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Abstract. This work presents two implementations of linear solvers for
distributed-memory machines with GPU accelerators—one based on the
Cholesky factorization and one based on the LU factorization with par-
tial pivoting. The routines are developed as part of the Software for
Linear Algebra Targeting Exascale (SLATE) package, which represents
a sharp departure from the traditional conventions established by legacy
packages, such as LAPACK and ScaLAPACK. The article lays out the
principles of the new approach, discusses the implementation details, and
presents the performance results.
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1 Introduction

1.1 Linear Systems

Solving a system of linear equations Ax = b is a fundamental capability in sci-
entific and engineering computing. The most common approach is to apply the
lower–upper (LU) decomposition, which factors the matrix A as the product of
a lower triangular matrix L and an upper triangular matrix U . The procedure
usually requires row permutations for numerical stability, referred to as partial
pivoting. LU decomposition can be viewed as the matrix form of Gaussian elim-
ination. It is also a key step in inverting a matrix or computing the determinant
of a matrix. LU decomposition was introduced by Polish mathematician Tadeusz
Banachiewicz.
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The system of linear equations Ax = b can be solved much faster when the
matrix A is Hermitian, positive definite in complex arithmetic; or symmetric,
positive definite in real arithmetics. Commonly, the Cholesky decomposition is
used to factor the matrix A into the product of a lower triangular matrix L and its
conjugate transpose. It was discovered by a French mathematician, André-Louis
Cholesky, for real matrices. When it is applicable, the Cholesky decomposition is
roughly twice as efficient as the LU decomposition for solving systems of linear
equations.

1.2 SLATE Project

Software for Linear Algebra Targeting Exascale (SLATE)1 is being developed
as part of the Exascale Computing Project (ECP),2 which is a collaborative
effort between two US Department of Energy (DOE) organizations, the Office of
Science and the National Nuclear Security Administration (NNSA). The objec-
tive of SLATE is to provide fundamental dense linear algebra capabilities to
the US Department of Energy and to the high-performance computing (HPC)
community at large.

The ultimate objective of SLATE is to replace the ScaLAPACK library [3],
which has become the industry standard for dense linear algebra operations
in distributed-memory environments. However, after two decades of operation,
ScaLAPACK is past the end of its life cycle and is overdue for a replacement,
as it can hardly be retrofitted to support hardware accelerators, which are an
integral part of today’s HPC hardware infrastructure.

Primarily, SLATE aims to extract the full performance potential and max-
imum scalability from modern, many-node HPC machines with large numbers
of cores and multiple hardware accelerators per node. For typical dense linear
algebra workloads, this means getting close to the theoretical peak performance
and scaling to the full size of the machine (i.e., thousands to tens of thousands of
nodes). This is to be accomplished in a portable manner by relying on standards
like MPI and OpenMP. Figure 1 shows SLATE in the ECP software stack.

Fig. 1. SLATE in the ECP software stack.

1 http://icl.utk.edu/slate/.
2 https://www.exascaleproject.org.

http://icl.utk.edu/slate/
https://www.exascaleproject.org
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2 Motivation

There is an urgent need for multi-GPU accelerated, distributed-memory soft-
ware. Currently, the fastest machines in United States are the Summit3 and
Sierra4 systems, at the Oak Ridge National Laboratory (ORNL) and the
Lawrence Livermore National Laboratory (LLNL), respectively. As of today,
they occupy positions #1 and #2 on the TOP500 list.

The urgency of the situation is underscored by the architectures of the afore-
mentioned systems.5 The Summit system contains three NVIDIA V100 GPUs
per each POWER9 CPU. The peak double-precision floating-point performance
of the CPU is 22 (cores)×24.56 gigaFLOP/s = 540.32 gigaFLOP/s. The peak
performance of the GPUs is 3 (devices)×7.8 teraFLOP/s = 23.4 teraFLOP/s.
I.e., 97.7% of performance is on the GPU side, and only 2.3% of performance is
on the CPU side.

Also, the U.S. Department of Energy has recently announced plans for achiev-
ing exascale. The system, called Frontier, will be built at ORNL. It is planned
to go online in 2021 and deliver 1.5 exaFLOP/s of theoretical peak performance.
Frontier’s nodes will contain one AMD EPYC CPU and four purpose-built AMD
Radeon Instinct GPUs.6

3 Related Work

Due to the popularity of the Cholesky and LU factorizations, it would be difficult
to survey all the related research efforts. Instead we opt for listing the most
popular software packages that implement the two routines. Distributed-memory
implementations are available in:

– ScaLAPACK (http://www.netlib.org/scalapack/),
– PLAPACK (http://www.cs.utexas.edu/users/plapack/),
– Elemental (http://libelemental.org),
– DPLASMA (http://icl.utk.edu/dplasma/).

While some efforts are being made to GPU-accelerate these packages, at this time
we consider these developments experimental. On the other hand, accelerated
implementations of the Cholesky and LU factorizations are available in:

– MAGMA (http://icl.cs.utk.edu/magma/),
– CULA (http://www.culatools.com/dense/),
– cuSOLVER (https://developer.nvidia.com/cusolver).

These packages, however, do not support distributed memory. In that respect,
the SLATE project seems to be a unique effort in specifically targeting multi-
GPU–accelerated distributed-memory systems.
3 https://www.olcf.ornl.gov/summit/.
4 https://hpc.llnl.gov/hardware/platforms/sierra.
5 https://en.wikichip.org/wiki/supercomputers/summit.
6 https://www.olcf.ornl.gov/frontier/.
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4 Original Contribution

This is the only open-source implementation, that we know of, that targets
Summit- and Sierra-class machines, i.e., large distributed-memory systems draw-
ing virtually all of their computing power from GPU accelerators. Obviously,
very efficient codes were written for the TOP500 runs for these machines. At
this point, however, these codes remain proprietary and the details of their inner
workings are not publicly available.

The implementations presented here are based on the infrastructure of the
SLATE project, which is a radical departure from the established conventions,
most notably from the legacy matrix layout of ScaLAPACK. Also, as far as
we know, we produced a unique implementation of the LU panel factorization,
which combines MPI messaging, OpenMP multithreading, internal blocking, and
cache residency.

5 Implementation

5.1 SLATE Basics

Matrix Storage. Unlike legacy dense linear algebra packages, which store the
matrix contiguously, by columns, SLATE stores the matrix as a collection of
individual tiles. This offers numerous advantages, for example:

– The same structure can be used for holding many different matrix types,7

e.g., general, symmetric, triangular, band, symmetric band, etc. No memory
is wasted for storing parts of the matrix that hold no useful data, e.g., the
upper triangle of a lower triangular matrix. There is no need for using complex
matrix layouts, such as the Recursive Packed Format (RPF) [1,2,9] in order
to save space.

– The matrix can be easily converted, in parallel, from one layout to
another with O(P ) memory overhead, where P is the number of processors
(cores/threads) used. Possible conversions include: changing the layout of
tiles from column major to row major, “packing” of tiles for efficient exe-
cution of the gemm operation,8 low-rank compression of tiles, re-tiling of the
matrix (changing the tile size), etc. Notably, transposition of the matrix can
be accomplished by transposition of each tile and remapping of the indices.
There is no need for complex in-place layout translation and transposition
algorithms [10].

– Tiles can easily be moved or copied among different memory spaces. Both
inter-node communication and intra-node communication are vastly simpli-
fied. Tiles can easily and efficiently be transferred between nodes using MPI.
Tiles can also be copied to one or more device memories in the case of GPU
acceleration.

7 http://www.netlib.org/lapack/lug/node24.html.
8 https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-

gemm.

http://www.netlib.org/lapack/lug/node24.html
https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm
https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm
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In practical terms, the SLATE matrix is implemented by
the std::map container from the standard C++ library; that is,
std::map< std::tuple< int64_t, int64_t, int >, Tile<scalar_t>* >

The key is a triplet consisting of the (i, j) position of the tile in the matrix
and the device number where the tile is located, The value is a pointer to an
object of a lightweight class that stores the tile’s data and its properties. One
issue that may require further attention is the logarithmic complexity of the
default implementation of the container in the standard library. If it turns out
to be a problem, the use of std::unordered_map may be required.

In addition to facilitating the storage of different types of matrices, this
structure also readily accommodates partitioning of the matrix to the nodes of a
distributed-memory system. Tile indexing is global, and each node stores only its
local subset of tiles. Mapping of tiles to nodes is defined by a C++ lambda func-
tion, and set to 2D block cyclic mapping by default. Remote access is realized by
mirroring remote tiles in the local matrix for the duration of the operation. In
that respect, SLATE follows the single program, multiple data (SPMD) program-
ming style. SLATE also has the potential to support matrices with non-uniform
tile sizes in the future.

For offload to GPU accelerators, SLATE implements a custom memory con-
sistency model, loosely based on the Modified/Owned/Shared/Invalid (MOSI)
coherency protocol [13]. The distinguishing feature is that SLATE’s model is
symmetric; that is, there is no notion of the main memory—all memories (host,
devices) are considered peers.

Matrix Class Hierarchy. SLATE has the matrix classes below. Inexpensive
shallow copy conversions exist between the various matrix types. For instance, a
general Matrix can be converted to a TriangularMatrix for doing a triangular
solve (trsm).

BaseMatrix Abstract base class for all matrices.
Matrix General, m × n matrix.
BaseTrapezoidMatrix Abstract base class for all upper or lower trapezoid

storage, m × n matrices. For upper, tiles A(i, j) for i ≤ j are stored; for
lower, tiles A(i, j) for i ≥ j are stored.
TrapezoidMatrix Upper or lower trapezoid, m×n matrix; the opposite

triangle is implicitly zero.
TriangularMatrix Upper or lower triangular, n × n matrix.

SymmetricMatrix Symmetric, n × n matrix, stored by its upper or
lower triangle; the opposite triangle is implicitly known by symmetry
(Aj,i = Ai,j).

HermitianMatrix Hermitian, n × n matrix, stored by its upper or
lower triangle; the opposite triangle is implicitly known by symmetry
(Aj,i = Āi,j).

The BaseMatrix class stores the matrix dimensions; whether the matrix is
upper, lower, or general; whether it is not transposed, transposed, or conjugate-
transposed; how the matrix is distributed; and the set of tiles.
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Handling of Multiple Precisions. SLATE handles multiple precisions by
C++ templating, so there is only one precision-independent version of the code,
which is then instantiated for the desired precisions. SLATE’s LAPACK++ com-
ponent [8] provides overloaded, precision-independent wrappers for all the under-
lying LAPACK routines, on which SLATE’s least squares routines are built. For
instance, lapack::potrf in LAPACK++ maps to spotrf, dpotrf, cpotrf, or
zpotrf LAPACK routines, depending on the precision of its arguments.

Where a data type is always real, blas::real_type<scalar_t> is a C++
type trait to provide the real type associated with the type scalar_t, so
blas::real_type< std::complex<double> > is double.

Currently, the SLATE library has explicit instantiations of the four main data
types: float, double, std::complex<float>, and std::complex<double>. In
the future, SLATE should be able to accommodate other data types, such as
quadruple precision (double-double) or half precision (FP16), given appropriate
implementations of the elemental operations.

5.2 Cholesky Implementation

SLATE provides routines for solving linear systems of equations, where the coef-
ficient matrix is symmetric (Hermitian) positive definite. These routines compute
the factorization A = LLT (A = LLH) using the Cholesky decomposition, and
follow with the steps of forward and backward substitution. The routines are
mathematically equivalent to their ScaLAPACK counterparts [6].

Figure 2 (left picture) shows the basic mechanics of the Cholesky factorization
in SLATE. Like most routines in SLATE, the implementation relies on nested
tasking using the OpenMP standard, with the top level responsible for scheduling
a small number of coarse-grained, interdependent tasks, and the nested level
responsible for dispatching large numbers of fine-grained, independent tasks.
In the case of GPU acceleration, the nested level is implemented using calls
to batched Basic Linear Algebra Subprograms (BLAS) routines, to exploit the
efficiency of processing large numbers of tiles in one call to a GPU kernel.

The Cholesky factorization in SLATE applies the technique of looka-
head [5,11,14], where one or more columns, immediately following the panel,
are prioritized for faster processing, to allow for speedier advancement along the
critical path. Lookahead provides large performance improvements, as it allows
for overlapping the panel factorization—which is usually inefficient—with updat-
ing of the trailing submatrix, which is usually very efficient and can be GPU-
accelerated. Usually, the lookahead of one results in a large performance gain,
while bigger values deliver diminishing returns.

5.3 LU Implementation

SLATE provides routines for solving linear systems of equations, where the coef-
ficient matrix is a general (nonsymmetric) matrix. These routines compute the
factorization PA = LU using the process of Gaussian elimination with partial
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Fig. 2. Left: Cholesky factorization with lookahead of one. Right: LU factorization
with lookahead of one.

(row) pivoting, and follow with the steps of forward and backward substitu-
tion. The routines are mathematically equivalent to their ScaLAPACK counter-
parts [6].

Figure 2 (right picture) shows the basic mechanics of the LU factorization in
SLATE. While the parallelization is based on the same principles as the Cholesky
factorization, the implementation is significantly more challenging, due to the
application of row pivoting. The primary consequence of row pivoting is a fairly
complex, and heavily synchronous, panel factorization procedure. The secondary
effect is the communication overhead of swapping rows to the left and to the right
of the panel. A further complication is introduced by GPU acceleration, which
requires layout translation, as the row swapping operation is extremely inefficient
in column major.

The critical component of the LU factorization is the step of factoring the
panel, which in SLATE is an arbitrary selection of tiles from one column of the
matrix. This operation is on the critical path of the algorithms and has to be
optimized to the maximum. Resorting to a simple, memory-bound implementa-
tion could have profoundly negative consequences for performance. The current
implementation of the LU panel factorization in SLATE is derived from the
technique of Parallel Cache Assignment (PCA) by Castaldo et al. [4], and the
work on parallel panel factorization by Dongarra et al. [7].
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Fig. 3. LU panel.

The LU panel factorization in SLATE relies on internal
blocking and persistent assignment of tiles to threads within
each MPI process. Unlike past implementations, it is not
recursive, as plain recursion proved inferior to blocking. Mem-
ory residency provides some level of cache reuse, while block-
ing provides some level of compute intensity. The resulting
implementation is no longer memory bound, and scales well
with the number of processes and the number of threads in
each process. The procedure is heavily synchronous and relies
on MPI collective communication to exchange pivot informa-
tion, and on thread barriers for intra-node synchronization.
An MPI sub-communicator is created for each set of processes
participating in each panel factorization.

Figure 3 shows the basic premise of the panel implemen-
tation. The tiles are assigned to MPI ranks, and to threads
within each rank, in a round-robin fashion. The assignment
is persistent, which allows for a high degree of cache reuse,
within each rank, throughout the panel factorization. Also,
the routine is internally blocked: the factorization of a panel
of width nb proceeds in steps of much smaller width ib. While
typical values of nb are 192, 256, etc., typical values of ib are
8, 16, etc. The ib factorization contains mostly level 1 and 2
BLAS operations, but can benefit to some extent from cache
residency, while the nb factorization contains mostly level 3
BLAS operations and can also benefit from cache residency.

At each step of the ib panel factorization, a stripe of the
lower triangular matrix (L) is computed, along with a small
part of the U factor (U11). All this work is done one column
at a time. What follows is application of the L transforma-
tions to the right, which includes updating the remaining A22

submatrix, and computing of a new horizontal stripe of the
U factor (U12). Most of this work is done using level 3 BLAS
operations.

Each panel factorization is followed by an update of the
trailing submatrix (Fig. 2), which involves: (1) applying row
swaps (laswp), (2) triangular solve (trsm), and (3) matrix
multiplication (gemm). This requires the following commu-
nication: (1) “horizontal” broadcasting of the panel to the
right, (2) “vertical” exchanges of the rows being swapped, and
(3) “vertical” broadcasting of the top row or tiles down the
matrix.

This creates the extra complication of multiple OpenMP
tasks issuing, possibly concurrently, independent communica-
tions. Specifically, the collective communication of the panel

factorization may coincide with sends and receives of multiple simultaneous row
swaps. This requires that the underlying MPI implementation be thread safe, and
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support the MPI_THREAD_MULTIPLE mode (i.e., multiple threads simultaneously
issuing MPI communications). It also requires that the different communications
be distinguished by different MPI tags.

6 Results

6.1 Setup

Performance numbers were collected using the SummitDev system9 at the Oak
Ridge Leadership Computing Facility (OLCF), which is intended to mimic the
OLCF’s much larger supercomputer, Summit. SummitDev is based on the IBM
POWER8 processors and the NVIDIA P100 (Pascal) accelerators, and is one
generation behind Summit, which is based on the IBM POWER9 processors
and the NVIDIA V100 (Volta) accelerators.

The SummitDev system contains three racks, each with eighteen IBM
POWER8 S822LC nodes, for a total of fifty-four nodes. Each node contains two
POWER8 CPUs, ten cores each, and four P100 GPUs. Each node has 256 GB
of DDR4 memory. Each GPU has 16 GB of HBM2 memory. The GPUs are
connected by NVLink 1.0 at 80 GB/s. The nodes are connected with a fat-tree
enhanced data rate (EDR) InfiniBand.

The software environment used for the experiments included GNU Com-
piler Collection (GCC) 7.1.0, CUDA 9.0.69, Engineering Scientific Subroutine
Library (ESSL) 5.5.0, Spectrum MPI 10.1.0.4, Netlib LAPACK 3.6.1, and Netlib
ScaLAPACK 2.0.2.

6.2 Performance

All runs were performed using sixteen nodes of the SummitDev system, which
provides 16 nodes × 2 sockets × 10 cores = 320 IBM POWER8 cores and
16 nodes × 4 devices = 64 NVIDIA P100 accelerators. ScaLAPACK was run
with one process per core, which is still the prevailing method of getting the
best performance from ScaLAPACK. SLATE, on the other hand, was run using
one process per GPU. While SLATE does provide multi-GPU support, the best
performance was reached by assigning each GPU to one process and splitting
the CPU cores evenly (i.e., five cores per process).

Figure 4 shows performance comparison of SLATE and ScaLAPACK for the
Cholesky factorization. The left chart shows performance when using CPUs only
for both SLATE and ScaLAPACK. The right chart compares CPU performance
of ScaLAPACK with GPU performance of SLATE. At this point, we are not
aware of an efficient way of GPU-accelerating ScaLAPACK.

9 https://www.olcf.ornl.gov/kb articles/summitdev-quickstart/.

https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/
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Fig. 4. Performance of dpotrf without acceleration (left) and with acceleration (right).
The CPU peak is 8,960 gigaFLOPs, the GPU peak is 339,200 gigaFLOPs.

Similarly, Fig. 5 shows a performance comparison of SLATE and ScaLA-
PACK for the LU factorization. The left chart shows performance when using
CPUs only for both SLATE and ScaLAPACK. The right chart compares CPU
performance of ScaLAPACK with GPU performance of SLATE.

Fig. 5. Performance of dgetrf without acceleration (left) and with acceleration (right).
The CPU peak is 8,960 gigaFLOPs, the GPU peak is 339,200 gigaFLOPs.

6.3 Discussion

For the Cholesky factorization, SLATE delivers superior performance compared
to ScaLAPACK. The CPU performance of SLATE is higher than the CPU per-
formance of ScaLAPACK, and SLATE delivers an order of magnitude speedup
from GPU acceleration. For the LU factorization, the CPU performance of
SLATE is lower than ScaLAPACK’s for smaller matrix sizes, but catches up
for larger sizes. GPU performance of LU is generally superior to ScaLAPACK’s,
although the gains of acceleration are smaller than for Cholesky.
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While SLATE clearly benefits from GPU acceleration, it only achieves a
small fraction of the GPU theoretical peak performance. This is mostly due
to the fact that the computing power of the GPUs completely outmatches the
communication capabilities of the interconnection, despite the fact that the net-
work represents state-of-the-art technology. With this trend continuing, it will
be necessary to seek new algorithms—algorithms that are even more compute-
intensive than the traditional solutions to dense linear algebra problems. One
such example is the QDWH algorithm [15] for computing the singular value
decomposition (SVD).

Another problem is the one of mixing MPI messaging with OpenMP multi-
threading. In SLATE, MPI messages are sent from inside OpenMP tasks, which
requires the highest level of MPI thread safety (MPI_THREAD_MULTIPLE) and
some other precautions to prevent deadlock. These measures have an adverse
effect on performance. Ultimately, what is needed is an MPI_TASK_MULTIPLE
mode of operation, as described by Sala et al. [12].

Finally, the biggest factor contributing to the poor performance of the LU
factorization is the cost of pivoting (i.e., the operation of swapping rows). Cur-
rently, it is done in a sequential fashion, the same way it is done in LAPACK and
ScaLAPACK. Moving to parallel pivoting, where all the rows can be swapped
simultaneously, may improve the situation. Also, storing the matrix in column-
major in the CPU memory has a significant impact on the performance of piv-
oting on the CPU side, and moving the CPU operations to row-major—same as
was done for GPUs—may be necessary.
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