
PLB-HAC: Dynamic Load-Balancing
for Heterogeneous Accelerator Clusters

Luis Sant’Ana1, Daniel Cordeiro2, and Raphael Y. de Camargo1(B)

1 Federal University of ABC, Santo André, Brazil
2 University of São Paulo, São Paulo, Brazil

raphael.camargo@ufabc.edu.br

Abstract. Efficient usage of Heterogeneous clusters containing combi-
nations of CPUs and accelerators, such as GPUs and Xeon Phi boards
requires balancing the computational load among them. Their relative
processing speed for each target application is not available in advance
and must be computed at runtime. Also, dynamic changes in the envi-
ronment may cause these processing speeds to change during execution.
We propose a Profile-based Load-Balancing algorithm for Heterogeneous
Accelerator Clusters (PLB-HAC), which constructs a performance curve
model for each resource at runtime and continuously adapt it to chang-
ing conditions. It dispatches execution blocks asynchronously, preventing
synchronization overheads and other idleness periods due to imbalances.
We evaluated the algorithm using data clustering, matrix multiplica-
tion, and bioinformatics applications and compared with existing load-
balancing algorithms. PLB-HAC obtained the highest performance gains
with more heterogeneous clusters and larger problems sizes, where a more
refined load-distribution is required.

1 Introduction

Heterogeneous clusters, containing different combinations of CPUs and accelera-
tors, such as GPUs and Intel MIC boards, are becoming increasingly widespread.
In order to achieve the best performance offered by these clusters, scientific appli-
cations must take into account the relative processing speed of each processor
unit and balance the computational load accordingly.

For data-parallel applications, it is necessary to determine an appropriate
data (task) division among the CPUs and accelerators. A division of the load
based on simple heuristics, such as the number of cores in the GPU is usually
ineffective [5]. Another solution is to use simple algorithms for task dispatching,
such as greedy algorithms, where tasks are dispatched to the devices as soon as
the devices become available. Such heuristics are fast and straightforward, but
result in suboptimal distributions.

A more elaborate and precise load-balancing algorithm causes a higher over-
head, but a better task distribution can compensate for the overhead. For
instance, it is possible to determine the performance profiles for each GPU type

c© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 197–209, 2019.
https://doi.org/10.1007/978-3-030-29400-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_15


198 L. Sant’Ana et al.

and application task and use it to determine the amount of work given to each
GPU. This profiling can be statically computed, before the execution of the
application [5], or dynamically computed at runtime [1,3,10].

We present a Profile-based Load-Balancing algorithm for Heterogeneous
Accelerator Clusters (PLB-HAC), which improves PLB-HeC [10] by removing
synchronization phases, enhancing the rebalancing mechanism, and including
support for Xeon Phi accelerators. The algorithm uses performance informa-
tion gathered at runtime in order to devise a performance model customized
for each processing device. The algorithm is implemented inside the StarPU
framework [2], easing its use both on legacy applications and novel ones.

2 Related Work

In this work, we focus on the development of a dynamic algorithm with adapt-
ability, through the use of performance models based on the processing capacity.
Acosta et al. [1] proposed an algorithm for GPUs where processors record their
individual execution time on periodical synchronization, to asymptotically gen-
erate the RP (Relative Power) of the processors. The main drawbacks are that
asymptotic convergence causes suboptimal load distributions during several iter-
ations and frequent synchronizations further slow down application execution.

In another work, Zhong et al. [11] use the concept of logical processors to
model GPU-CPU hybrid systems. The workload is split using an FPM (Func-
tional Performance Model) that provides a detailed performance model. The
approach is limited because it requires prior information about the problem to
set up the model parameters.

Heterogeneous Dynamic Self-Scheduler (HDSS) [3] is a dynamic load-bal-
ancing algorithm for heterogeneous GPU clusters. In an adaptive phase, it deter-
mines weights that reflect the speed of each GPU, which it uses to divide the
work among GPUs in the remaining iterations. The performance model is specific
to GPUs and the use of a simple weight per GPU limits the data distribution.
Finally, it does not adjust the data distribution during the execution phase and
synchronizations in the adaptive phase slow down application execution.

Kaleen et al. [8] proposed the naive algorithm, which executes in two phases:
profiling and execution. In the profiling phase, the algorithm determines the pro-
cessing rate Gr of GPUs and Cr of CPUs, which are used for data distribution in
the execution phase. A second algorithm, called asymmetric algorithm, reduces
the overhead of the initial phase by sharing a pool of work between CPU and
GPU. Their approach is suited for CPUs and GPUs and reduces synchroniza-
tions, but the obtained performance can degrade in case of changes during the
execution phase.

PLB-HeC [10] performs dynamic load-balancing in two phases for clusters
with CPUs and GPUs. The first phase constructs the performance model using
profiling, while in the second blocks of the selected sizes are dispatched to the
processing units. It differs from previous approaches in that it models the pro-
cessors (CPUs and GPUs) using a system of nonlinear equations to improve the



PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 199

Fig. 1. Overview of the load-balancing algorithm, including the performance model
evaluation, block distribution, and task execution.

accuracy of block size distributions. However, it still contains several synchro-
nization steps, which slowdowns application execution.

Our proposed algorithm addresses the limitations of previous dynamic load-
balancing algorithms. It uses the same approach of solving a system of nonlin-
ear equations from PLB-HeC, but it has no explicit or implicit synchronization
between processors within the training and execution phases. Moreover, it per-
forms a progressive refinement of the performance models for the processors
during the entire execution, which allows it to adapt to changes in the execution
environment. Idle periods that could still result from imperfect load-balancing
are filled with smaller blocks of the correct size. Finally, it supports several
classes of processing devices, including CPUs, GPUs, and Xeon Phi boards.

3 Proposed Algorithm

In a typical data-parallel application, data is divided into blocks that can be
concurrently processed by multiple threads, in a process called domain decom-
position [6]. The results are then merged, and the application can proceed to
its next phase. The goal of the PLB-HAC algorithm is to find a near-optimal
distribution of the size of data blocks assigned to threads located on each CPU
and accelerator in the system. We use the term Processing Unit (PU) to refer
to both CPUs, GPUs and Xeon Phi coprocessors.

PLB-HAC generates and evaluates performance models of PUs and determine
the optimal block size distribution, which is shown in the “Model Evaluation”
box in Fig. 1. The list of block sizes is sent (2) to the application, which sends the
data blocks for execution in the assigned PUs (3), together with the execution
code for that PU. The PUs process the data blocks and return the results to the



200 L. Sant’Ana et al.

ŷ = 0.0233 + 1.11 × 10−8 x + 1.23 × 10−16 x2 R2 = 0.96

0.00

0.25

0.50

0.75

1.00

1.25

0e+00 2e+07 4e+07 6e+07
Block Size(KB)

Ti
m

e(
s)

GRN (CPU)

ŷ = 0.000689 + 6.75 × 10−10 x + 2.89 × 10−16 x2 R2 = 0.99

0.0

0.3

0.6

0.9

0e+00 2e+07 4e+07 6e+07
Block Size(KB)

Ti
m

e(
s)

GRN (GPU)

ŷ = − 0.00432 + 8.04 × 10−10 x + 2.64 × 10−16 x2 R2 = 1

0.00

0.25

0.50

0.75

1.00

0e+00 2e+07 4e+07 6e+07
Block Size(KB)

Ti
m

e(
s)

MM (CPU)

ŷ = 0.00946 + 8.68 × 10−10 x + 3.3 × 10−16 x2 R2 = 0.91

0.0

0.5

1.0

0e+00 2e+07 4e+07 6e+07
Block Size(KB)

Ti
m

e(
s)

MM (GPU)

Fig. 2. Execution times and performance models for the GPU and CPU implementa-
tions of the k-means and matrix multiplication applications.

application (4) and the execution time of the block to PLB-HAC (5), which are
used to improve the performance model.

The mechanics of data and code migration can be managed by a framework
such as StarPU and Charm++, where a user is presumed to implement only
the task code. The remaining of this section discuss the implementation of the
“Model Evaluation” from Fig. 1 in PLB-HAC in a framework-agnostic way and
the next section show how the algorithm can be integrated to StarPU.

3.1 Processing Unit Performance Modeling

The algorithm devises a performance model for each processing unit based on
execution time measurements. The algorithm constructs two functions Fp[x] and
Gp[x], representing the amount of time a processing unit p spends processing and
transmitting a block of size x, respectively. These functions are generated in a
training phase, where the algorithm first assigns a block of size xinit—initially
defined by the user—to be processed by each PU. The unit that finishes first
receives a second block of size 2 ∗ xinit, while each other PU p receives a block
of size equal to 2 ∗ xinit ∗ R, where R is the ratio between the time spent by the
fastest unit and the time spent by unit p. The idea is to balance the load better,
preventing a long delay between the finish times of the different processing units.

The measured execution and data transfer times for each new block and
PU are used to create the performance model. The algorithm performs a linear
regression to determine the execution time functions Fp[x] that better fit the



PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 201

existing pairs (x, tx) using the least squares method. The same is done for Gp[x],
but using the data transfer times. The curve is initially fitted using two points
and after each new iteration, another point is added to the model, resulting
in better models. This calculation is done in the first CPU that finishes the
execution of its assigned block. The algorithm performs a linear regression of
the form:

Fp[x] = a1f1(x) + a2f2(x) + ... + anfn(x) (1)

where fi(x) are functions from the set x, x2, x3, ex, lnx, and the combinations
x · ex and x · ln x. This set should contemplate the vast majority of applica-
tions, but other functions can be included if necessary. Figure 2 shows sample
processing time measurements and model fittings for a GPU and a CPU for dif-
ferent block sizes on two different applications. For the Gp[x] function, we used
an equation of the form:

Gp[x] = a1x + a2 (2)

where the linear coefficient a1 represents the network and PCIe bandwidths,
and a2 the network and system latency. We assume that the data transfer delay
increases linearly with data size, which should be a valid approximation for
compute-bound applications.

3.2 Block Size Selection

The proposed algorithm determines the block size assigned to each processing
unit with the objective that all PUs have the same execution time. Consider that
we have n processing units and input data of size normalized to 1. The algorithm
assigns a data chunk of size xp ∈ [0, 1] for each processing unit p = 1, ..., n,
corresponding to a fraction of the input data, such that

∑n
p=1 xp = 1. We denote

as Ep(xp) the execution time of task E in the processing unit p, for input of
size xp. To distribute the work among the processing units, we find a set of
values (xp)ni=1 that minimizes the system of fitted curves for all processing units,
determined in the training phase, while keeping the same execution time for all
units. The full set of equations are given by:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E1(x1) = F1(x1) + G1(x1)
E2(x2) = F2(x2) + G2(x2)
. . .
En(xn) = Fn(xn) + Gn(xn)
E1(x1) = E2(x2) = · · · = En(xn)∑n

p=1 xp = 1

(3)

The equation system is solved applying an interior point line search filter
method [9], which finds the minimum solution of a convex equation set, subject to
a set of constraints, by traversing the interior of its feasible region. The solution
of the equation system results in a block size xp for each processing unit p. The
block size is rounded to the closest valid application data block size, so that all
units will spend approximately the same processing time executing their blocks.
We also use a minimum block size that does not underutilize the GPUs.



202 L. Sant’Ana et al.

Fig. 3. PLB-HAC execution example. The number inside boxes represents the block
sizes assigned to units, M represents model evaluation to determine block sizes. Shaded
boxes are regular assigned blocks and white boxes are gap filling blocks.

3.3 Execution Phase

The execution phase is asynchronous. Tasks of size xp, determined at the training
phase, are sent to each PU p. When a PU notifies the scheduler that it finished
executing a task, the measured performance is added to the set of points of the
performance model and another task of size xp is sent to the PU.

The task size xp is updated at the end of each “virtual step”, which occurs
when all PUs finish the execution of their assigned blocks. During the update, the
first CPU to become idle solves the equation system (3)—using all the execution
time measurements collected from each unit—to determine the block size xp for
each processing unit p. No synchronization is required since the scheduler uses
the most recent already available xp when assigning a block size to PU p.

Two other mechanisms improve the load-balancing process. The first one is
a gap-filling mechanism, used if a processing unit finishes the execution of its
assigned block earlier than expected. The algorithm provides a new block to fill
the gap between the predicted and actual execution time that a unit needed
to process its last block. We used a default threshold of 400 ms, which can
be changed by the user. The second mechanism is a gradual decrease in block
sizes after 70% of the application data was processed, with the goal of reducing
possible unbalances at the end of the execution. The decrease is by a constant
factor α = 0.1, and the user can adjust this factor to suit the application better.

Figure 3 shows an execution example of four heterogeneous PUs (A, B, C,
and D). At the left of the first vertical dashed line is the training phase, where
blocks of size 1 are sent to each PU. Machine A finishes processing its block
first and receives a new block of size 2, while others receive smaller blocks. A
synchronization then takes place and the first complete model is generated. This
is the only synchronization step in the entire execution. Between the dashed
lines is the execution phase, with several virtual steps. At the beginning of each
virtual step, the first unit to finish the last step evaluates a new model. Unit A
also receives a gap-filling block. Near the end of the execution, the blocks are
progressively reduced in size until there is no more data to process.



PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 203

3.4 Complete Algorithm

Algorithm 1 shows the pseudocode of the PLB-HAC algorithm. The function
FinishedTaskExecution is a callback function, invoked when a processing unit
finishes a task. It receives the finish time (finishT ime) and the processing unit
identifier (proc). If there is still data left to be processed, it first checks if the
finish time of the application was smaller than the gapThreshold, in which case
it sends a new block to fill the gap between the predicted and finished time.
Otherwise, it calls PLB-HAC to determine the next block size.

Algorithm 1. Compute the performance model for each processing unit
X : global vector
function PLB-HAC(proc)
firstProc ← firstProcessVirtualStep(proc);
if proc == firstProc then

fitV alues ← determineModel()
X ← solveEquationSystem(fitV alues);
if assignedData ≥ 0.7 * totalData then

X ← X * k;
end if
assignedData ← assignedData + sum(X);

end if
distributeTask(X[proc], proc);

function FinishedTaskExecution(proc, finishT ime)
if assignedData ≤ totalData then

if finishedT ime / predictedT ime ≤ gapThreshold then
assignedData ← assignedData + determineGapBlockSize();
distributeTask(X, proc);

else
PLB-HAC();

end if
end if

Function PLB-HAC first calls firstProcessVirtualStep, which keeps track
of the PU’s current virtual step and returns the identifier firstProc of the first
unit to enter the current virtual step. If the calling unit is firstProc, it first
determines a new performance model for all units using the determineModel
function, which returns a structure fitV alues containing the model. Function
solveEquationSystem then solves the system of equations (3) and returns the
best distribution of block sizes for each PU in X. Finally, if 70% of all data was
already processed, the algorithm decreases the block size by multiplying it by
k, a constant that defines the rate of block size reduction. At the end of the
function, function distributeTask is called, which sends the data block of the
determined size to the unit.



204 L. Sant’Ana et al.

4 Implementation

The PLB-HAC algorithm was implemented in C++ over StarPU [2], a frame-
work for parallel programming that supports hybrid architectures. StarPU is
based on the concept of codelets, which describe computational kernels that can
be implemented on multiple architectures.

For comparison sake, we also implemented two other load-balancing algo-
rithms: greedy and HDSS [3]. The greedy algorithm divides the input set in pieces
and assigns each piece to the first available processing unit. HDSS was imple-
mented using minimum square estimation to determine the weights and divided
into two phases: adaptation and completion phase. We used the IPOPT [9]
(Interior Point OPTimizer) library to solve the equations systems produced by
Eq. (3).

4.1 Applications

We used three applications to evaluate the PLB-HAC algorithm: a matrix
multiplication (MM) application, a gene regulatory network (GRN) infer-
ence [4] application, and a clustering algorithm, the K-Means. Each application
was implemented as a pair of codelets, containing optimized GPU and CPU
implementations.

The MM application distributes a copy of the matrix A to all PUs and divides
matrix B among the PUs according to the load-balancing scheme. We used an
optimized version from the CUBLAS 4.0 library. Multiplication of two n × n
matrices has complexity O(n3).

Gene Regulatory Network (GRN) inference [4] is a bioinformatics problem in
which gene interactions must be deduced from gene expression data. It depends
on an exhaustive search of the gene subset with a given cardinality that best
predicts a target gene. The division of work consisted of distributing the gene
sets that are evaluated by each processor. The complexity of the algorithm is
known to be O(n3), where n is the number of genes.

K-means clustering is a popular method for cluster analysis which parti-
tions n observations into k clusters. The problem can be exactly solved in time
O(ndk+1), where n is the number of entities to be clustered and d is the input
dimensionality [7].

5 Results

We used five machines with different PU configurations (Table 1). We considered
five scenarios: one machine (A); two machines (A, B); three machines (A, B, and
C); four machines (A, B, C, and D) and five machines (A, B, C, D, and E). For
GPUs, we launched kernels with 1 thread block per Stream Multiprocessors
(SMs). For the CPUs and Xeon Phi, we created one thread per (virtual) core.



PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 205

Fig. 4. Speedup (compared to the optimum execution) for the Matrix Multiplication
(MM), Gene Regulatory Network (GRN) inference application and K-Means algorithm,
using different number of machines and input sizes.

Table 1. Machine configurations

Machines Description

PU type Model Core count Cache/throughput Memory

A CPU Intel i7 - 5930K 6 cores @ 3.5GHz 15MB cache 32GB

GPU Quadro K5200 2304 cores 192GB/s 8GB

B CPU Intel i7 - 5930K 6 cores @ 3.5GHz 15MB cache 32GB

GPU GTX 970 1667 cores 224GB/s 4GB

Xeon Phi 3120 series 57 cores 240GB/s 6GB

C CPU Intel Xeon E-2620 6 cores @ 2.10GHz 15MB cache 32GB

GPU Quadro K620 384 cores 29GB/s 2GB

D CPU Intel i7-4930k 6 cores @ 3.40GHz 12MB cache 32GB

GPU GPU Titan 2688 cores 288.4GB/s 6GB

E CPU Intel Xeon E-2620 6 cores @ 2.10GHz 15MB cache 32GB

GPU Quadro K620 384 cores 29GB/s 2GB

Xeon Phi 3120 series 57 cores 240GB/s 6GB

5.1 Application Speedup

Figure 4 shows the average of 10 runs of each algorithm. Lines labeled “Opti-
mum” show results for the optimal load balancing, obtained empirically by brute
force searching. We used the same initial block size for both PLB-HAC, PLB-
HeC, and HDSS, with 1024 elements.



206 L. Sant’Ana et al.

Fig. 5. (a) Percentage of idle time for each PU class (CPU, GPU, and Xeon Phi) in the
five machines (colored bars), when using the HDSS (H) and PLB-HAC (P) algorithms
for each application. (b) The block size ratio distributed to each PU in the five machines
for the Optimal (O), HDSS (H) and PLB-HAC (P) distributions.

With three or more machines, PLB-HAC algorithm approximates the opti-
mal curve and exceeds the performance of the compared algorithms. The cost
involved in the calculation of the block size distribution (about 100 ms per iter-
ation), is mitigated by the better distribution of blocks. The behavior is similar
for all three applications evaluated, with PLB-HAC performing better in more
heterogeneous environments.

With one machine, PLB-HAC exhibited lower performance than HDSS and
Greedy. For HDSS, the overhead from the model generation occurs only once,
at the end of the adaptive phase. Note that PLB-HAC has a better performance
than PLB-HeC due to the removal of the synchronization steps.

5.2 Block Size Distribution

We compared the distribution of block sizes among the PUs. Figure 5b shows the
results for a matrix of 65,536 elements for matrix multiplication, 140,000 genes
for GRN and 500,000 points for k-means. We used the five machines A, B, C,
D, and E. The values represent the ratio of the total data allocated on a single
step to each CPU/GPU processor, normalized so that total size is equal to 100.
We considered the block sizes generated at the end of the training phase for the
algorithm PLB-HAC, and at the end of phase 1 for the HDSS algorithm. We
performed 10 executions and present the average values and standard deviations.
The standard deviation values are small, showing that all algorithms are stable
through different executions.

The PLB-HAC algorithm produced a distribution that was qualitatively more
similar to the optimum algorithm than HDSS, with proportionally smaller blocks
allocated to CPUs and larger blocks to GPUs. We attribute this difference to
the use of a performance curve model by PLB-HAC, in contrast to the use of



PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 207

the simpler linear weighted means from a set of performance coefficients done
by HDSS.

5.3 Processing Unit Idleness

We also measured the percentage of time that each CPU and GPU was idle dur-
ing application execution, using the same experimental setup from the block size
distribution experiment. At each task submission round, we recorded the time
intervals where each processing unit remained idle. We executed each application
with each load-balancing algorithm 10 times.

Figure 5a shows that HDSS produced larger processing unit idleness than
PLB-HAC in all scenarios. This idleness occurred mainly in the first phase of
HDSS, where non-optimal block sizes are used to estimate the computational
capabilities of each processing unit. PLB-HAC prevents these idleness periods
in the initial phase by starting to adjust the block sizes after the submission of
the first block, significantly reducing the idleness generated on this phase.

Another measured effect is that with larger input sizes—which are the most
representative when considering GPU clusters—the percentage of idleness time
was smaller. This occurred mainly because the time spent in the initial phase,
where most of the idleness time occurs, was proportionally smaller when com-
pared to the total execution time. This effect is evident when comparing the idle
times of the matrix multiplication application with 4,096 and 65,536 elements
for the PLB-HAC algorithm.

Incorrect block size estimations also produce idleness in the execution phase
of the algorithms, especially in the final part, since some processing units may
finish their tasks earlier than others. HDSS and PLB-HAC prevent part of this
idleness using decreasing block size values during the execution.

5.4 Adaptability

We evaluated the adaptability of PLB-HAC to situations where the resource
state changes during application execution. For instance, an external applica-
tion could be started in some of the machines where the PLB-HAC managed
application is executing.

We used two machines (A and B), with one CPU and GPU on each. They
are initially idle, and we start the execution of the MM application. After 142 s,
we start the execution of a CUDA-based GRN application at machine A, which
competes for GPU resources. PLB-HAC detects that executions at GPU A are
taking longer and reduces the block size for this GPU, as shown in Fig. 6a.
Conversely, the block size for GPU B is increased, compensating the reduction
in GPU A. Figure 6b shows a scenario where we start a render application in
GPU A after 142 s. Note that the PLB-HAC reduces the block size to GPU A
to near zero while increasing the block size of GPU B.

It is important to note that the adaptation was fast, with the block size falling
from 2500 KB to 1188 KB within 38 s in the first case (a) and from 2500 KB to



208 L. Sant’Ana et al.

Fig. 6. Evolution of the block size distribution for two machines (A and B) in the
presence of a competing process, which is started at GPU A at instant 142 s, denoted
by the vertical line.

320 KB in 43 s in the second case (b). Also note the decrease of block sizes at
the end of the execution, which is a result of PLB-HAC policy of distributing
smaller blocks at the end of the execution, avoiding possible load unbalances
that could occur at this phase.

6 Conclusions

In this paper, we presented PLB-HAC, a novel algorithm for dynamic load-bal-
ancing of domain decomposition applications executing on clusters of heteroge-
neous CPUs, GPUs and Xeon-Phi. It performs a profile-based online estimation
of the performance curve for each processing unit and selects the block size dis-
tribution among processing units solving a non-linear system of equations. We
used three real-world applications in the fields of linear algebra, bioinformatics,
and data clustering and showed that our approach decreased the application
execution time when compared to other dynamic algorithms.

Experiments showed that PLB-HAC performed better for higher degrees of
heterogeneity and larger problem sizes, where a more refined load-distribution
is required. The PLB-HAC was implemented on top of the well-known StarPU
framework, which allows its immediate use for several existing applications and
an easier development cycle for new applications.

As future work, we need to evaluate the scalability of PLB-HAC by executing
experiments with applications that require hundreds or thousands of processing
units. Another point is to extend the method to work with applications that
have multiple kernels.

Acknowledgment. The authors would like to thank UFABC and FAPESP (Proc.
n. 2013/26644-1) for the financial support, Fabrizio Borelli for providing the GRN
application and Samuel Thibalt for helping with StarPU. This research is part of the
INCT of the Future Internet for Smart Cities funded by CNPq proc. 465446/2014-0,
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) –
Finance Code 001, FAPESP proc. 14/50937-1, and FAPESP proc. 15/24485-9.



PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters 209

References

1. Acosta, A., Blanco, V., Almeida, F.: Towards the dynamic load balancing on het-
erogeneous multi-GPU systems. In: 2012 IEEE 10th International Symposium on
Parallel and Distributed Processing with Applications (ISPA), pp. 646–653 (2012)

2. Augonnet, C., Thibault, S., Namyst, R.: StarPU: a runtime system for schedul-
ing tasks over accelerator-based multicore machines. Technical report RR-7240,
INRIA, March 2010

3. Belviranli, M.E., Bhuyan, L.N., Gupta, R.: A dynamic self-scheduling scheme for
heterogeneous multiprocessor architectures. ACM Trans. Arch. Code Optim. 9(4),
57:1–57:20 (2013)

4. Borelli, F.F., de Camargo, R.Y., Martins Jr., D.C., Rozante, L.C.: Gene regu-
latory networks inference using a multi-GPU exhaustive search algorithm. BMC
Bioinform. 14(18), 1–12 (2013)

5. de Camargo, R.: A load distribution algorithm based on profiling for heteroge-
neous GPU clusters. In: 2012 Third Workshop on Applications for Multi-Core
Architectures (WAMCA), pp. 1–6 (2012)

6. Gropp, W.D.: Parallel computing and domain decomposition. In: Fifth Interna-
tional Symposium on Domain Decomposition Methods for Partial Differential
Equations, Philadelphia, PA (1992)

7. Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering. In: Proceedings of the Tenth Annual
Symposium on Computational Geometry, pp. 332–339. ACM (1994)

8. Kaleem, R., Barik, R., Shpeisman, T., Lewis, B.T., Hu, C., Pingali, K.: Adaptive
heterogeneous scheduling for integrated GPUs. In: Proceedings of the 23rd Inter-
national Conference on Parallel Architectures and Compilation, PACT 2014, pp.
151–162. ACM, New York (2014). https://doi.org/10.1145/2628071.2628088

9. Nocedal, J., Wächter, A., Waltz, R.: Adaptive barrier update strategies for nonlin-
ear interior methods. SIAM J. Optim. 19(4), 1674–1693 (2009). https://doi.org/
10.1137/060649513

10. Sant’Ana, L., Cordeiro, D., Camargo, R.: PLB-HeC: a profile-based load-balancing
algorithm for heterogeneous CPU-GPU clusters. In: 2015 IEEE International Con-
ference on Cluster Computing, pp. 96–105, September 2015. https://doi.org/10.
1109/CLUSTER.2015.24

11. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on heterogeneous multi-
core and multi-GPU systems using functional performance models of data-parallel
applications. In: 2012 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 191–199, September 2012. https://doi.org/10.1109/CLUSTER.
2012.34

https://doi.org/10.1145/2628071.2628088
https://doi.org/10.1137/060649513
https://doi.org/10.1137/060649513
https://doi.org/10.1109/CLUSTER.2015.24
https://doi.org/10.1109/CLUSTER.2015.24
https://doi.org/10.1109/CLUSTER.2012.34
https://doi.org/10.1109/CLUSTER.2012.34

	PLB-HAC: Dynamic Load-Balancing for Heterogeneous Accelerator Clusters
	1 Introduction
	2 Related Work
	3 Proposed Algorithm
	3.1 Processing Unit Performance Modeling
	3.2 Block Size Selection
	3.3 Execution Phase
	3.4 Complete Algorithm

	4 Implementation
	4.1 Applications

	5 Results
	5.1 Application Speedup
	5.2 Block Size Distribution
	5.3 Processing Unit Idleness
	5.4 Adaptability

	6 Conclusions
	References




