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Abstract. Todays high-throughput molecular profiling technologies
allow to routinely create large datasets providing detailed information
about a given biological sample, e.g. about the concentrations of thou-
sands contained proteins. A standard task in the context of precision
medicine is to identify a set of biomarkers (e.g. proteins) from these
datasets that can be used for disease diagnosis, prognosis or to monitor
treatment response. However, finding good biomarker sets is still a chal-
lenging task due to the high dimensionality and complexity of the data
and the often quite high noise level.

In this work, we present an approach to this problem based on Deep
Neural Networks (DNN) and a transfer learning strategy using simula-
tion data. To allow interpretation of the results, we compare different
approaches to analyze the learned DNN. Based on these interpretation
approaches, we describe how to extract biomarker sets.

Comparison of our method to a state-of-the-art L1-SVM approach
shows that the new approach is able to find better biomarker sets for
classification when small sets are desired. Compared to a state-of-the-
art �1-support vector machine (�1-SVM) approach, our method achieves
better results for the classification task when a small number of features
are needed.

Keywords: Deep learning · Attribution · LRP · Interpretation ·
Feature selection · Transfer learning · Mass spectrometry · Proteomics

1 Introduction

High throughput omics methods (such as proteomics) are often used in various
settings to gain a better understanding of the molecular background of human
diseases. In most cases, these studies are focused on the identification of so-called
biomarkers that can be used for diagnosis or prognosis of a disease [1,26]. Due
to the wide range of disease-relevant processes that are influenced by proteins
and recent advances in proteomics technologies such as mass-spectrometry (MS),
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proteomics has fostered a wide availability of this technology. Thus, the need for
analyzing MS proteomics dataset has been increasing rapidly.

The overall idea of biomarker detection - also known as feature selection - is
to distinguish between proteomics mass spectra from a control group of healthy
individuals and from patients carrying a specific disease. In this situation, the
usual approach is to find the differences between these two groups, which can
then be studied from a bio-medical perspective. The aim is to detect the best
but as-small-as-possible set of discriminating features to reduce time-consuming
validation studies in the wet-lab needed for each detected difference. However,
due to the nature of the high-throughput mass-spectrometry acquisition process,
the generated data is very high-dimensional and contains random and systematic
noise, which makes analyzing this kind of data a challenging task.

Many approaches based on state-of-the-art methods such as SVM [7], Lasso
[11], or ElasticNet [38] have been adapted to classify and select discriminating
features from MS data [25]. Other approaches include SPA [5] that addressed
classification and feature selection using compressed sensing [8] or rule mining
approaches (e.g. [21]) where relevant features are identified by adapting a dis-
junctive association rule mining algorithm to distinguish emerging patterns from
MS data. With the advances of deep learning (DL) techniques, the research to
date has tended to integrate the advantage of deep learning scalability to differ-
ent biomedical areas. So far, however, little attention has been paid to use DL
for classification and feature selection for MS proteomics data - mainly due to
the lack of enough samples to train a deep network. In this paper, we address
this problem of very high dimensional MS proteomics data classification using a
DNN in the case where only few training samples are available. Further, we aim
to select a proper interpretable DNN approach that can be utilized to identify
biomarkers. To set the stage, we will first briefly review the background of DNNs
and methods for interpreting their results.

1.1 DNN Classification and Interpretation

There has been great effort on using DNNs since a DNN-based method for the
first time significantly outperformed other approaches in the well known Ima-
geNet challenge [24]. Dozents of different network topologies were proposed since
then to improve the performance of DNNs for various applications, e.g. by vary-
ing layers and filter sizes [32,37], development of the inception module [36], or
adding additional connectivity between layers [15]. Furthermore, effects of differ-
ent training techniques [16,19], better activation units [14], different stochastic
optimization method [9,22], faster training method [20], and different connec-
tivity pattern between layers [18] have improved the DNN efficiency. Parallel to
advances of training deep networks, there has been quite an improvement on
methods for interpreting classification decisions of a trained deep network and
even first steps to go beyond this [17]. Available interpretation methods can be
divided into three categories: function, signal, and attribution methods.

The function technique analyzes the operation that the network function uses
to reach the output. For example, in [31] the authors proposed a class saliency
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map that takes the gradient of a class prediction neuron with respect to the
input pixel. This can show how much a small change to each pixel would affect
the prediction. However, the sensitivity maps based on the raw gradient are
rather noisy. To improve this situation the Smooth grad method [33] enhanced
the saliency map by smoothing the gradient using a Gaussian kernel.

The signal technique analyzes the components of the input that mainly influ-
ence the last layer decision. For example, the Deconvnet [37] approachmaps all
the activities of a network back to the input looking for a pattern in input space
that causes a specific activation in the feature maps. A given activation is prop-
agated back through un-pooling, rectifying and filtering (transpose of learned
features in a forward path) to the input layer. To un-pool for max-pooling, the
switches (the position of the maximum within each pooling region) are recorded
on the forward pass. Other work, e.g. Guided Backpropagation [34] suggests to
ignore the pooling layer and use convolution layers with strides larger than 1.
Therefore, it does not need to record the switches in the forward path.

Finally, the attribution technique aims for computing the importance of an
input feature during the classification decision. An example is the integrated
gradient method [35] that computes the partial derivatives of the output with
respect to each input feature. However, instead of evaluating the partial deriva-
tive just at the given input x as in input× gradient [30], it computes the average
of it while the input is changing along a linear path from a baseline x′. In [3]
this issue was addressed more generally such that it can be applied to a wide
range of structures. This methodology called layer-wise relevance propagation
(LRP) tells how much and to what extent each feature in a particular input con-
tributes to the classification decision. The neuron activation on the decision layer
is distributed iteratively to the previous layers until the input layer is reached.

1.2 Contribution

In this work, we present a DL-based method for classifying very high-dimensional
proteomics data with the goal of biomarker (feature) identification using and
comparing several methods for DNN interpretation.

Unfortunately, almost all available good quality public MS-proteomics
datasets contain only up to a hundred samples - which is not enough to train
a robust and generalized deep neural network. To deal with this problem, we
show how transfer learning using simulated data can improve the situation sig-
nificantly. Secondly, we adapted the LRP interpretation method to allow iden-
tification of the parts of the input that mainly contributes to the classification
decision. These identified parts are used for feature selection. We compare the
feature selection efficiency of different DNN interpretation methods (attribu-
tion, signal, and function) on labeled real datasets. We compare our results to
SVM-based method that is a state-of-the-art approach for MALDI-MS feature
selection [25].
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2 Method

Let xn, n = 1, .., N , xn ∈ IRD and yn, n = 1, .., N , yn ∈ {0, 1} be the classifier
input vectors in a very large D-dimensional feature space and the corresponding
class labels, respectively. The aim is to find a small (if possible minimal) sized
subset of features from the input data x̂ ∈ IRd (d << D), which can be used to
build a classifier f . Ideally, f - which is based only on a subset of all available
features - possess the same classification performance as a classifier based on
all features. Our approach for feature selection makes use of interpretability
analysis for DNNs. The first step is to adapt a DNN to train a generalized
model. The last layer of the trained network contains the class probabilities of
the given input data. This information is propagated back through the network
to the first layer using layer-wise relevance propagation (LRP). We use this
information to identify the parts of the given input contributing the most on the
DNN classification decision. We define the most contributed part of the input
over all training data as discriminating features.

2.1 DNN Structure for Proteomics Data Classification

DNN or multilayer perceptrons are characterized by the depth and the width
of the layers. Depth refers to the number of layers and width determines the
number of neurons on those layers. Depth and width are selected depending on
the complexity of the task while more neurons usually lead the network to learn
more complex functions.

Our experiments with DNNs of different depth and width show that even
though mass spectrum samples can be classified with only a few DNN layers, using
more layers leads to a decreasing generalization error. However, we observe that
almost all architecture, ranging from shallow to deep networks, fail to generalize
correctly due to the limitation in available labeled spectra in public datasets. To
tackle this challenge, we integrate the idea of transfer learning to improve this
situation. The idea in transfer learning is to take the representation of a neu-
ral network that has learned from one task and transfer that representation to
a new task. In this study, we use the Maldiquant library [12] in R to simulate
the needed labeled data. A network with multiple fully connected layers, all fol-
lowed by a rectified linear unit (ReLU) function [27] is designed to classify the
simulated data. ReLU adds nonlinearity and consequently more complexity to
the network. Besides the proper architecture, training the DNN is demanding to
set some hyperparameters that - along with the selected structure - lead to con-
vergence, such as learning rate lr, optimization method of gradient descent, and
proper batch size.

Setting up the proper depth, width, activation function, and hyper-
parameters leads to high classification performance on the simulated dataset
and consequently the weights that can be used to initialize the training process
for the real mass proteomics data. We then retrain the whole network on the
mass proteomics data resulting in a robust and generalized network.



Interpretable Deep Learning for Proteomics 305

2.2 DNN Interpretablity for Feature Selection

In most publicly available MS proteomics datasets, the number of samples is far
too small given the number of features (N << D) to hope for a generalizable
classifier. However, most of the features in different categories do not make a
considerable effect on the classification decision. Moreover, because of the noisy
nature of MS data, using all available features (dimensions) usually degrades
the classification performance. Additionally, considering all data dimensions is
computationally expensive. Therefore, we would like to identify the minimal
sized set of input features that account for the differences of the classes (e.g.
features that are only relevant in the diseased case). Our main idea is to find
those features by analyzing the feature relevance during the DNN classification.

Layer Wise Relevance Propagation. LRP [3] is a methodology for under-
standing classification decision made by multi-layer neural network. This method
identifies which dimensions of the given input data contributed the most to make
the classification decision, given a trained network. The LRP method consists
of two main steps: after a neural network is trained, a sample is presented to
the network and each neurons’ activation is computed. A part of the output
corresponding to the desired class is considered as the relevance score of the
last layer R(L) that is equal to the real-valued prediction output of the clas-
sifier f . This is done using Eq. 1 (known as LRP.ε, see [3] for details) where
R(L) is distributed onto its input neurons at the previous layer, such that
R

(l+1)
k =

∑
i: i is input for neuron k R

(l,l+1)
i←k holds.

R
(l,l+1)
i←j =

{
zij

zj+ε .R
(l+1)
j , if zj ≥ 0

zij

zj−ε .R
(l+1)
j , otherwise

(1)

where, zij = xiwij , zj =
∑

i

zij + bj and xj = g(zj). g is a non-linear activation

function. For each layer Ri is calculated for i = 1, ...,num neurons.
Alternatively, the LRP.αβ rule according to Eq. 2 (see [29] for details) allows

to control the importance of positive and negative values that leads to demon-
strate contradicting evidence in the input (such that α − β = 1). They are
typically chosen as α = 2 and β = 1.

R
(l,l+1)
i←j = R

(l+1)
j .(α.

z+ij

z+j
+ β.

z−
ij

z−
j

) (2)

where “+”, “−” denote the positive and negative parts. For α = 1, β = 0 the
propagation rule is equivalent to LRP.z+ rule as in Eq. 3.

R
(l,l+1)
i←j = R

(l+1)
j

z+ij

z+j
(3)

Iterating every equation down to the first layer yields the relevance scores of
all input dimensions, R

(1)
i .
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Feature Selection. R
(1)
i gives a score for each dimension of the input vec-

tor demonstrating their strength in decision making. It means that the val-
ues assigned to each dimension indicate the importance of these features on
the overall classification decision. Therefore, the high ranked dimensions repre-
sent the most discriminating features. Considering offsets, the presence of noise
and different peak indices on samples belonging to different categories, we look
through the entire sample relevance distributions, R

(1)
in for n = 1, ..., N . The

normalized relevance values are added up through the entire dataset. The high
weighted dimensions show the strength of each individual feature to differenti-
ate the classes. However, for MS proteomics data, in most cases the identified
features are wide and all the indices around are assigned with high values as well
(see Fig. 1). To deal with this effect, we establish a post-processing step to locally
detect the strongest individual features. The post-processing works as follows:
we first select the best feature in the whole spectra, which are determined by
weights from the relevance values. Then, the neighbor’s features in the deter-
mined window are removed. We then select the second best feature and iterate
the process until a stopping criterion is met, e.g. when the classification reaches
the whole data classification accuracy.

3 Results and Discussion

3.1 DNN Training Setup for Mass Spectra Classification
and Feature Selection

Our DNN architecture is characterized by 5 fully connected layers (FCL) of
100 neurons followed by 4 more FCL of 10 neurons and a prediction layer of 2
neurons to classify two classes. All the neurons are activated by a ReLU non-
linear activation function. Neurons at the last layer are fed to the soft-max
activation function, which gives the probability of the given input belonging to
the healthy and diseased classes. We trained the network with cross-entropy
loss function that is minimized using the momentum variant of the stochastic
gradient descent optimizer [28]. Learning rate and batch-size are set to lr =
0.00001 and b = 2. We train the network on the simulated data for 40 epochs,
and then retrain it on real data for 40 epochs followed by another real data
set for 10 epochs for fine-tuning. Afterward, the LRP analyzer is applied to
each sample that activates the network neurons to get the most relevant parts
used by the DNN for the classification decision. Due to the noisy nature of MS
data and mass shift of samples the relevance values are calculated for the entire
spectrum in the dataset. Finally, the average of normalized relevance values are
post-processed with a window-size of 50 on the result.

3.2 Implementation Detail

All the experiments in our proposed method are implemented in python using
Keras [4] with Tensorflow backend and innvestigate library [2] on a machine with
a 3.50 GHz Intel Xeon(R) E5-1650 v3 CPU and a GTX 1080 graphics card with
8 GiB GPU memory.
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3.3 Results on Spiked Data

In this section, we compare different methods for DNN interpretation such
as Gradient method (grad), variants of LRP (LRP.z, LRP.ε, and LRP.αβ
rules), input× gradient, integrated gradient(int grad), guided back-propagation
(guided), deconvenet (dCN), and smooth grad (smgrad) through peak detection
(see [2] for more details on the methods). With this comparison, we aim to evalu-
ate the impact of interpretation methods using a public dataset known as spiked
data [10,23]. The spiked data-set contains proteomics mass spectra of control
and case groups from human blood samples. The case group has been spiked
with a protein-mix of different concentration. The amplitudes of 6 spiked peaks
differentiate the spectra into case and control and their known m/z (position)
values can be used as ground-truth [6]. Thus, the main aim in this part is to
investigate how well an algorithm can detect the m/z positions of the known
6 individual spiked peeks among all 42.381 dimensions. The data contains 95
samples of 50 case and 45 control spectra. The experiments are carried out on
two concentration levels, 12.21 nMol/L and 0.76 nMol/L, referred as spiked160
and spiked80 in this paper.

The results of our approach, i.e. the selected spiked peaks, are shown in
Tables 1 and 2. The reported peaks are the closest ones to the spiked peaks
ground-truth among almost 30 high-ranked features. From these two tables we
can clearly see that LRP variants (attribution method), inp× grad, and int grad
are far more capable than signal (grad and smoothgrad) and function (guided
and dCN) methods. It can also be seen from the results that, while there is no
considerable difference between the variant of LRP in this application, one small
peak (m/z 3149) can only be detected using LRP.z. Further studies are needed
to investigate the reason for this.

Prior to feature selection using the described DNN classification analyzer, the
network should become generalized enough to allow the application of interpre-
tation methods. This is what we addressed with transfer learning for the cases
when only a few labeled samples are available to train a DNN. In this situation,
a simulated dataset of 5000 samples [12] is fed to the network. The dataset con-
tains two equal-size groups spectra as control and case. Each simulated spectra
has more than 40 thousands of mass values as the real data and simulated data
spectra have. In addition, each one has 412 peaks in which 24 are discriminat-
ing. They are equally spread in two groups and are set in fixed positions trough
entire dataset. After training, the network re-trained on a real-world dataset of
81 samples and then fine-tuned on spiked data. Initializing the network weights
this way should lead to better results since it is less likely that the optimizer
gets trapped in a bad local minimum.

We observe from training the network that, while the objective function can
not converge on some subsets of samples, the pre-trained network can avoid
that. Pre-trained weights lead to a more robust network that resulted in 97.1%
(CI ± 2.68) and 96.5% (CI ± 3.6) generalization accuracies on spiked160 and
spiked80, respectively. The seemingly large confidence intervals (CI) results from
misclassification of one sample on different subsamples during training. Iterat-
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ing training (train and validation) on 90% of randomly selected spiked160 (95
samples) and inferring on the rest, each time leads to 100% or 88% testing accu-
racies. This means when the network perform 88% on testing 1 spectrum out of
9 ones was misclassified.

Table 1. Detected spiked peaks using the 9 DNN interpretation methods on spiked160
as the top 35 high ranked features.

Peaks Grad LRP.z LRP.αβ LRP.ε inp× grd int grad Guided dCN Smoothgrad

1047.20 - 1047.91 1046.76 1047.91 1047.91 1047.91 - - -

1297.51 - 1300.67 1298.23 1300.67 1300.67 1300.67 - - -

1620.88 1623.6 1621.91 1620.48 1621.91 1621.91 1621.91 - - 1623.6

2466.73 - 2467.63 2466.51 2467.63 2467.63 2467.63 2463.63 - -

3149.61 - -∗ - - - - - - -

5734.56∗∗ - - - - - - - - -
∗Although m/z 3149 is not selected as top high ranked features because of its insignificant peak in

comparison to larger peaks in the spectra (as illustrated in Fig. 1), it is selected as the 94th feature with

our method using LRP.z. The other LRP rules can also select this peak but later as the less important

feature. However, inp× grad and int grad could not find this small peak. This is the reason why we

analyzed the noisy P.CA data and the visualizations by adapting the LPR.z rule.
∗∗The mean height of the signal in this peak is less than 40 that is comparable to the level of noise in

both spiked160 and spiked80 data-sets [5]. Therefore, this peak cannot be selected as a discriminating

feature.

We further explained the results in Fig. 1 by visualizing the output of one
of the interpretation methods. The figure shows the mean of the normalized
LRP.z values of a spiked160 spectrum overlaid on the distribution of case and
control spectra of the dataset around the selected spiked peaks. The visualization
around the spiked peaks, as shown in these plots, indicate the wide peak range
that causes the deviation on the selected features from the spiked ground truth
peaks in Tables 1 and 2.

Table 2. Detected spiked peaks using 9 DNN interpretation methods on spiked80 as
the top 30 high ranked features.

Peaks Grad LRP.z LRP.αβ LRP.ε inp× grd int grad Guided deCN Smoothgrad

1047.20 - 1040.61 1041.76 1040.61 1040.61 1040.61 - - -

1297.51 - 1298.35 1298.0 1298.35 1298.35 1298.35 - - -

1620.88 - 1620.87 1619.7 1620.87 1620.87 1620.87 - - -

2466.73 - 2467.63 2468.6 2467.63 2467.63 2467.63 - - -

3149.61 3151.25 - - - - - - - 3151.25

5734.56 - - - - - - - - -
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The spiked peaks that are amongst the top 30 selected features using our
pipeline are supposed to be selected as the most discriminating features. How-
ever, in Fig. 2 we illustrate that the selected features that are ranked better than
the true spiked peaks are more discriminating. For example, it is apparent from
the plot that the difference of intensity values of the case and control samples
around feature 1021 is larger than their corresponding difference around feature
1047. Therefore, the DNN tends to rely more on these areas in order to make
the classification decision. It can also be learned from this plot that not only
the individual features are important for the DNN to make a classification deci-
sion, but a Gaussian range around high ranked ones also plays a crucial role. For
example, relevance values around the m/z 1021 are considerably higher than the
relevance value of individual m/z 1047. Therefore, we can not expect a DNN to
classify the two groups based on only individual features.

3.4 Results on Pancreas Cancer Data

The Pancreas Cancer dataset (P. CA) is another publicly available data-set [10].
It contains 81 spectra having 42391 features collected from pancreatic cancer
patients and apparently healthy control patients. As described previously, due
to the lack of sufficient training samples on the public dataset for training a
deep network we retrain the network on real data from the network trained on
simulated data. We achieved 98%–95% training-testing average accuracy while
almost all the structures of DNN we tried from shallow to deep and narrow
to wide could not become generalized correctly. The classification decision is
interpreted using LRP.z rule to extract the important parts. Figure 3 illustrates
the average of normalized LRP.z over the entire dataset around two of the high
ranked features. The relevance values are overlaid on top of the mean of the case
and control spectra. These two features are illustrated due to the large impact
on the classification decision after feature selection (see Fig. 4).

We compare our feature selection method with benchmark methods on the
same dataset as follows. A BinDA-algorithm-based method [13] reported 30
peaks m/z 4495, 8868, 8989, 1855, 4468, 8937, 2023, 1866, 5864, 5946, 1780,
2093, 5906, 5960, 8131, 1207, 4236, 2953, 9181, 1021, 1466, 4092, 4251, 5005,
8184, 1897, 3264, 2756, 6051, and 1264, with m/z 8937 as the most discrimi-
nating features for pancreatic progenitor cell differentiation. Note that, the bold
m/z values indicate the features that are also discovered by our method.
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Fig. 1. Visualization of the relevance values around the spiked peaks. Black and blue
show the diseased and healthy spectrum of spiked160, and the bars are the average
of the normalized LRP.z values over the entire samples. The bars are scaled to the
maximum intensity of the spectrum. (Color figure online)



Interpretable Deep Learning for Proteomics 311

Fig. 2. Comparison visualization of two selected peaks. This plot illustrates the selected
spiked 1047 in a wider range to include the selected feature 1021. This illustration shows
that m/z 1021 is selected prior to the ground truth m/z 1047 since network sees larger
differences between the two classes. Black and blue show the diseased and healthy
spectrum of spiked160, and the bars are the average of the normalizer LRP.z values
over the entire samples. The bars are scaled to the maximum intensity of the spectrum
(Color figure online)

In [5] a compressed sensing-based approach was used to identify peaks
with m/z 1464, 1546, 1944, 5904, 1619, 4209, and m/z 2662 as the
most important features to distinguish the healthy and diseased spectra. In
this study, peaks with m/z values 4212.36, 1465.43, 3264.36, 2661.37,
5909.96, 4092.18, 1616.98, 1545.91, 4647.56, 6636.87, 3191.41, 2934.34,
5338.51, 2953.42, 1060.26, and m/z 3242.47 are ranked as the most discrimi-
nating features to achieve the state-of-the-art classification accuracy of 95% [5].
The mass shift of 1 to 3 Dalton on the m/z axis among the identified peaks over
different study is likely arising from different pre-processing and post-processing
procedures.

3.5 Feature Selection Comparison

We compare the discriminating accuracy of our feature selection method with the
state-of-the-art �1-SVM approach for MALDI-MS feature selection [25]. Figure 4
shows how the classification accuracy is changing for both approaches when the
number of features used by the classifier is increased. The experiments are carried
out on the two spiked data-sets and the P. CA data-set. As can be seen from
the plots, while both methods reach the maximum performance, our method
outperforms the �1-SVM approach when only very few features are used. This
is an important property in the situation, where more selected features lead
to higher costs in the following steps in some bio-medical pipeline, where each
selected feature must be validated in expansive wet-lab experiments.
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Fig. 3. Illustration of the relevance values around the second (m/z 1465) and forth
(m/z 2661) high ranked features of P.CA data. These features are picked for illustration
due to their largest impact on the classification accuracy after feature selection, which
is apparent from the last row of Fig. 4. The means of the case and healthy spectrum
are shown in black and blue, respectively. (Color figure online)

We further investigate the DNN classification performance using the indi-
vidual features by adding the selected features to the dataset. Despite SVM, it
shows significant deduction on the results since as it is shown in the Fig. 2 and
explained in previous section DNN sees a wide window around selected individ-
ual features for making decision rather than single features.
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Fig. 4. Generalization accuracies with increasing the number of features to the dataset.
Plots show the strength of selected features on spiked160 (first row), spiked80 (second
row), and P. CA (third row) using our method in red-square and �1-SVM in blue-
triangle. (Color figure online)
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4 Conclusion

This paper presents a new feature selection method based on deep neural net-
works (DNN) and a transfer learning strategy using simulated data for very
high dimensional MS proteomics data. We compare different DNN interpreta-
tion methods and show that the attribution based methods perform best for
this application. We also demonstrate that there is no considerable difference
between the variant of LRP (ε, αβ, and z rules) for identifying the important
parts of proteomics data for a classification decision. The results suggest that
our approach has a significantly better performance than classical approaches
on the classification task, where quite a few numbers of features are favorable.

Acknowledgments. This study was funded by the German Ministry of Research
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