be explored include various semantic
distances.

On the other hand, in this paper we have assumed that explanations are
generated by the owner of the black-box model and the training data set. It is
worth investigating the case in which a third party or even the subjects them-
selves generate the explanations. In this situation the black-box model owner
may limit access to his model to protect his trade secrets. We will explore
ways to generate microaggregation-based explanations that are compatible with
such access restrictions. Possible strategies include cooperation between subjects
and/or smart contracts between the generator of explanations and the owner of
the black-box model.

Acknowledgments and Disclaimer. The following funding sources are gratefully
acknowledged: European Commission (project H2020-700540 “CANVAS”), Govern-
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