
Sparse Nerves in Practice

Nello Blaser1,2(B) and Morten Brun1(B)

1 Department of Mathematics, University of Bergen, Allégaten 41,
Bergen, Norway

{nello.blaser,morten.brun}@uib.no
2 Department of Informatics, University of Bergen, Thormøhlensgate 55,

Bergen, Norway

Abstract. Topological data analysis combines machine learning with
methods from algebraic topology. Persistent homology, a method to char-
acterize topological features occurring in data at multiple scales is of
particular interest. A major obstacle to the wide-spread use of persistent
homology is its computational complexity. In order to be able to calculate
persistent homology of large datasets, a number of approximations can
be applied in order to reduce its complexity. We propose algorithms for
calculation of approximate sparse nerves for classes of Dowker dissimilar-
ities including all finite Dowker dissimilarities and Dowker dissimilarities
whose homology is Čech persistent homology.

All other sparsification methods and software packages that we are
aware of calculate persistent homology with either an additive or a
multiplicative interleaving. In dowker homology, we allow for any non-
decreasing interleaving function α.

We analyze the computational complexity of the algorithms and
present some benchmarks. For Euclidean data in dimensions larger than
three, the sizes of simplicial complexes we create are in general smaller
than the ones created by SimBa. Especially when calculating persistent
homology in higher homology dimensions, the differences can become
substantial.

Keywords: Sparse nerve · Persistent homology · Čech complex ·
Rips complex

1 Introduction

Topological Data Analysis combines machine learning with topological meth-
ods, most importantly persistent homology [10,12]. The underlying idea is that
data has shape and this shape contains information about the data-generating
process [4]. Persistent homology is a method to characterize topological features
that occur in data at multiple scales. Its theoretical properties, in particular
the structure theorem and the stability theorem make persistent homology an
attractive machine learning method.

A major obstacle to the wide-spread use of persistent homology is its compu-
tational complexity when analyzing large datasets. For example the Čech com-
plex grows exponentially with the number of points in a point cloud. In order

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
A. Holzinger et al. (Eds.): CD-MAKE 2019, LNCS 11713, pp. 272–284, 2019.
https://doi.org/10.1007/978-3-030-29726-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29726-8_17&domain=pdf
http://orcid.org/0000-0001-9489-1657
https://github.com/mbr085/Sparse-Dowker-Nerves
https://doi.org/10.1007/978-3-030-29726-8_17


Sparse Nerves in Practice 273

to be able to calculate persistent homology, a number of approximations enable
us to reduce the computational complexity of persistent homology calculations
[3,5,6,8].

Recently, Blaser and Brun have presented methods to sparsify nerves that
arise from general Dowker dissimilarities [1,2]. In this article, we apply these
techniques to calculate the persistent homology of point clouds, weighted net-
works and more general filtered covers. This paper is focused on the algorithm
implementation, computational complexity and benchmarking of methods sug-
gested in Blaser and Brun [2].

All algorithms presented in this manuscript are implemented in the python
package dowker homology, available on github. With dowker homology it is pos-
sible to calculate persistent homology of ambient Čech filtrations, and intrinsic
Čech filtrations of point clouds, weighted networks and general finite filtered
covers. The dowker homology package does all the preprocessing and sparsifica-
tion, and relies on GUDHI [13] for calculating persistent homology. Users may
specify additive interleaving, multiplicative interleaving or arbitrary interleaving
functions.

This paper is organized as follows. In Sect. 2, we give a short introduction
on the underlying theory of the methods presented here. Section 3 presents the
implemented algorithms in detail. In Sect. 4 we quickly discuss the size complex-
ity of the sparse nerve and in Sect. 5 we provide detailed benchmarks comparing
the sparse Dowker nerve to other sparsification strategies. Section 6 is a short
summary of results.

2 Theory

The theory is described in detail in [2]. In brief, the algorithm consists of two
steps, a truncation and a restriction. Given a Dowker dissimilarity Λ, the trun-
cation gives a new Dowker dissimilarity Γ that satisfies a desired interleaving
guarantee. The restriction constructs a filtered simplicial complex that is homo-
topy equivalent to, but smaller than the filtered nerve of Γ . The paper [2] gives
a detailed description of the sufficient conditions for a truncation and restric-
tion to satisfy a given interleaving guarantee. Here we give a new algorithm to
choose a truncation and restriction that together result in a small sparse nerve.
In Sect. 5, we compare sparse nerve sizes from the algorithms presented here
with the sparse nerve sizes of the algorithms presented in [1] and [2].

3 Algorithms

We present all algorithms given a finite Dowker dissimilarity. Generating a finite
Dowker dissimilarity from data is a precomputing step that we do not cover in
detail. For the intrinsic Čech complex of n data points in Euclidean space R

d,
this consists of calculating the distance matrix, with time complexity O(n2 · d)
operation.

https://github.com/mbr085/Sparse-Dowker-Nerves
https://github.com/mbr085/Sparse-Dowker-Nerves
https://github.com/mbr085/Sparse-Dowker-Nerves
https://github.com/mbr085/Sparse-Dowker-Nerves
http://gudhi.gforge.inria.fr/


274 N. Blaser and M. Brun

3.1 Cover Matrix

The cover matrix is defined in [2, Definition 5.4]. Let Λ : L × W → [0,∞] be a
Dowker dissimilarity. Given l, l′ ∈ L let

P (l, l′) = {Λ(l′, w) | w ∈ W with Λ(l, w) < Λ(l′, w)}
and define the cover matrix ρ as

ρ(l, l′) =

{
supP (l, l′) if P (l, l′) is non-empty
0 if P (l, l′) = ∅.

More generally, we can define a cover matrix of two Dowker dissimilarities
Λ1 : L × W → [0,∞] and Λ2 : L × W → [0,∞] as follows.

P (l, l′) = {Λ1(l′, w) | w ∈ W with Λ2(l, w) < Λ1(l′, w)}
and define the cover matrix ρ as before. We define the cover matrix algorithm in
this generality, but sometimes we will use it with just one Dowker dissimilarity
Λ, in which case we implicitly use Λ1 = Λ2 = Λ.

Our algorithms for calculating the truncated Dowker dissimilarity and for
calculating a parent function both rely on the cover matrix. The cover matrix
is the mechanism for the two algorithms to interoperate. Algorithm1 explains
how the cover matrix can be calculated from two Dowker dissimilarities.

Algorithm 1: Cover matrix
Input : Dowker dissimilarities Λ1(l, w) and Λ2(l, w) for all l ∈ L and w ∈ W .
Output: Cover matrix ρ(l0, l1) for all l0, l1 ∈ L.
Define ρ as an |L| × |L| matrix of zeros indexed by L × L.
for (l0, l1) in L × L do

for w in W do
if Λ2(l0, w) < Λ1(l1, w) then

Update ρ(l0, l1) = max{ρ(l0, l1), Λ1(l1, w)}.
end

end

end
Return ρ.

The cover matrix algorithm is the bottleneck for calculating the truncated
Dowker dissimilarity and the parent function. Its running time O(|L|2 · |W |) is
quadratic in the size of L and linear in the size of W .

3.2 Truncation

Given a Dowker dissimilarity Λ : L × W → [0,∞], and a translation function
α : [0,∞] → [0,∞], every Dowker dissimilarity Γ : L × W → [0,∞] satisfying



Sparse Nerves in Practice 275

Λ(l, w) ≤ Γ (l, w) ≤ α(Λ(l, w)), is α-interleaved with Γ . In the case where α is
multiplication by a constant, both extremes Λ(l, w) and α(Λ(l, w)) will result in
restrictions with sparse nerves of the same size. Our goal is to find a truncation
that interacts well with the restriction presented in Sect. 3.4 in order to produce
a small sparse nerve.

Algorithm 2 explains in detail, how the truncated Dowker dissimilarity is
calculated. The high level view is that we first calculate a farthest point sampling
from the cover matrix and the edge list E of the hierarchical tree of farthest
points. Finally, we iteratively reduce Γ (l, w) starting from α(Λ(l, w)) by taking
the minimum of Γ (l, w) and Γ (l′, w) for (l′, l) in E.

Algorithm 2: Truncated Dowker dissimilarity
Input : Dowker dissimilarity Λ(l, w) for all l ∈ L and w ∈ W ,

translation function α : [0, ∞] → [0, ∞].
Output: Truncated dowker dissimilarity Γ (l, w) for all l ∈ L and w ∈ W .
Calculate cover matrix ρ(l0, l1) of Λ and αΛ for all l0, l1 ∈ L.
Choose initial point l0 ∈ L and set L0 = {l0} and T (l0) = ∞.
Initialize cover distance from L0 as d(L0, l) = ρ(l, l0) for l ∈ L \ {l0}.
Set index i = 0.
while |L0| < |L| do

Increment i by 1.
Add the point li = argmaxl′∈L\L0

d(L0, l
′) to L0.

Set T (li) = d(L0, li).
Update the cover distance from L0 as d(L0, l) = min{d(L0 \ {li}, l), ρ(l, li)}
for l ∈ L \ L0.

end
Initialize the graph G = (L, E) with E = ∅.
for l in L0 \ {l0} (sorted in order points were added to L0) do

if There exists a l′ ∈ L with T (l) = ρ(l, l′) then
Find the minimum ψ(l) such that T (l) = ρ(l, ψ(l)).

end
else

Find the minimum of ρ(l, l′) for l′ < l in the order and the argument
ψ(l) minimizing it.

end
Add (l, ψ(l)) to the edge list E.

end
Topologically sort the nodes l ∈ L from highest to lowest T (l).
Initialize Γ (l, w) = α(Λ(l, w)) for l ∈ L and w ∈ W .
for l in L \ {l0} (topologically sorted) do

for l′ such that (l′, l) ∈ E do
Update Γ (l, −) = min{Γ (l, −), Γ (l′, −)}.

end
Update Γ (l, −) = max{Γ (l, −), Λ(l, −)}.

end
Return Γ .



276 N. Blaser and M. Brun

The truncation algorithm has a worst-case time-complexity O(|L|2 · |W |).
As mentioned earlier, calculating the cover matrix is the bottleneck. The time
complexity of the while loop is O(|L|2), sorting is O(|L| · log |L|), the first for
loop is O(|L|2), the topological sort of a tree is O(|L|), and the last for loop is
O(|L| · |W |).

3.3 Parent Function

The parent function ϕ : L → L can in principle be any function such that the
graph G consisting of all edges (l, ϕ(l)) with l �= ϕ(l), is a tree.

Here we present the algorithm to create one particular parent function that
works well in practice and combined with the truncation presented in Sect. 3.2
results in small sparse nerves.

Algorithm 3 is a greedy algorithm. Ideally, we would like to set the parent
point of any point l ∈ L as the point l′ ∈ L that minimizes ρ(l, l′′) for l′′ ∈ L
with ρ(l, l′′) > 0. However, this may not result in a proper parent function.
Therefore we start with this as a draft parent function and then update it so
that it becomes a proper parent function.

Algorithm 3: Parent points
Input : Dowker dissimilarity Λ(l, w) for all l ∈ L and w ∈ W .
Output: Parent points ϕ(l) for all l ∈ L.
Calculate cover matrix ρ(l0, l1) for all l0, l1 ∈ L.
for l in L do

Find the minimum m(l) of ρ(l, l′) for all l′ �= l and the argument ϕ∗(l)
which minimizes it.

end
Sort l ∈ L by non-increasing m(l).
Let l0 ∈ L be the first point in L.
Initialize ϕ(l) = l0 for all l ∈ L.
for l in L \ {l0} do

if ϕ∗(l) comes before l then
Set ϕ(l) = ϕ∗(l).

end
else

Set ϕ(l) = argmin ρ(l, l′) for l′ that come before l with ρ(l, l′) > 0.
end

end
Return ϕ.

The time complexity of calculating the cover matrix is O(|L|2 · |W |). Every
subsequent step can be done in at most O(|L|2) time.



Sparse Nerves in Practice 277

3.4 Restriction

Given a set of parent points ϕ(l) for l ∈ L and the cover matrix ρ : L×L → [0,∞],
Algorithm 4 calculates the minimal restriction function R : L → [0,∞] given in
[2, Definition 5.4, Proposition 5.5].

Algorithm 4: Restriction times
Input : Parent points ϕ(l) for all l ∈ L,

cover matrix ρ(l0, l1) for all l0, l1 ∈ L.
Output: Restriction times R(l) for all l ∈ L.
Initialize R′(l) = ∞ for l ∈ L.
for l in L do

if ϕ(l) is not l then
Set R′(l) = ρ(l, ϕ(l)).

end

end
for l in L do

Set R(l) = R′(l).
Set l′ = l.
while ϕ(l′) is not l′ do

Set l′ = ϕ(l′).
Set R(l′) = max{R(l′), R′(l′)}.

end

end
Return R.

The restriction algorithm has a worst-case quadratic time-complexity
O(|L|2). The first loop is linear in the size of L, while the second loop depends
on the depth td(G) of the parent tree G. For a given parent tree depth, the
complexity is O(|L| · td(G)).

3.5 Sparse Nerve

In order to calculate persistent homology up to homological dimension d, we
calculate the (d + 1)-skeleton N of the sparse filtered nerve of Γ . Given the
truncated Dowker dissimilarity Γ , the parent tree ϕ and the restriction times
R, Algorithm 5 calculates the (d+1)-skeleton N . Note that the filtration values
can be calculated either from Γ or directly from Λ.

The time complexity of the sparse nerve algorithm is O(|L|2 · |W | +
|N | log(|N |)). The loop to find slope points had time complexity O(|L|2) The loop
for finding maximal faces has a time complexity of O(|L|2 · |W |). The remaining
operations have time complexity O(|N | log(|N |). Calculating persistent homol-
ogy using the standard algorithm is cubic in the number of simplices.

So far we have considered the case of a Dowker dissimilarity Λ : L × W →
[0,∞] with finite L and W . This includes for example the intrinsic Čech complex
of any finite point cloud X in a metric space (M,d), where L = W = X and
Λ = d.



278 N. Blaser and M. Brun

Algorithm 5: Sparse Nerve
Input : Dowker dissimilarities Λ(l, w) and Γ (l, w) for all l ∈ L and w ∈ W ,

restriction times R(l) for all l ∈ L,
parent points ϕ(l) for all l ∈ L,
dimension d

Output: The d + 1-skeleton N of the sparse nerve and filtration values v(σ)
for σ ∈ N .

Initialize slope points S = L.
for l in L do

Find the set L′ of all points l′ ∈ L with ϕ(l′) = l.
Set r(L′) to the maximum of R(l′) for l′ ∈ L′.
if R(l) < ∞ and r(L′) < R(l) then

Remove l from S
end

end
Initialize maximal faces F .
for l in L do

for w ∈ W do
if Γ (l, w) <= R(l) then

Find the face f consisting of all l′ ∈ L with R(l) ≤ R(l′),
Γ (l′, w) ≤ R(l), Γ (l′, w) < ∞, and if l′ ∈ S, then Γ (l′, w) < R(l′).
Add f to F .

end

end

end
Calculate the d + 1-skeleton N of the sparse nerve consisting of all subsets σ of
F of cardinality at most d + 2.
for σ in N do

Calculate the filtration value v(σ) of σ as v(σ) = minw∈W maxl∈σ Λ(l, w).
end
Sort N by v(σ) for σ ∈ N .
Return N and v.

3.6 Ambient Čech Complex

Let X be a finite subset of Euclidean space R
n and consider its ambient Čech

complex. For L = X and W = R
n, the Dowker nerve of Λ = d|L×W is the ambient

Čech complex of X. Since W is not finite we have to modify our approach slightly
to in order to construct a sparse approximation of the Dowker nerve of Λ.

We first calculate the restriction function R′(l) for l ∈ L of the intrinsic Čech
complex Λ′ = Λ|L×L. Then we note that R(l) = 2R′(l) is a restriction function
for Λ [2, Definition 5.3]. We can use Algorithm 5 to calculate the simplicial
complex N using the restriction times R and Dowker dissimilarity Λ′. However,
since W is infinite, we can not directly compute the minimum used to calculate
the filtration values v(σ) for σ ∈ N . We circumvent this problem by considering
a filtered simplicial complex K with the same underlying simplicial complex as
N , but with filtration values inherited from the Dowker nerve NΛ. This means



Sparse Nerves in Practice 279

that the filtration values are computed with the miniball algorithm. Thus, we
construct a filtered simplicial complex K, such that, for all t ∈ [0,∞] we have

Nt ⊆ Kt ⊆ NΛt.

Since N is α-interleaved with NΛ, it follows by [2, Lemma 2.14] that also K is
α-interleaved with NΛ.

3.7 Interleaving Lines

Our approximations to Čech- and Dowker nerves are interleaved with the origi-
nal Čech- and Dowker nerves. As a consequence their persistence diagrams are
interleaved with the persistence diagrams of the original filtered complexes. In
order to visualize where the points may lie in the original persistence diagrams,
we can draw the matching boxes from [2, Theorem 3.9]. However, this result in
messy graphics with lots of overlapping boxes. Instead of drawing these matching
boxes we draw a single interleaving line. Points strictly above the line in the per-
sistence diagram of the approximation match points strictly above the diagonal
in the persistence diagram of the original filtered simplicial complex. More pre-
cisely, the matching boxes of points above the interleaving line do not cross the
diagonal, while the matching boxes of all points below the diagonal have a non-
empty intersection with the diagonal. Figure 1 illustrates such an interleaving
line for 100 data points on a Clifford torus with interleaving α(x) = x3

2 +x+0.3.

4 Complexity Analysis

We have shown time complexity analysis of each step. Combined, the time it
takes to calculate the sparse filtered nerve is O(|L|2 · |W | + |N | log(|N |)). Here
we present some results on the complexity of the nerve size depending on the
maximal homology dimension d and the sizes of the domain spaces L and W
of the Dowker dissimilarity Λ : L × W → [0,∞]. Although we can not show
that the sparse filtered nerve is small in the general case, we will show in the
benchmarks below that this is the case for many real-world datasets.

We now limit our analysis to Dowker dissimilarities that come from doubling
metrics and multiplicative interleavings with an interleaving constant c > 1. In
that case, Blaser and Brun [2] have showed that the size of the sparse nerve is
bounded by the size of the simplicial complex by Cavanna et al. [5], whose size
is linear in the number |L| of points.

5 Benchmarks

We show benchmarks for two different types of datasets, namely data from metric
spaces and data from networks.



280 N. Blaser and M. Brun

Fig. 1. Interleaving line. We generated 100 points on a Clifford torus that and calcu-

lated sparse persistent homology with an interleaving of α(x) = x3

2
+ x + 0.3. This

demonstrates the interleaving line for a general interleaving. Points above the line
are guaranteed to have matching points in the persistence diagram with interleaving
α(x) = x.

Metric Data. We have applied the presented algorithm to the datasets from
Otter et al. [11]. First we split the data into two groups, data in R

d with dimen-
sion d at most 10 and data of dimension d larger than 10. The low-dimensional
datasets we studied consisted of six different Vicsek datasets (Vic1-Vic6), dragon
datasets with 1000 (drag1) and 2000 (drag2) points and random normal data
in 4 (rand4) and 8 (rand8) dimensions. For all low-dimensional datasets, we
compared the sparsification method from Cavanna et al. [5] termed ‘Sheehy’,
the method from [1] termed ‘Parent’ and the algorithm presented in this paper
termed ‘Dowker’ for the intrinsic Čech complex. All methods were tested with a
multiplicative interleaving of 3.0. In addition to the methods described above, we
have applied SimBa [8] with c = 1.1 to all datasets. Note that SimBa approx-
imates the Rips complex with an interleaving guarantee larger than 3.0. For
the 3-dimensional data we additionally compute the alpha-complex without any
interleaving [9]. For all algorithms we calculate the size of the simplicial complex
used to calculate persistent homology up to dimension 1 (Table 1).

The sparse Dowker nerve is always smaller than the sparse Parent and sparse
Sheehy nerves. In comparison to SimBa, it is noticeable that the SimBa results
in slightly smaller simplicial complexes if the data dimension is three, but the



Sparse Nerves in Practice 281

Table 1. Comparison of sizes of simplicial complexes for homology dimension 1 for
low-dimensional datasets in Euclidean space. The smallest simplicial complexes in each
dimension are displayed in bold. For all three-dimensional datasets, SimBa results in
slightly smaller simplicial complexes. For the two datasets of dimensions larger than
three, the Dowker simplicial complex is smallest.

Name Points Dim Alpha Base Dowker Parent Sheehy SimBa

Vic1 300 3 5655 4.5 · 106 1526 35371 29579 830

Vic2 300 3 5657 4.5 · 106 1282 24977 25352 812

Vic3 300 3 5889 4.5 · 106 1301 30894 27611 822

Vic4 300 3 5838 4.5 · 106 1113 28722 24413 804

Vic5 300 3 5953 4.5 · 106 1196 39098 68981 973

Vic6 300 3 6006 4.5 · 106 1314 38860 67250 971

drag1 1000 3 21632 1.7 · 108 6045 196660 201308 3204

drag2 2000 3 44446 1.3 · 109 12230 534998 395740 6368

ran4 100 4 1.7 · 105 317 7356 36316 420

ran8 1000 8 1.7 · 108 14126 598328 4366593 24980

sparse Dowker Nerve is smaller for most datasets in dimensions larger than
3. For datasets of dimension 3, the alpha complex without any interleaving is
already smaller than the Parent or Sheehy interleaving strategies, but Dowker
sparsification and SimBa can reduce sizes further.

The high-dimensional datasets we studied consisted of the H3N2 data
(H3N2), the HIV-1 data (HIV), the Celegans data (eleg), fractal network data
with distances between nodes given uniformly at random (f-ran) or with a linear
weight-degree correlations (f-lin), house voting data (hou), human gene data
(hum), collaboration network (net), multivariate random normal data in 16
dimensions (ran16) and senate voting data (sen).

For all high-dimensional datasets, we compared the intrinsic Čech complex
sparsified by the algorithm presented in this paper (‘Dowker’) with a multiplica-
tive interleaving of 3.0 to the Rips complex sparsified by SimBa [8] with c = 1.1.
For the high-dimensional datasets, we do not consider the ‘Sheehy’ and ‘Parent’
methods, because they take too long to compute and are theoretically domi-
nated by the ‘Dowker’ algorithm. For all algorithms we calculate the size of the
simplicial complex used to calculate persistent homology up to dimensions 1 and
10 (Table 2).

In comparison to SimBa, it is noticeable that the SimBa, the Dowker Nerve
is smaller for most datasets, with a more pronounced difference for persistent
homology in 10 dimensions.

Graph Data. In order to treat data that does not come from a metric, we cal-
culated persistent homology from a Dowker filtration [7]. Table 3 shows the sizes
of simplicial complexes to calculate persistent homology in dimensions 1 and 10



282 N. Blaser and M. Brun

Table 2. Comparison of sizes of simplicial complexes for homology dimensions 1 and 10
for high-dimensional datasets in Euclidean space. The smallest simplicial complexes in
each dimension are displayed in bold. Except for one dataset, the Dowker sparsifications
result in smaller simplicial complexes than SimBa. Note that we write ∞ when the
computer ran out of memory.

Name Points Dim 1-dimensional 10-dimensional

Base Dowker SimBa Base Dowker SimBa

H3N2 2722 1173 3.4 · 109 9478 11676 3.4 · 1032 12503 25305

HIV 1088 673 2.1 · 108 2972 14834 5.5 · 1027 3273 1887483

eleg 297 202 4.4 · 106 1747 2688 8.2 · 1020 6229 14883

f-lin 512 257 2.2 · 107 1651 10757 6.1 · 1023 2927 13457079

fr-ran 512 259 2.2 · 107 1571 13419 6.1 · 1023 2249 ∞
hou 445 261 1.5 · 107 1168 2283 1.1 · 1023 1233 3753

hum 1397 688 4.5 · 108 4431 108118 1.1 · 1029 5673 ∞
net 379 300 9.1 · 106 1164 1207 1.6 · 1022 1617 1425

ran16 50 16 2.1 · 104 105 203 1.7 · 1011 105 293

sen 103 60 1.8 · 105 269 298 1.8 · 1015 279 317

Table 3. Comparison of sizes of simplicial complexes for homology dimensions 1 and
10 for graphs with 100 nodes. For the 1-dimensional case, we show that the Dowker
restriction can in some cases reduce the simplicial complex significantly even without
any truncation.

Data properties 1-d case 10-d case

Name Nodes Edges Base Dowker
α = 3.0

Dowker
α = 1.0

Base Dowker
α = 3.0

Cycle graph 100 100 166750 297 166750 1.2 · 1015 305

Circular ladder
graph

150 324 166750 345

Ladder graph 148 316 46894 333

Star graph 99 199 199 199

Wheel graph 198 199 199 199

Grid graph 180 484 70286 721

Multipartite graph 4000 199 166750 199

(5× 20)

of several different graphs with 100 nodes. In both cases we calculated persistent
homology with a multiplicative interleaving α = 3, and for the 1-dimensional
case we also calculated exact persistent homology. For the 1-dimensional case,
the base nerves are always of the same size 166750, the restricted simplicial
complexes for exact persistent homology range from 199 to 166750, while the
simplicial complexes for interleaved persistent homology have sizes between 199



Sparse Nerves in Practice 283

and 721. The simplicial complexes to calculate persistent homology in 10 dimen-
sions do not grow much larger when multiplicative interleaving is 3.

6 Conclusions

We have presented a new algorithm for constructing a sparse nerve and have
shown in benchmark examples that its size does not grow substantially for
increasing data or homology dimension and that it in many cases outperforms
SimBa. In addition, the presented algorithm is more flexible than previous spar-
sification strategies in the sense that it works for arbitrary Dowker dissimilari-
ties and interleavings. We also provide a python package dowker homology that
implements the presented sparsification strategy.

Acknowledgements. This research was supported by the Research Council of Nor-
way through Grant 248840.

References

1. Brun, M., Blaser, N.: Sparse Dowker Nerves. J. Appl. Comput. Topology 3(1),
1–28 (2019). https://doi.org/10.1007/s41468-019-00028-9

2. Blaser, N., Brun, M.: Sparse Filtered Nerves. ArXiv e-prints, October 2018. http://
arxiv.org/abs/1810.02149

3. Botnan, M.B., Spreemann, G.: Approximating persistent homology in Euclidean
space through collapses. Appl. Algebra Eng. Commun. Comput. 26(1), 73–101
(2015). https://doi.org/10.1007/s00200-014-0247-y

4. Carlsson, G.: Topology and data. Bull. Amer. Math. Soc. (N.S.) 46(2), 255–308
(2009). https://doi.org/10.1090/S0273-0979-09-01249-X

5. Cavanna, N.J., Jahanseir, M., Sheehy, D.R.: A geometric perspective on sparse
filtrations. CoRR abs/1506.03797 (2015)

6. Choudhary, A., Kerber, M., Raghvendra, S.: Improved topological approxima-
tions by digitization. CoRR abs/1812.04966 (2018). https://doi.org/10.1137/1.
9781611975482.166

7. Chowdhury, S., Mémoli, F.: A functorial Dowker theorem and persistent homology
of asymmetric networks. J. Appl. Comput. Topology 2(1), 115–175 (2018). https://
doi.org/10.1007/s41468-018-0020-6

8. Dey, T.K., Shi, D., Wang, Y.: SimBa: an efficient tool for approximating Rips-
filtration persistence via simplicial batch-collapse. In: 24th Annual European Sym-
posium on Algorithms, LIPIcs. Leibniz Int. Proc. Inform., vol. 57, Art. No. 35, 16
(2016). https://doi.org/10.4230/LIPIcs.ESA.2016.35

9. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the
plane. IEEE Trans. Inf. Theory 29(4), 551–559 (1983). https://doi.org/10.1109/
TIT.1983.1056714

10. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. In: 41st Annual Symposium on Foundations of Computer Science,
Redondo Beach, CA, 2000, pp. 454–463. IEEE Comput. Soc. Press, Los Alami-
tos (2000). https://doi.org/10.1109/SFCS.2000.892133

https://github.com/mbr085/Sparse-Dowker-Nerves
https://doi.org/10.1007/s41468-019-00028-9
http://arxiv.org/abs/1810.02149
http://arxiv.org/abs/1810.02149
https://doi.org/10.1007/s00200-014-0247-y
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1137/1.9781611975482.166
https://doi.org/10.1137/1.9781611975482.166
https://doi.org/10.1007/s41468-018-0020-6
https://doi.org/10.1007/s41468-018-0020-6
https://doi.org/10.4230/LIPIcs.ESA.2016.35
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1109/SFCS.2000.892133


284 N. Blaser and M. Brun

11. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: Aroadmap
for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017). https://
doi.org/10.1140/epjds/s13688-017-0109-5

12. Robins, V.: Towards computing homology from approximations. Topology Proc.
24, 503–532 (1999)

13. The GUDHI Project: GUDHI User and Reference Manual. GUDHI Editorial Board
(2015). http://gudhi.gforge.inria.fr/doc/latest/

https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1140/epjds/s13688-017-0109-5
http://gudhi.gforge.inria.fr/doc/latest/

	Sparse Nerves in Practice
	1 Introduction
	2 Theory
	3 Algorithms
	3.1 Cover Matrix
	3.2 Truncation
	3.3 Parent Function
	3.4 Restriction
	3.5 Sparse Nerve
	3.6 Ambient Čech Complex
	3.7 Interleaving Lines

	4 Complexity Analysis
	5 Benchmarks
	6 Conclusions
	References




