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Abstract. Approximation via sampling is a widespread technique
whenever exact solutions are too expensive. In this paper, we present
techniques for an efficient parallelization of adaptive (a.k.a. progressive)
sampling algorithms on multi-threaded shared-memory machines. Our
basic algorithmic technique requires no synchronization except for atomic
load-acquire and store-release operations. It does, however, require
O(n) memory per thread, where n is the size of the sampling state. We
present variants of the algorithm that either reduce this memory con-
sumption to O(1) or ensure that deterministic results are obtained.

Using the KADABRA algorithm for betweenness centrality (a popular
measure in network analysis) approximation as a case study, we demon-
strate the empirical performance of our techniques. In particular, on a
32-core machine, our best algorithm is 2.9× faster than what we could
achieve using a straightforward OpenMP-based parallelization and 65.3×
faster than the existing implementation of KADABRA.

Keywords: Parallel approximation algorithms · Adaptive sampling ·
Wait-free algorithms · Betweenness centrality

1 Introduction

When a computational problem cannot be solved exactly within the desired time
budget, a frequent solution is to employ approximation algorithms [12]. With
large data sets being the rule and not the exception today, approximation is fre-
quently applied, even to polynomial-time problems [6]. We focus on a particular
subclass of approximation algorithms: sampling algorithms. They sample data
according to some (usually algorithm-specific) probability distribution, perform
some computation on the sample and induce a result for the full data set.

More specifically, we consider adaptive sampling (ADS) algorithms (also
called progressive sampling algorithms). Here, the number of samples that are
required is not statically computed (e.g., from the input instance) but also
depends on the data that has been sampled so far. While non-adaptive sam-
pling algorithms can often be parallelized trivially by drawing multiple samples
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in parallel, adaptive sampling constitutes a challenge for parallelization: check-
ing the stopping condition of an ADS algorithm requires access to all the data
generated so far and thus mandates some form of synchronization.

Motivation and Contribution. Our initial motivation was a parallel implemen-
tation of the sequential state-of-the-art approximation algorithm KADABRA [6]
for betweenness centrality (BC) approximation. BC is a very popular central-
ity measure in network analysis, see Sect. 2.2 for more details. To the best of
our knowledge, parallel adaptive sampling has not received a generic treatment
yet. Hence, we propose techniques to parallelize ADS algorithms in a generic
way, while scaling to large numbers of threads. While we turn to KADABRA to
demonstrate the effectiveness of the proposed algorithms, our techniques can be
adjusted easily to other ADS algorithms.

We introduce two new parallel ADS algorithms, which we call local-frame
and shared-frame. Both algorithms try to avoid extensive synchronization when
checking the stopping condition. This is done by maintaining multiple copies of
the sampling state and ensuring that the stopping condition is never checked on
a copy of the state that is currently being written to. Local-frame is designed to
use the least amount of synchronization possible – at the cost of an additional
memory footprint of Θ(n) per thread, where n denotes the size of the sampling
state. This algorithm performs only atomic load-acquire and store-release
operations for synchronization, but no expensive read-modify-write operations
(like CAS or fetch-add). Shared-frame, in turn, aims instead at meeting a desired
trade-off between memory footprint and synchronization overhead. In contrast to
local-frame, it requires only Θ(1) additional memory per thread, but uses atomic
read-modify-write operations (e.g., fetch-add) to accumulate samples. We also
propose the deterministic indexed-frame algorithm; it guarantees that the results
of two different executions is the same for a fixed random seed, regardless of the
number of threads.

Our experimental results show that local-frame, shared-frame and indexed-
frame achieve parallel speedups of 15.9×, 18.1×, and 10.8× on 32 cores, respec-
tively. Using the same number of cores, our OpenMP-based parallelization (func-
tioning as a baseline) only yields a speedup of 6.3×; thus our algorithms are up to
2.9× faster. Moreover, also due to implementation improvements and parameter
tuning, our best algorithm performs adaptive sampling 65.3× faster than the
existing implementation of KADABRA (when all implementations use 32 cores).

A full-length version of this paper (including an Appendix) is available from
https://arxiv.org/abs/1903.09422 [13].

Algorithm 1. Generic Adaptive Sampling
Variable initialization:

d ← new sampling state structure
d.data ← (0, . . . , 0) � Sampled data.
d.num ← 0 � Number of samples.

Main loop:

while not checkForStop(d) do
d.data ← d.data ◦ sample()
d.num ← d.num + 1

https://arxiv.org/abs/1903.09422
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2 Preliminaries and Baseline for Parallelization

2.1 Basic Definitions

Memory Model. Throughout this paper, we target a multi-threaded shared-
memory machine with T threads. We work in the C11 memory model [15]
(more details in Appendix A of our full-length paper [13]); in particular, we
assume the existence of the usual atomic operations, as well as load-acquire
and store-release barriers.

Adaptive Sampling. For our techniques to be applicable, we expect that an
ADS algorithm behaves as depicted in Algorithm 1: it iteratively samples data
(in sample) and aggregates it (using some operator ◦), until a stopping con-
dition (checkForStop) determines that the data sampled so far is sufficient
to return an approximate solution within the required accuracy. This condition
does not only consider the number of samples (d.num), but also the sampled data
(d.data). Throughout this paper, we denote the size of that data (i.e., the num-
ber of elements of d.data) by n. We assume that the stopping condition needs
to be checked on a consistent state, i.e., a state of d that can occur in a sequen-
tial execution.1 Furthermore, to make parallelization feasible at all, we need to
assume that ◦ is associative. For concrete examples of stopping conditions, we
refer to Sect. 2.3 and Appendix A.

2.2 Betweenness Centrality and Its Approximation

Betweenness Centrality (BC) is one of the most popular vertex centrality mea-
sures in the field of network analysis. Such measures indicate the importance of
a vertex based on its position in the network [4] (we use the terms graph and
network interchangeably). Being a centrality measure, BC constitutes a function
b : V → R that maps each vertex of a graph G = (V,E) to a real number –
higher numbers represent higher importance. To be precise, the BC of u ∈ V is
defined as b(u) =

∑
s �=t∈V \{u}

σst(u)
σst

, where σst is the number of shortest s-t-
paths and σst(u) is the number of shortest s-t-paths that contain u. Betweenness
is extensively used to identify the key vertices in large networks, e.g., cities in a
transportation network [14], or lethality in protein networks [16].

Unfortunately, BC is rather expensive to compute: the standard exact algo-
rithm [8] has time complexity Θ(|V ||E|) for unweighted graphs. Moreover, unless
the Strong Exponential Time Hypothesis fails, this asymptotic running time
cannot be improved [5]. Numerous approximation algorithms for BC have thus
been developed (we refer to Sect. 5 for an overview). The state of the art of these
approximation algorithms is the KADABRA algorithm [6] of Borassi and Natale,
which happens to be an ADS algorithm. With probability (1 − δ), KADABRA
approximates the BC values of the vertices within an additive error of ε in
nearly-linear time complexity, where ε and δ are user-specified constants.
1 That is, d.num and all entries of d.data must result from an integral sequence of

samples; otherwise, parallelization would be trivial.
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While our techniques apply to any ADS algorithm, we recall that, as a case
study, we focus on scaling the KADABRA algorithm to a large number of threads.

2.3 The KADABRA algorithm

KADABRA samples vertex pairs (s, t) of G = (V,E) uniformly at random and
then selects a shortest s-t-path uniformly at random (in sample in Algorithm 1).
After τ iterations, this results in a sequence of randomly selected shortest paths
π1, π2, . . . , πτ ; from those paths, BC is estimated as:

b̃(v) =
1
τ

τ∑

i=1

xi(v), xi(v) =

{
1 if v ∈ πi

0 otherwise.
∑τ

i=1 xi is exactly the sampled data (d.data) that the algorithm has to store
(i.e., the accumulation ◦ in Algorithm 1 sums xi over i). To compute the stopping
condition (checkForStop in Algorithm 1), KADABRA maintains the invariants

Pr(b(v) ≤ b̃(v) − f) ≤ δL(v) and Pr(b(v) ≥ b̃(v) + g) ≤ δU (v) (1)

for two functions f = f(b̃(v), δL(v), ω, τ) and g = g(b̃(v), δU (v), ω, τ) depending
on a maximal number ω of samples and per-vertex probability constants δL and
δU (more details in the original paper [6]). The values of those constants are
computed in a preprocessing phase (mostly consisting of computing an upper
bound on the diameter of the graph). δL and δU satisfy

∑
v∈V δL(v)+ δU (v) ≤ δ

for a user-specified parameter δ ∈ (0, 1). Thus, the algorithm terminates once
f, g < ε; the result is correct with an absolute error of ±ε and probability (1−δ).
We note that checking the stopping condition of KADABRA on an inconsistent
state leads to incorrect results. For example, this can be seen from the fact that
g is increasing with b̃ and decreasing with τ , see Appendix B of our full-length
paper [13].

2.4 First Attempts at KADABRA Parallelization

In the original KADABRA implementation2, a lock is used to synchronize concur-
rent access to the sampling state. As a first attempt to improve the scalability,

int epoch ← e
int num ← 0
int data[n] ← (0, . . . , 0)

(a) Structure of a state frame (SF)
for epoch e. num: Number of sam-
ples, data: Sampled data

bool stop ← false
int epochToRead ← 0

SF ∗ sfFin[T] ← (null, . . . , null)

(b) Shared variables

Fig. 1. Data structures used in epoch-based algorithms, including initial values

2 Available at: https://github.com/natema/kadabra.

https://github.com/natema/kadabra
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we consider an algorithm that iteratively computes a fixed number of samples
in parallel (e.g., using an OpenMP parallel for loop), then issues a synchro-
nization barrier (as implied by the parallel for loop) and checks the stopping
condition afterwards. While sampling, atomic increments are used to update the
global sampling data. This algorithm is arguably the “natural” OpenMP-based
parallelization of an ADS algorithm and can be implemented in a few extra lines
of code. Moreover, it already improves upon the original parallelization. How-
ever, as shown by the experiments in Sect. 4, further significant improvements
in performance are possible by switching to more lightweight synchronization.

3 Scalable Parallelization Techniques

To improve upon the OpenMP parallelization from Sect. 2.4, we have to avoid the
synchronization barrier before the stopping condition can be checked. This is the
objective of our epoch-based algorithms that constitute the main contribution of
this paper. In Sect. 3.1, we formulate the main idea of our algorithms as a general
framework and prove its correctness. The subsequent subsections present specific
algorithms based on this framework and discuss trade-offs between them.

3.1 Epoch-Based Framework

In our epoch-based algorithms, the execution of each thread is subdivided into
a sequence of discrete epochs. During an epoch, each thread iteratively collects
samples; the stopping condition is only checked at the end of an epoch. The
crucial advantage of this approach is that the end of an epoch does not require
global synchronization. Instead, our framework guarantees the consistency of the
sampled data by maintaining multiple copies of the sampling state.

As an invariant, it is guaranteed that no thread writes to a copy of the state
that is currently being read by another thread. This is achieved as follows: each
copy of the sampling state is labeled by an epoch number e, i.e., a monotonically
increasing integer that identifies the epoch in which the data was generated.
When the stopping condition has to be checked, all threads advance to a new
epoch e+ 1 and start writing to a new copy of the sampling state. The stopping
condition is only verified after all threads have finished this transition and it
only takes the sampling state of epoch e into account.

More precisely, the main data structure that we use to store the sampling
state is called a state frame (SF). Each SF f (depicted in Fig. 1(a) consists of
(i) an epoch number (f.epoch), (ii) a number of samples (f.num) and (iii) the
sampled data (f.data). The latter two symbols directly correspond to d.num
and d.data in our generic formulation of an adaptive sampling algorithm (Algo-
rithm 1). Aside from the SF structures, our framework maintains three global
variables that are shared among all threads (depicted in Fig. 1(b): (i) a simple
Boolean flag stop to determine if the algorithm should terminate, (ii) a vari-
able epochToRead that stores the number of the epoch that we want to check
the stopping condition on and (iii) a pointer sfFin[t] for each thread t that
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epochToRead = 5

Thread 2

Thread 9

SF of
epoch

4

SF of
epoch

5

SF of
epoch

6
. . .

sfFin[2]

fsam

SF of
epoch

4

SF of
epoch

5

SF of
epoch

6
. . .

sfFin[9]

fsam

Fig. 2. Transition after epochToRead is set to 5. Thread 2 already writes to the SF
of epoch 6 (using the fsam pointer). Thread 9 still writes to the SF of epoch 5 but
advances to epoch 6 once it checks epochToRead (dashed orange line). Afterwards,
thread 9 publishes its SF of epoch 5 to sfFin (dashed blue line). Finally, the stopping
condition is checked using both SFs of epoch 5 (i.e., the SFs now pointed to by sfFin).
(Color figure online)

points to a SF finished by thread t. Incrementing epochToRead is our synchro-
nization mechanism to notify all threads that they should advance to a new
epoch. Figure 2 visualizes such an epoch transition. In particular, it depicts the
update of the sfFin pointers after an epoch transition is initiated by increment-
ing epochToRead.

Algorithm 2 states the pseudocode of our framework. By ←relaxed, ←acquire and
←release, we denote relaxed memory access, load-acquire and store-release,
respectively (see Sects. 2.1 and Appendix A of our full-length paper [13]). In the
algorithm, each thread maintains an epoch number esam. To be able to check
the stopping condition, thread 0 maintains another epoch number echk. Indeed,
thread 0 is the only thread that evaluates the stopping condition (in check-
Frames) after accumulating the SFs from all threads. checkFrames deter-
mines whether there is an ongoing check for the stopping condition (inCheck
is true; line 16). If that is not the case, a check is initiated (by incrementing
echk) and all threads are signaled to advance to the next epoch (by updating
epochToRead). Note that inCheck is needed to prevent thread 0 from repeat-
edly incrementing echk without processing data from the other threads. After-
wards, checkFrames only continues if all threads t have published their SFs for
checking (i.e., sfFin[t] points to a SF of epoch echk; line 20). Once that happens,
those SFs are accumulated (line 27) and the stopping condition is checked on
the accumulated data (line 31). Eventually, the termination flag (stop; line 32)
signals to all threads that they should stop sampling. The main algorithm, on
the other hand, performs a loops until this flag is set (line 2). Each iteration
collects one sample and writes the results to the current SF (fsam). If a thread
needs to advance to a new epoch (because an incremented epochToRead is read
in line 7), it publishes its current SF to sfFin and starts writing to a new
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Algorithm 2. Epoch-based Approach
Per-thread variable initialization:

esam ← 1
fsam ← new SF for esam = 1
if t = 0 then

echk ← 0
inCheck ← false

Main loop for thread t:

1: loop
2: doStop ←relaxed stop

3: if doStop then
4: break
5: fsam.data ← fsam.data ◦ sample()
6: fsam.num ← fsam.num + 1
7: r ←relaxed epochToRead

8: if r = esam then
9: reclaim SF of epoch esam − 1

10: sfFin[t] ←release fsam
11: esam ← esam +1
12: fsam ← new SF for esam

13: if t = 0 then
14: checkFrames()

Check of stopping condition by thread 0:

15: procedure checkFrames()
16: if not inCheck then
17: echk ← echk + 1
18: epochToRead ←relaxed echk
19: inCheck ← true
20: for i ∈ {1, . . . , T} do
21: ffin ←acquire sfFin[i]
22: if ffin = null then
23: return
24: if ffin.epoch �= echk then
25: return
26: d ← new SF for accumulation
27: for i ∈ {1, . . . , T} do
28: ffin ←relaxed sfFin[i]
29: d.data ← d.data ◦ ffin.data
30: d.num ← d.num + ffin.num

31: if checkForStop(d) then
32: stop←relaxed true

33: inCheck ← false

SF (fsam; line 12). Note that the memory used by old SFs can be reclaimed
(line 9; however, note that there is no SF for epoch 0). How exactly that is done
is left to the algorithms described in later subsections. In the remainder of this
subsection, we prove the correctness of our approach.

Proposition 1. Algorithm 2 always checks the stopping condition on a consis-
tent state; in particular, the epoch-based approach is correct.

Proof. The order of lines 10 and 12 implies that no thread t issues a store to a
SF f which it already published to sfFin[t]. Nevertheless, we need to prove that
all stores by thread t are visible to checkFrames before the frames are accu-
mulated. checkFrames only accumulates f.data after f has been published
to sfFin[t] via the store-relase in line 10. Furthermore, in line 21, check-
Frames performs at least one load-acquire on sfFin[t] to read the pointer to
f . Thus, all stores to f are visible to checkFrames before the accumulation in
line 27. The proposition now follows from the fact that ◦ is associative, so that
line 27 indeed produces a SF that occurs in some sequential execution. �	

3.2 Local-Frame and Shared-Frame Algorithm

We present two epoch-based algorithms relying on the general framework from
the previous section: namely, the local-frame and the shared-frame algorithm.
Furthermore, in Appendix D.2 of our full-length paper [13], we present the
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deterministic indexed-frame algorithm (as both local-frame and shared-frame
are non-deterministic). Local-frame and shared-frame are both based on the
pseudocode in Algorithm 2. They differ, however, in their allocation and reuse
(in line 9 of the code) of SFs. The local frame algorithm allocates one pair of SFs
per thread and cycles through both SFs of that pair (i.e., epochs with even num-
bers are assigned the first SF while odd epochs use the second SF). This yields
a per-thread memory requirement of O(n); as before, n denotes the size of the
sampling state. The shared-frame algorithm reduces this memory requirement to
O(1) by only allocating F pairs of SFs in total, for a constant number F . Thus,
T/F threads share a SF in each epoch and atomic fetch-add operations need to
be used to write to the SF. The parameter F can be used to balance the memory
bandwidth and synchronization costs – a smaller value of F lowers the memory
bandwidth required during aggregation but leads to more cache contention due
to atomic operations.

3.3 Synchronization Costs

In Algorithm 2, all synchronization of threads t > 0 is done wait-free in the sense
that the threads only have to stop sampling for Θ(1) instructions to communicate
with other threads (i.e., to check epochToRead, update per-thread state and
write to sfFin[t]). At the same time, thread t = 0 generally needs to check all
sfFin pointers. Taken together, this yields the following statement:

Proposition 2. In each iteration of the main loop, threads t > 0 of local-frame
and shared-frame algorithms spend Θ(1) time to wait for other threads. Thread
t = 0 spends up to O(T ) time to wait for other threads.

In particular, the synchronization cost does not depend on the problem instance
– this is in contrast to the OpenMP parallelization in which threads can idle for
O(S) time, where S denotes the time complexity of a sampling operation (e.g.,
S = O(|V | + |E|) in the case of KADABRA).

Nevertheless, this advantage in synchronization costs comes at a price: the
accumulation of the sampling data requires additional evaluations of ◦. O(Tn)
evaluations are required in the local-frame algorithm, whereas shared-frame
requires O(Fn). No accumulation is necessary in the OpenMP baseline. As can
be seen in Algorithm 2, we perform the accumulation in a single thread (i.e.,
thread 0). Compared to a parallel implementation (e.g., using parallel reduc-
tions), this strategy requires no additional synchronization and has a favorable
memory access pattern (as the SFs are read linearly). A disadvantage, however,
is that there is a higher latency (depending on T ) until the algorithm detects
that it is able to stop. Appendix C.3 discusses how a constant latency can be
achieved heuristically.

4 Experiments

The platform we use for our experiments is a Linux server equipped with 1.5 TB
RAM and two Intel Xeon Gold 6154 CPUs with 18 cores (for a total of 36 cores)
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at 3.00 GHz. Each thread of the algorithm is pinned to a unique core; hyper-
threading is disabled. Our implementation is written in C++ building upon the
NetworKit toolkit [29].3 We use 27 undirected real-world graphs in the experi-
ments (see Appendix E of our full-length paper [13] for more details). The largest
instances take tens of minutes for our OpenMP baseline and multiple hours for
the original implementation of KADABRA. The error probability for KADABRA
is set to δ = 0.1 for all experiments. Absolute running times of our experiments
are reported in Appendix F. The deviation in running time among different runs
of the same algorithm turned out to be small (e.g., around 3% for our local-frame
algorithm using 36-cores, in geom. mean running time over all instances). As it
is specifically small compared to our speedups, we report data on a single run
per instance.

In a first experiment, we compare our OpenMP baseline against the original
implementation of KADABRA (see Sect. 2.4 for these two approaches). We set
the absolute approximation error to ε = 0.01. The overall speedup (i.e., both pre-
processing and ADS) is reported in Fig. 3a. The results show that our OpenMP
baseline outperforms the original implementation considerably (i.e., by a factor
of 6.9×), even in a single-core setting. This is mainly due to implementation
tricks (see Appendix C.1) and parameter tuning (as discussed in Appendix C.2).
Furthermore, for 32 cores, our OpenMP baseline performs 13.5× better than
the original implementation of KADABRA – or 22.7× if only the ADS phase is
considered. Hence, for the remaining experiments, we discard the original imple-
mentation as a competitor and focus on the parallel speedup of our algorithms.

To understand the relation between the preprocessing and ADS phases of
KADABRA, we break down the running times of the OpenMP baseline in Fig. 3b.
In this figure, we present the fraction of time that is spent in ADS on three
exemplary instances and for different values of ε. Especially if ε is small, the
ADS running time dominates the overall performance of the algorithm. Thus,
improving the scalability of the ADS phase is of critical importance. For this rea-
son, we neglect the preprocessing phase and only consider ADS when comparing
to our local-frame and shared-frame algorithms.

In Fig. 4a, we report the parallel speedup of the ADS phase of our epoch-
based algorithms relative to the OpenMP baseline. All algorithms are con-
figured to check the stopping condition after a fixed number of samples (see
Appendix C.3 for details). The number F of SF pairs of shared-frame has been
configured to 2, which we found to be a good setting for T = 32. On 32 cores,
local-frame and shared-frame achieve parallel speedups of 15.9× and 18.1; they
both significantly improve upon the OpenMP baseline, which can only achieve
a parallel speedup of 6.3× (i.e., local-frame and shared-frame are 2.5× and 2.9×
faster, respectively; they also outperform the original implementation by factors
of 57.3 and 65.3, respectively). The difference between local-frame and shared-
frame is insignificant for lower numbers of cores; this is explained by the fact that

3 The algorithms of this paper have been integrated into NetworKit, in the
KadabraBetweenness class. NetworKit is publicly available at https://github.com/
kit-parco/networkit.

https://github.com/kit-parco/networkit
https://github.com/kit-parco/networkit
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(a) Average speedup (preprecessing +
ADS, geom. mean) of OpenMP baseline
over the original sequential implementa-
tion of KADABRA

(b) Breakdown of sequential KADABRA
running times into preprocessing and
ADS (in percent) on instances orkut-
links (O), wikipedia link de (W), and
dimacs9-COL (D)

Fig. 3. Performance of OpenMP baseline

the reduced memory footprint of shared-frame only improves performance once
memory bandwidth becomes a bottleneck. For the same reason, both algorithms
scale very well until 16 cores; due to memory bandwidth limitations, this nearly
ideal scalability does not extend to 32 cores. This bandwidth issue is known to
affect graph traversal algorithms in general [2,18].

The indexed-frame algorithm is not as fast as local-frame and shared-frame
on the instances depicted in Fig. 4a: it achieves a parallel speedup of 10.8× on

(a) Average ADS speedup (geom. mean)
of epoch-based algorithms over sequential
OpenMP baseline

(b) Average ADS speedup (over 36-core
local-frame, geom. mean) and memory
consumption of shared-frame, depending
on the number of SFs

Fig. 4. Performance of epoch-based algorithms
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32 cores. However, it is still considerably faster than the OpenMP baseline (by a
factor of 1.7×). There are two reasons why the determinism of indexed-frame is
costly: index-frame has similar bandwidth requirements as local-frame; however,
it has to allocate more memory as SFs are buffered for longer periods of time. On
the other hand, even when enough samples are collected, the stopping condition
has to be checked on older samples first, while local-frame and shared-frame can
just check the stopping condition on the most recent sampling state.

In a final experiment, we evaluate the impact of the parameter F of shared-
frame on its performance. Note that this experiment also demonstrates the differ-
ence in memory consumption of shared-frame (F ∈ {1, . . . , T}) and local-frame
(equivalent to F = T ). Figure 4b depicts the results. The experiment is done
with 36 cores; hence memory pressure is even higher than in the previous exper-
iments. The figure demonstrates that in this situation, minimizing the memory
bandwidth requirements at the expense of synchronization overhead is a good
strategy. Hence for larger numbers of cores, we can minimize memory footprint
and maximize performance at the same time.

5 Related Work

Our parallelization strategy can be applied to arbitrary ADS algorithms. ADS
was first introduced by Lipton and Naughton to estimate the size of the transi-
tive closure of a digraph [17]. It is used in a variety of fields, e.g., in statistical
learning [26]. In the context of BC, ADS has been used to approximate dis-
tances between pairs of vertices of a graph [25], to approximate the BC values
of a graph [3,6,28] and to approximate the BC value of a single vertex [9]. An
analogous strategy is exploited by Mumtaz and Wang [24] to find approximate
solutions to the group betweenness maximization problem.

Regarding more general (i.e., not necessarily ADS) algorithms for BC, a sur-
vey from Matta et al. [20] provides a detailed overview of the state of the art.
The RK [27] algorithm represents the leading non-adaptive sampling algorithm
for BC approximation; KADABRA was shown to be 100 times faster than RK
in undirected real-world graphs, and 70 times faster than RK in directed graphs
[6]. McLaughlin and Bader [22] introduced a work-efficient parallel algorithm
for BC approximation, implemented for single- and multi-GPU machines. Mad-
duri et al. [19] presented a lock-free parallel algorithm optimized for specific mas-
sively parallel non-x86 64 architectures to approximate or compute BC exactly
in massive networks. Unlike our approach, this lock-free algorithm parallelizes
the collection of individual samples and is thus only applicable to betweenness
centrality and not to general ADS algorithms. Additionally, according to the
authors of [19], this approach hits performance bottlenecks on x86 64 even for 4
cores.

The SFs used by our algorithms are concurrent data structures that enable us
to minimize the synchronization latencies in multithread environments. Devis-
ing concurrent (lock-free) data structures that scale over multiple cores is not
trivial and much effort has been devoted to this goal [7,23]. A well-known solu-
tion is the Read-Copy-Update mechanism (RCU); it was introduced to achieve
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high multicore scalability on read-mostly data structures [21], and was leveraged
by several applications [1,10]. Concurrent hash tables [11] are another popular
example.

6 Conclusions and Future Work

In this paper, we found that previous techniques to parallelize ADS algo-
rithms are insufficient to scale to large numbers of threads. However, significant
speedups can be achieved by employing adequate concurrent data structures.
Using such data structures and our epoch mechanism, we were able to devise
parallel ADS algorithms that consistently outperform the state of the art but
also achieve different trade-offs between synchronization costs, memory footprint
and determinism of the results.

Regarding future work, a promising direction for our algorithms is paral-
lel computing with distributed memory; here, the stopping condition could be
checked via (asynchronous) reduction of the SFs. In the case of BC this, might
yield a way to avoid bottlenecks for memory bandwidth on shared-memory
systems.
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