
Combining Checkpointing and Data
Compression to Accelerate Adjoint-Based

Optimization Problems

Navjot Kukreja1(B), Jan Hückelheim1, Mathias Louboutin2, Paul Hovland3,
and Gerard Gorman1

1 Imperial College London, London, UK
nkukreja@imperial.ac.uk

2 Georgia Institute of Technology, Atlanta, GA, USA
3 Argonne National Laboratory, Lemont, IL, USA

Abstract. Seismic inversion and imaging are adjoint-based optimiza-
tion problems that process up to terabytes of data, regularly exceeding
the memory capacity of available computers. Data compression is an
effective strategy to reduce this memory requirement by a certain factor,
particularly if some loss in accuracy is acceptable. A popular alternative
is checkpointing, where data is stored at selected points in time, and val-
ues at other times are recomputed as needed from the last stored state.
This allows arbitrarily large adjoint computations with limited memory,
at the cost of additional recomputations.

In this paper, we combine compression and checkpointing for the first
time to compute a realistic seismic inversion. The combination of check-
pointing and compression allows larger adjoint computations compared
to using only compression, and reduces the recomputation overhead sig-
nificantly compared to using only checkpointing.

Keywords: Checkpointing · Compression · Adjoints · Inversion ·
Seismic

1 Introduction

1.1 Adjoint-Based Optimization

Adjoint-based optimization problems typically consist of a simulation that is run
forward in simulation time, producing data that is used in reverse order by a
subsequent adjoint computation that is run backwards in simulation time. Many
important numerical problems in science and engineering use adjoints and follow
this pattern.

Since the data for each of the computed timestep in the forward simulation
will be used later in the adjoint computation, it would be prudent to store it
in memory until it is required again. However, the total size of this data can

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 87–100, 2019.
https://doi.org/10.1007/978-3-030-29400-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_7


88 N. Kukreja et al.

often run into tens of terabytes, exceeding the memory capacity of most com-
puter systems. Previous work has studied recomputation or data compression
strategies to work around this problem. In this paper we investigate a combina-
tion of compression and recomputation.

1.2 Example Adjoint Problem: Seismic Inversion

Seismic inversion typically involves the simulation of the propagation of seismic
waves through the earth’s subsurface, followed by a comparison with data from
field measurements. The model of the subsurface is iteratively improved by min-
imizing the misfit between simulated data and field measurement in an adjoint
optimization problem [18]. The data collected in an offshore survey typically
consists of a number of “shots” - each of these shots corresponding to different
locations of sources and receivers. Often the gradient is computed for each of
these shots independently on a single cluster compute node, and then collated
across all the shots to form a single model update. The processing across shots
is thereby easily parallelized and requires only little communication, followed by
a long period of independent computation (typically around 10–100 min). Since
the number of shots is typically of the order of 104, clusters can often be fully
utilized even if individual shots are only processed on a single node.

1.3 Memory Requirements

A number of strategies have been studied to cope with the amount of data
that occurs in adjoint computations - perhaps the simplest is to store all data
to a disk, to be read later by the adjoint pass in reverse order. However, the
computation often takes much less time than the disk read and write, hence
leaving disk speed as a bottleneck.

Domain decomposition, where a single shot may be distributed across more
than one node, is often used not only to distribute the computational workload
across more processors, but also across more memory. While this strategy is very
powerful, the number of compute nodes and therefore the amount of memory
that can be used efficiently is limited, for example by communication overheads
that start to dominate as the domain is split into increasingly small pieces.
Secondly, this strategy can be wasteful if the need for memory causes more
nodes to be used than can be completely utilized for computation. Lastly, this
method is not well suited for cloud-based setups since it can complicate the setup
and performance will suffer due to the slow inter-node communication.

Checkpointing is yet another strategy to reduce the memory overhead. Only
a subset of the timesteps during the forward pass is stored. Other timesteps
are recomputed when needed by restarting the forward pass from the last avail-
able stored state. We discuss this strategy in Sect. 3. Previous work has applied
checkpointing to seismic imaging and inversion problems [9,20]. An alternative
is data compression, which is discussed in Sect. 2.

In this paper, we extend the previous studies by combining checkpointing and
compression. This is obviously useful when the data does not fit in the available



Combining Checkpointing and Data Compression 89

memory even after compression, for example for very large adjoint problems,
or for problems where the required accuracy limits the achievable compression
ratios.

Compared to the use of only checkpointing without compression, this com-
bined method often improves performance. This is a consequence of the reduced
size of stored timesteps, allowing more timesteps to be stored during the forward
computation. This in turn reduces the amount of recomputation that needs to be
performed. On the other hand, the compression and decompression itself takes
time. The answer to the question “does compression pay off?”, depends on a
number of factors including - available memory, the required precision, the time
taken to compress and decompress, and the achieved compression factors, and
various problem specific parameters like computational intensity of the kernel
involved in the forward and adjoint computations, and the number of timesteps.

Hence, the answer to the compression question depends not only on the
problem one is solving (within seismic inversion, there are numerous variations
of the wave equation that may be solved), but also the hardware specifics of the
machine on which it is being solved. In fact, as we will see in Sect. 5, the answer
might even change during the solution process of an individual problem. This
brings up the need to predict whether compression pays off in a given scenario,
without incurring significant overheads in answering this question. To this end,
we present a performance model that answers that question.

1.4 Summary of Contributions

In this paper, we study

– the use of different compression algorithms to seismic data including six loss-
less and a lossy compression algorithm for floating point data,

– a performance model for checkpointing alone, taking into account the time
taken to read and write checkpoints, and

– an online performance model to predict whether compression would speed up
an optimization problem.

2 Compression Algorithms

Data compression is increasingly used to reduce the memory footprint of sci-
entific applications. This has been accelerated by the advent of special pur-
pose compression algorithms for floating-point scientific data, such as ZFP or
SZ [10,14].

Lossless algorithms guarantee that the exact original data can be recovered
during decompression, whereas lossy algorithms introduce an error, but often
guarantee that the error does not exceed certain absolute or relative error met-
rics. Typically, lossy compression is more effective in reducing the data size.
Most popular compression packages offer various settings that allow a tradeoff
between compression ratio, accuracy, and compression and decompression time.



90 N. Kukreja et al.

Another difference we observed between lossless and lossy compression algo-
rithms was that the lossless compression algorithms we evaluated tended to inter-
pret all data as one-dimensional series only while SZ and ZFP, being designed for
scientific data, take the dimensionality into account directly. This makes a dif-
ference in the case of a wavefield, for example, where the data to be compressed
corresponds to a smoothly varying function in (two or) three dimensions and
interpreting this three-dimensional data as one-dimensional would completely
miss the smoothness and predictability of the data values.

It is worth noting that another data reduction strategy is to typecast values
into a lower precision format, for example, from double precision to single preci-
sion. This can be seen as a computationally cheap lossy compression algorithm
with a compression ratio of 2.

Perhaps counterintuitively, compression can not only reduce the memory
footprint, but also speed up an application. Previous work has observed that the
compression and decompression time can be less than the time saved from the
reduction in data that needs to be communicated across MPI nodes or between
a GPU and a host computer [17].

One way of using compression in adjoint-based methods is to compress all
timesteps during the forward pass. If the compression ratio is sufficient to fit
the compressed data in memory, compression can serve as an alternate strategy
to checkpointing. Previous work has discussed this in the context of computa-
tional fluid dynamics [7,16] and seismic inversion using compression algorithms
specifically designed for the respective applications [6,8].

Since the time spent on compressing and decompressing data is often non-
negligible, this raises the question whether the computational time is better spent
on this compression and decompression, or on the recomputation involved in the
more traditional checkpointing approach. This question was previously answered
to a limited extent for the above scenario where compression is an alternative
to checkpointing, in a specific application [7]. We discuss this in more detail in
Sect. 4.

2.1 Lossless Compression

Blosc is a library that provides optimized high-performance implementations
of various lossless compressors, sometimes beyond their corresponding reference
implementations [2]. For our experiments we use this library through its python
interface. The library includes implementations for six different lossless compres-
sion algorithms, namely ZLIB, ZSTD, BLOSCLZ, LZ4, LZ4HC and Snappy. All
these algorithms look at the data as a one-dimensional stream of bits and at
least the blosc implementations have a limit on the size of the one-dimensional
array that can be compressed in one call. Therefore we use the python package
blosc-pack, which is a wrapper over the blosc library, to implement chunking, i.e.
breaking up the stream into chunks of a chosen size, which are compressed one
at a time.



Combining Checkpointing and Data Compression 91

2.2 Lossy Compression

We use the lossy compression package ZFP [14] written in C. To use ZFP from
python, we developed a python wrapper for the reference implementation of
ZFP1. ZFP supports three compression modes, namely fixed tolerance, fixed
precision and fixed rate. The fixed-tolerance mode limits the absolute error, while
the fixed-precision mode limits the error as a ratio of the range of values in the
array to be compressed. The fixed-rate mode achieves a guaranteed compression
ratio requested by the user, but does not provide any bounds on accuracy loss.

The fixed-rate mode could make our implementation more straightforward
by offering a predictable size of compressed checkpoints, but the lack of error
bounds makes this option less attractive. Moreover, ZFP claims to achieve the
best “compression efficiency” in the fixed-tolerance mode, and we thus chose to
focus on this mode.

SZ [10] is a more recently developed compression library, also focussed on
lossy compression of floating-point scientific data, also developed in C. While we
have also written a python wrapper for the reference implementation of SZ2, a
thorough comparison of ZFP and SZ remains future work.

3 Checkpointing Performance Model

As previously mentioned, checkpointing is a strategy to store selected timesteps,
and recompute others when needed. The question which checkpoints should be
stored to get the best tradeoff between recomputation time and memory foot-
print was answered in a provably optimal way by the Revolve checkpointing algo-
rithm [11]. Revolve makes certain assumptions, for example that all timesteps
have the same compute cost and storage size, the number of timesteps is known
a priori, and there is only one level of memory (e.g. RAM) that is restricted
in size, but very fast. Other authors have subsequently developed extensions to
Revolve that are optimal under different conditions [4,19]. We focus in this paper
on the classic Revolve algorithm, and store all checkpoints in RAM.

In this section, we build on the ideas introduced in [19] to build a performance
model that predicts the runtime of an adjoint computation using Revolve check-
pointing. We call the time taken by a single forward computational step CF and
correspondingly, the time taken by a single backward step CR. For a simulation
with N timesteps, the minimum wall time required for the full forward-adjoint
evaluation is given by

TN = CF · N + CR · N (1)

If the size of a single timestep in memory is given by S, this requires a memory
of at least size S · N. If sufficient memory is available, no checkpointing or
compression is needed.

If the memory is smaller than S ·N, Revolve provides a strategy to solve for
the adjoint field by storing a subset of the N total checkpoints and recompute
1 To be released open source on publication.
2 Also to be released open source upon publication.



92 N. Kukreja et al.

the remaining ones. The overhead introduced by this method can be broken
down into the recomputation overhead OR and the storage overhead OS . The
recomputation overhead is the amount of time spent in recomputation, given by

OR(N,M) = p(N,M) · CF, (2)

where p(N,M) is the minimum number of recomputed steps from [11], given as

p(N,M) =

⎧
⎨

⎩

N(N − 1)/2, if M = 1
min

1<= ˜N<=N
{Ñ + p(Ñ ,M) + p(N − Ñ ,M − 1)}, if M > 1 (3)

where M is the number of checkpoints that can be stored in memory. Note that
for M ≥ N , OR would be zero. For M < N , OR grows rapidly as M is reduced
relative to N.

In an ideal implementation, the storage overhead OS might be zero, since the
computation could be done “in-place”, but in practice, checkpoints are generally
stored in a separate section of memory and they need to be transferred to a
“computational” section of the memory where the computation is performed,
and then the results copied back to the checkpointing memory. This copying is a
common feature of checkpointing implementations, and might pose a non-trivial
overhead when the computation involved in a single timestep is not very large.
This storage overhead is given by:

OSR(N,M) = W(N,M) · S
B

+ N · S
B

(4)

where W is the total number of times Revolve writes checkpoints for a single
run, N is the number of times checkpoints are read, and B is the bandwidth at
which these copies happen. The total time to solution becomes

TR = CF · N + CR · N + OR(N,M) + OSR(N,M) (5)

4 Performance Model Including Compression

By using compression, the size of each checkpoint is reduced and the number of
checkpoints available is increased (M in Eq. 3). This reduces the recomputation
overhead OR, while at the same time adding overheads related to compression
and decompression in OS . To be beneficial, the reduction in OR must offset the
increase in OSR, leading to an overall decrease in the time to solution T .

Our performance model assumes that the compression algorithm behaves
uniformly across the different time steps of the simulation, i.e. that we get the
same compression ratio, compression time and decompression time, no matter
which of the N possible checkpoints we try to compress/decompress. The storage
overhead now becomes

OSR(N,M) =W(N,M · F ) ·
(

S
F · B + tc

)

+ N ·
(

S
F · B + td

) (6)



Combining Checkpointing and Data Compression 93

where F is the compression ratio (i.e. the ratio between the uncompressed and
compressed checkpoint), and tc and td are compression and decompression times,
respectively. At the same time, the recomputation overhead decreases because
F times more checkpoints are now available.

5 Acceptable Errors and Convergence

Our performance model is agnostic of the specific optimization problem being
solved. We envision it being used in a generic checkpointing runtime that man-
ages the checkpointed execution of an optimization problem, and accepts an
acceptable error tolerance as an input parameter for each gradient evaluation
and determines whether or not compression can pay off for that iteration. For
this reason, we do not discuss in this paper whether or not a certain accuracy is
acceptable for any given application.

We note that there is some previous work in this area, discussing for example
the effect of bounded pointwise errors in a multi-dimensional field on computed
numerical derivatives, for ZFP [1]. In the context of seismic inversion, other
work discusses accuracy requirements in optimization loops, and notes that high
accuracy is only needed when already close to a minimum [6,13]. There has been
previous work on choosing the most appropriate compression algorithm under
some circumstances [21]., and work that addresses convergence guarantees of
trust-region based optimization methods in the presence of gradients that are
only known with a probability p [5].

Despite all this previous work, for most practical adjoint optimization appli-
cations, the relationship between accuracy (whether caused by roundoff, com-
pression or truncation errors) and convergence remains a field of ongoing
research.

6 Problem and Test Case

We use Devito [15] to solve forward and adjoint wave equation problems. Devito
is a domain-specific language that enables the rapid development of finite-
difference solvers from a high-level description of partial differential equations.
The simplest version of the seismic wave equation is the acoustic isotropic wave
equation defined as:

m(x)
∂2u(t, x)

∂t2
− ∇2u(t, x) = q(t, x), (7)

where m(x) = 1
c2(x) is the squared slowness, c(x) the spatially dependent speed

of sound, u(t, x) is the pressure wavefield, ∇2u(t, x) denotes the laplacian of the
wavefield and q(t, x) is a source term.

The solution to Eq. 7 forms the forward problem. The seismic inversion prob-
lem minimizes the misfit between simulated and observed signal given by:

min
m

φs(m) =
1
2

‖dsim − dobs‖22 . (8)



94 N. Kukreja et al.

We call the kernel derived from a basic finite difference formulation of Eq. 7,
the OT2 kernel because it is second-order accurate in time. We also use another
formulation from [15], which is 4th-order accurate in time. We call this the OT4
kernel.

This optimization problem is usually solved using gradient based methods
such as steepest descent, where the gradient is computed using the adjoint-state
method.

The values of m(x) used in this work are derived from the Overthrust
model [3] over a grid of 287 × 881 × 881 points, including an absorbing layer
of 40 points on each side. The grid spacing is 25 m in space. The propagation
time is 4 s that corresponds to 2526 timesteps. The wave field at the final time
is shown in Fig. 2a. The uncompressed size of this single time step field is just
under 900 MB. If one were to store all the timesteps, this would require 2.3 TB
of memory.

To implement Revolve with Devito, we use pyRevolve [12] which is a python
library to manage the execution of checkpointed adjoint computations. The per-
formance model in Sect. 3 assumes that the implementation is similar to pyRe-
volve, which stores a checkpoint by copying a portion of the operator’s working
memory to the checkpointing memory and similarly loads a checkpoint by copy-
ing from the checkpointing memory to the operator’s working memory.

For benchmarking we used a dual-socket Intel(R) Xeon(R) Platinum 8180M
@ 2.50 Ghz (28 cores each) (skylake).

7 Results and Discussion

Fig. 1. Compression ratios achieved on compressing different time steps. Every
timestep from 1 to 2526 was compressed and plotted.

To understand the compressibility of the data produced in a typical wave-
propagation simulation, we ran a simulation as per the setup described in Sect. 6,
and tried to compress every single timestep. For this we chose ZFP in fixed tol-
erance mode at some arbitrary tolerance level. We noted the compression ratios
achieved at every timestep. As Fig. 1 shows, the initial timesteps are much easier
to compress than the later ones. This is not surprising since most wave simula-
tions start with the field at rest, i.e. filled with zeros. As the wave reaches more



Combining Checkpointing and Data Compression 95

parts of the domain, the field becomes less compressible until it achieves a stable
state when the wave has reached most of the domain.

If the simulation had started with the field already oscillating in a wave, it is
likely that the compressibility curve for that simulation would be flat. This tells
us that the compressibility of the last timestep of the solution is representative
of the worst-case compressibility and hence we used the last timestep as our
reference for comparison of compression in the rest of the analysis.

Table 1. Some results from trying out all possible compressors and settings in blosc.
We selected the best compression ratio seen for each compressor. “Setting” here is the
choice between speed and compression, where 0 is fastest and 9 is highest compression.

Compressor Chunk size
(bytes)

Shuffle
Mode

Setting Compression
time (ms)

Decompression
time (ms)

Compression
Ratio

BloscLZ 1048576 SHUFFLE 6 4249.44 1288.86 1.188

LZ4 2965280 SHUFFLE 4 1371.26 920.98 1.199

LZ4HC 2097152 SHUFFLE 8 31245.16 926.69 1.265

ZLib 524288 SHUFFLE 7 30218.81 2470.04 1.291

ZStd 524288 SHUFFLE 9 117238.76 1477.34 1.312

Table 1 shows the compression ratios and times for a few different lossless
compressors and their corresponding settings. As can be seen, the compression
factors achieved, and the time taken to compress and decompress can vary sig-
nificantly, but it is hard to say whether this compression could be used to speed
up the inversion problem.

Figure 3a shows compression ratios for different tolerance settings for the
fixed-tolerance mode of ZFP. The point highlighted here was the setting used
to compress all timesteps in Fig. 1. Figure 2b shows the spatial distribution of
the errors after compression and decompression, compared to the original field,
for this setting. Table 3b shows the effect of different levels of pointwise absolute
error on the overall error in the gradient evaluation. We can see that the error
in the gradient evaluation does not explode.

To validate the revolve-only performance model, Fig. 4a shows the predicted
runtime for a variety of peak memory constraints along with measured runtime
for the same scenario. Figure 4b shows a comparison of predicted and measured
runtimes for the OT2 kernel with compression enabled. Figure 4c repeats this
experiment for the OT4 kernel which has a higher computational complexity. It
can be seen that the model is able to predict the real performance very closely
in all three cases.

We have now seen that the performance model from Sect. 4 is effective at pre-
dicting the runtime of adjoint computations. To study the performance model,
we first visualize it along the axis of available memory, comparing the predicted
performance of the chosen compression scheme with the predicted performance
of a Revolve-only adjoint implementation. This is shown in Fig. 5 where we



96 N. Kukreja et al.

(a) Reference wavefield for compression and
decompression.

(b) Errors introduced during compres-
sion and decompression using the fixed-
tolerance mode.

Fig. 2. This field was formed after a Ricker wavelet source was placed at the surface of
the model and the wave propagated for 2500 timesteps. This is a vertical (x-z) cross-
section of a 3D field, taken at the y source location. It is interesting to note that the
errors are more or less evenly distributed across the domain with only slight variations
corresponding to the wave amplitude (from Figure a). A small block-like structure
characteristic of ZFP can be seen.

(a) Effect of tolerance on Compression Ra-
tio

Tolerance Gradient error
0.1 662.905
0.01 70.619
0.001 10.485
0.0001 0.763
10−5 0.194
10−6 0.154
10−7 0.151

(b) Effect of tolerance on Gradient error

Fig. 3. Effect of tolerance settings of ZFP in fixed-tolerance mode on Compression
ratio (left) and final gradient evaluation (right). We define compression ratio as the
ratio between the size of the uncompressed data and the compressed data. The dashed
line represents no compression. The highlighted point corresponds to the setting used
for the other results here unless otherwise specified. The gradient error (right) is the
2-norm of the error tensor in the gradient, as compared with an exact computation.

can distinguish three different scenarios, depending on the amount of available
memory.

1. If the memory is insufficient even with compression to store the entire tra-
jectory, one can either use checkpointing only, or combine checkpointing with
compression. This is the left section of the figure.

2. If the available memory is not sufficient to store the uncompressed trajectory,
but large enough to store the entire compressed trajectory, we compare two
possible strategies: Either use compression only, or use checkpointing only.
This is the middle section of the figure.

3. If the available system memory is large enough to hold the entire uncom-
pressed trajectory, neither compression nor checkpointing is necessary. This
is the right section of the figure.



Combining Checkpointing and Data Compression 97

The second scenario was studied in previous work [7], while the combined
method is also applicable to the first scenario, for which previous work has only
used checkpointing without compression.

We can identify a number of factors that make compression more likely to
be beneficial compared to pure checkpointing: A very small system memory size
and a large number of time steps lead to a rapidly increasing recompute factor,

(a) OT2, No compression (b) OT2, Compression (c) OT4, Compression

Fig. 4. Predicted vs measured runtimes for two different kernels (OT2 and OT4),
with and without compression. This shows that the performance model can predict
the runtime effectively. The compression setting used was ZFP with absolute error
tolerance set to 10−6

Fig. 5. The speedups predicted by the performance model for varying memory. The
baseline (1.0) is the performance of a Revolve-only implementation under the same
conditions. The different curves represent kernels with differing compute times (repre-
sented here as a factor of the sum of compression and decompression times). The first
vertical line at 53 GB marks the spot where the compressed wavefield can completely fit
in memory and Revolve is unnecessary if using compression. The second vertical line at
2.2 TB marks the spot where the entire uncompressed wavefield can fit in memory and
neither Revolve nor compression is necessary. The region to the right is where these
optimizations are not necessary or relevant. The middle region has been the subject of
past studies using compression in adjoint problems. The region to the left is the focus
of this paper.



98 N. Kukreja et al.

and compression can substantially reduce this recompute factor. This can be
seen in Figs. 5 and 6b.

(a) Varying Compute (b) Varying timesteps

Fig. 6. The speedups predicted by the performance model for varying compute cost
(left) and number of timesteps (right). The baseline (1.0) is the performance of a
Revolve-only implementation under the same conditions. The benefits of compression
drop rapidly if the computational cost of the kernel that generated the data is much
lower than the cost of compressing the data. For increasing computational costs, the
benefits are bounded. It can be seen that compression becomes more beneficial as the
number of timesteps is increased.

The extent to which the recompute factor affects the overall runtime also
depends on the cost to compute each individual time step. If the compute cost
per time step is large compared to the compression and decompression cost,
then compression is also likely to be beneficial, as shown in Fig. 6a. As the time
per time step increases and the compression cost becomes negligible, we observe
that the ratio between the runtime of the combined method and that of pure
checkpointing is only determined by the difference in recompute factors.

8 Conclusions and Future Work

We used compression to reduce the computational overhead of checkpointing in
an adjoint computation used in seismic inversion. We developed a performance
model that computes whether or not the combination of compression and check-
pointing will outperform pure checkpointing or pure compression in a variety
of scenarios, depending on the available memory size, computational intensity
of the application, and compression ratio and throughput of the compression
algorithm. In future work, we plan to extend this work by

– further exploring the relationship between pointwise error bounds in com-
pression and the overall error of the adjoint gradient evaluation,

– extending our performance model to support non-uniform compression ratios,
as would be expected for example if the initial wave field is smoother and
therefore more easily compressible,



Combining Checkpointing and Data Compression 99

– studying strategies where different compression settings (or even no compres-
sion) is used for a subset of time steps,

– exploring compression and multi-level checkpointing, including SSD or hard
drives in addition to RAM storage,

– and finally by developing checkpointing strategies that are optimal even if
the size of checkpoints post-compression varies and is not known a priori.

Acknowledgments. This work was funded by the Intel Parallel Computing Centre at
Imperial College London and EPSRC EP/R029423/1. This work was supported by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research, Applied Mathematics and Computer Science programs under contract
number DE-AC02-06CH11357. We would also like to acknowledge the support from
the SINBAD II project and the member organizations of the SINBAD Consortium.

We gratefully acknowledge the computing resources provided and operated by the
Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

This paper benefited from discussions with Kaiyuan Huo, Fabio Luporini, Thomas
Matthews, Paul Kelly, Oana Marin.

References

1. https://computation.llnl.gov/projects/floating-point-compression/zfp-and-
derivatives

2. Alted, F.: Why modern cpus are starving and what can be done about it. Comput.
Sci. Eng. 12(2), 68 (2010)

3. Aminzadeh, F., Burkhard, N., Long, J., Kunz, T., Duclos, P.: Three dimensional
SEG/EAGE models–an update. Lead. Edge 15(2), 131–134 (1996)

4. Aupy, G., Herrmann, J., Hovland, P., Robert, Y.: Optimal multistage algorithm
for adjoint computation. SIAM J. Sci. Comput. 38(3), C232–C255 (2016)

5. Blanchet, J., Cartis, C., Menickelly, M., Scheinberg, K.: Convergence rate analysis
of a stochastic trust region method for nonconvex optimization. arXiv preprint
arXiv:1609.07428 (2016)

6. Boehm, C., Hanzich, M., de la Puente, J., Fichtner, A.: Wavefield compression for
adjoint methods in full-waveform inversion. Geophysics 81(6), R385–R397 (2016)

7. Cyr, E.C., Shadid, J., Wildey, T.: Towards efficient backward-in-time adjoint com-
putations using data compression techniques. Comput. Methods Appl. Mech. Eng.
288, 24–44 (2015)

8. Dalmau, F.R., Hanzich, M., de la Puente, J., Gutiérrez, N.: Lossy data compression
with DCT transforms. In: EAGE Workshop on High Performance Computing for
Upstream (2014)

9. Datta, D., Appelhans, D., Evangelinos, C., Jordan, K.: An asynchronous two-level
checkpointing method to solve adjoint problems on hierarchical memory spaces.
Comput. Sci. Eng. 20(4), 39–55 (2018)

10. Di, S., Tao, D., Liang, X., Cappello, F.: Efficient lossy compression for scientific
data based on pointwise relative error bound. IEEE Trans. Parallel Distrib. Syst.
30(2), 331–345 (2018)

11. Griewank, A., Walther, A.: Algorithm 799: revolve: an implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM
Trans. Math. Softw. (TOMS) 26(1), 19–45 (2000)

https://computation.llnl.gov/projects/floating-point-compression/zfp-and-derivatives
https://computation.llnl.gov/projects/floating-point-compression/zfp-and-derivatives
http://arxiv.org/abs/1609.07428


100 N. Kukreja et al.

12. Kukreja, N., Hückelheim, J., Lange, M., Louboutin, M., Walther, A., Funke, S.W.,
Gorman, G.: High-level python abstractions for optimal checkpointing in inversion
problems. arXiv preprint arXiv:1802.02474 (2018)

13. van Leeuwen, T., Herrmann, F.J.: 3d frequency-domain seismic inversion with
controlled sloppiness. SIAM J. Sci. Comput. 36(5), S192–S217 (2014)

14. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Visual
Comput. Graphics 20(12), 2674–2683 (2014)

15. Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P.A., Herrmann,
F.J., Velesko, P., Gorman, G.J.: Devito: an embedded domain-specific language
for finite differences and geophysical exploration. CoRR abs/1808.01995, August
2018. https://arxiv.org/abs/1808.01995

16. Marin, O., Schanen, M., Fischer, P.: Large-scale lossy data compression based on
an a priori error estimator in a spectral element code. Technical report, ANL/MCS-
P6024-0616 (2016)

17. O’Neil, M.A., Burtscher, M.: Floating-point data compression at 75 gb/s on a GPU.
In: Proceedings of the Fourth Workshop on General Purpose Processing on Graph-
ics Processing Units. ACM (2011). https://doi.org/10.1145/1964179.1964189

18. Plessix, R.E.: A review of the adjoint-state method for computing the gradient of a
functional with geophysical applications. Geophys. J. Int. 167(2), 495–503 (2006)

19. Stumm, P., Walther, A.: Multistage approaches for optimal offline checkpointing.
SIAM J. Sci. Comput. 31(3), 1946–1967 (2009)

20. Symes, W.W.: Reverse time migration with optimal checkpointing. Geophysics
72(5), SM213–SM221 (2007)

21. Tao, D., Di, S., Liang, X., Chen, Z., Cappello, F.: Optimizing lossy compression
rate-distortion from automatic online selection between sz and zfp. arXiv preprint
arXiv:1806.08901 (2018)

http://arxiv.org/abs/1802.02474
https://arxiv.org/abs/1808.01995
https://doi.org/10.1145/1964179.1964189
http://arxiv.org/abs/1806.08901

	Combining Checkpointing and Data Compression to Accelerate Adjoint-Based Optimization Problems
	1 Introduction
	1.1 Adjoint-Based Optimization
	1.2 Example Adjoint Problem: Seismic Inversion
	1.3 Memory Requirements
	1.4 Summary of Contributions

	2 Compression Algorithms
	2.1 Lossless Compression
	2.2 Lossy Compression

	3 Checkpointing Performance Model
	4 Performance Model Including Compression
	5 Acceptable Errors and Convergence
	6 Problem and Test Case
	7 Results and Discussion
	8 Conclusions and Future Work
	References




