)

Check for
updates

Toggle: Contention-Aware Task Scheduler
for Concurrent Hierarchical Operations

Saurabh Kalikar®™) and Rupesh Nasre

CSE, IIT Madras, Chennai, India
{saurabhk,rupesh}@cse.iitm.ac.in

Abstract. Rooted hierarchies are efficiently operated on using hierar-
chical tasks. Effective synchronization for hierarchies therefore demands
hierarchical locks. State-of-the-art approaches for hierarchical locking
are unaware of how tasks are scheduled. We propose a lock-contention
aware task scheduler which considers the locking request while assigning
tasks to threads. We present the design and implementation of Toggle,
which exploits nested intervals and work-stealing to maximize through-
put. Using widely used STMBench7 benchmark, a real-world XML hier-
archy, and a state-of-the-art hierarchical locking protocol, we illustrate
that Toggle considerably improves the overall application throughput.

1 Introduction

Managing concurrent data structures efficiently is challenging as well as error-
prone. Due to irregular memory accesses, the access pattern cannot be precisely
captured at compile time. Such a data-driven behavior necessitates runtime
thread-coordination. For synchronizing across threads, logical locks continue to
be prevalent for concurrent data structures.

We work with hierarchies; a hierarchy is a rooted directed graph wherein
nodes at a level control or contain all the reachable nodes at the levels below.
Such hierarchies are quite useful in modeling relations such as manager-employee.
Our motivation arises from the use of hierarchies to store data in relational
databases. For instance, Oracle database is composed of several tablespaces, each
of which contains several datafiles. Each datafile, in turn, may host several tables,
and each table may contain multiple rows where data is stored [12]. Similarly,
Sybase database uses the hierarchy of database, extents, tables, datapages and
rows [14]. The hierarchy is layered according to the containment property. Thus,
a table is completely contained into an extent. Concurrent updates to part of
the database requires thread synchronization. For instance, for answering range
queries [11], the concurrency mechanism in the database server acquires locks on
multiple rows. Two transactions accessing overlapping ranges (e.g., rows 10..20
and rows 15..25) may be allowed concurrent execution if their accesses are com-
patible (both are reads, for instance).

Existing hierarchical locking protocols such as intention locks [3]
exploit this containment property for detection of conflicting lock-requests.

© Springer Nature Switzerland AG 2019
R. Yahyapour (Ed.): Euro-Par 2019, LNCS 11725, pp. 142-155, 2019.
https://doi.org/10.1007/978-3-030-29400-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29400-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-29400-7_11

Toggle: Contention-Aware Task Scheduler 143

However, due to the requirement of multiple traversals (from root to the nodes
being locked), intention locks are expensive for non-tree structures (such as
DAGs). The state-of-the-art approaches [6,8] improve upon intention locks by
making use of interval numbering. These approaches assign numeric intervals to
nodes while respecting their hierarchical placement. The intervals can be quickly
consulted for locking requests, leading to fast conflict-detection and improved
throughput.

Unfortunately, the state-of-the-art approaches do not coordinate with the
task scheduler. Thus, the task scheduler does not know how threads process hier-
archical lock requests, and the threads do not know how various tasks (involving
lock requests) get assigned to them by the scheduler. Such a lack of coordination
forces the task scheduler to use uniform schemes across threads — for instance,
using round-robin scheduling for assigning tasks to threads. While round-robin
mechanism is fair, it is oblivious to locking requests and works well only when
the requests are spread uniformly across the hierarchy. In practice, however,
some parts of the hierarchy are more frequently accessed while several parts
witness infrequent accesses. This gives rise to skewed access pattern, which also
evolves over time (that is, different data records get more frequently accessed
over time). To cater to these changes, it is crucial to marry lock management
with task scheduling. Thus, the worker threads can provide information on how
the locking requests are spread in the hierarchy, and how loaded each thread is.
On the other hand, the task scheduler can distribute tasks to threads based on
the feedback received from the worker threads — to improve overall throughput.

Making the lock manager talk to the task scheduler is challenging and involves
several design changes to a traditional scheduler. Our primary contribution in
this work is to motivate the need for those design decisions and to illustrate how
those can be efficiently implemented. In particular,

— We propose Toggle, a novel hashing-based task-scheduling policy for hier-
archies. Built upon the interval numbering, such a policy allows the task
scheduler to quickly assign a task to a thread.

— We design and implement a communication protocol for threads using a
lightweight concurrent data structure.

— We illustrate the effectiveness of our proposal by incorporating the design
into STMBench7. Our proposal improves the overall throughput by 22%.

2 Background and Motivation

Hierarchy is a special linked data-structure where each child node exhibits a con-
tainment relationship with its parents. For instance, in a hierarchy of employees
within an organization, an edge from a project-manager to its team-member
indicates a containment relationship. Hierarchical structures are often operated
on using hierarchical operations which work on sub-hierarchies. For instance, an
operation “bulk updates to a particular department in an organization” accesses
the sub-hierarchy rooted at the department. Traditional fine-grained locking
necessitates locking each node in this sub-hierarchy that gets accessed by the

144 S. Kalikar and R. Nasre

/%
[1.4] Q ;@ 5.7]
[1,4] \

hY

(1.2(o] () Y1551 /‘@{n
/ ¥
TN

[1,1] [22] [33] [4,4] [5,5] [6,6] [7,71

Fig. 1. Sample hierarchy. Numbers at nodes represent subsuming intervals.

bulk operation. As the hierarchy size grows, fine-grained locking is prohibitive
from efficiency perspective. Therefore, hierarchical or multi-granularity locking
(MGL) have been proposed. MGL at a node semantically allows the whole sub-
hierarchy rooted at that node to be locked. In the extreme case, locking the
root of the hierarchy locks the whole hierarchy. For instance, Fig. 1 represents a
sample hierarchy wherein locking the node F locks nodes E, H, J and K. MGL
is an efficient way to ensure race-free access for hierarchical operations. Var-
ious approaches towards implementing multiple-granularity locking have been
proposed in the literature [2,3,6,8].

Existing MGL techniques lack coordination between thread scheduling and
lock management. For instance, consider two threads operating on nodes B and
D in Fig. 1. Due to MGL protocol, they both semantically try to lock the common
node H. If the accesses are non-compatible (e.g., both are writes) then only one
thread should be able to succeed in acquiring the lock, while the other must wait.
As an aftereffect, the two operations get executed sequentially. If this is known
to the scheduler, it may decide to assign the two operations to the same thread,
reducing the contention and improving the throughput. In absence of such a
knowledge, the scheduler may make suboptimal decisions while assigning tasks
to threads. In fact, as we illustrate in our experimental evaluation, round-robin
scheduling, which is fair and achieves good load balance, does not perform very
well for hierarchical operations. This is because the load balance is achieved with
respect to the number of tasks executed by a thread, rather than the amount
of work done, which is dependent on both the sub-hierarchy size as well as the
amount of contention.

3 Toggle: Contention-Aware Scheduler

In this section, we describe the design of our task scheduler. A task, denoted as
X : (Op, L) which consists of a set of operations (Op) to be performed atomically
on the shared hierarchy and a set of lock objects L to be acquired at the beginning
of the task. The execution of tasks follows standard 2-phase locking protocol in
which all the required locks are acquired at the beginning and released at the
end of the operation. Every hierarchical lock object I; € L can be represented

Toggle: Contention-Aware Task Scheduler 145

by its reachable leaf level locks. For instance, in Fig. 1, node B represents a set
of nodes H, I, J and K. We define a set of leaf level locks for set L as,

Leaf(L) = U, etz | wis leaf node and reachable from I; }

Any pair of tasks say, X7 : (Op1, L1) and X5 : (Opa, Ly), are classified into
two types: independent tasks and conflicting tasks. Two tasks are independent
iff Leaf(L1) N Leaf(Ls) = ¢, i.e., they do not access any common node in the
hierarchy; otherwise they conflict. Scheduling two conflicting tasks to different
threads may degrade performance due to the overhead of lock contention.

3.1 Representing Hierarchy as a System of Nested Intervals

Traversing lock hierarchy to compute the set of leaf level locks using reachability
information is costly. To avoid such traversals, the hierarchies are pre-processed
to compute and store the reachability information. One of the techniques for
encoding reachability is using nested intervals where each node in the hierarchy
keeps track of their leaf level descendents as an interval [6,7]. For example, in
Fig.1, nodes H, I, J, K are reachable from B. Initially each leaf node is assigned
with a unique interval range H: [1, 1], I: [2, 2] and so on. Each internal node
maintains its interval range such that the range subsumes the interval range
of every reachable leaf node (e.g. D: [1, 2]). We build upon these intervals to
compute leaf lock set L for quick classification and scheduling of tasks.

3.2 Concurrent Data Structure for Task Classification
and Scheduling

A global task pool maintains a list of pending tasks to be executed. A worker
thread picks one task at a time from the global task pool and executes it on
the physical core. In absence of a proper scheduler, the allocation of a task to
a thread happens arbitrarily depending on the order in which worker threads
extract the next available tasks. Therefore, multiple threads can get blocked
simultaneously based on the locking requests.

& & |:>
\/

Host: TO Host: T1

Fig. 2. Scheduler design: A and B represent outer and inner buckets resp.

146 S. Kalikar and R. Nasre

Our proposed scheduler assigns a task to appropriate worker thread to avoid
lock contention. Figure2 shows the data structure used for task organization.
The data structure contains a list of hash buckets. The size of the list is equal
to the number of worker threads in the system. Every leaf node in the hierarchy
is hashed to a specific bucket in the list. Consider there are 100 leaf node in
the hierarchy indexed from 0 to 99 (during pre-processing) and there are 5 hash
buckets in the list. Therefore, each bucket represents a range of 20 hierarchical
nodes ([0-19], [20-39], ...). The scheduler, after extracting a task from the com-
mon task pool, analyzes the task by its set of lock objects. The scheduler inserts
the task into one of the buckets as follows: if all the leaf level lock objects of the
task fall into the range of a single bucket then insert the task in that bucket. Oth-
erwise (request spans multiple buckets), insert the task into the bucket having
the smallest bucket id. For instance, the hierarchy in Fig. 1 has 7 leaf nodes and
say there are 2 hash buckets in the list, i.e., bucket 0 with range [0, 3] and bucket
1 with range [4, 6]. A task with lock set containing node D falls into bucket 0
as the leaf level locks H [1, 1] and I [2, 2], both fall into the range of bucket 0.
On the other hand, if a locking request contains nodes J and G, then the leaf
locks span both the buckets. In this case, the task gets inserted into the bucket
with the least bucket id, i.e., bucket 0 (to ensure deterministic behavior). In the
case of a task spanning multiple buckets, we maintain a bit mask of size equal
to the total number of buckets with a bit set for each overlapping bucket. As
the probability of two tasks within a bucket being conflicting is high, we assign
one host thread to each bucket and mark it as primary responsible thread for
executing the tasks. This imposes a sequential ordering among the tasks within
a bucket which helps us minimizing the unnecessary lock contention.

3.3 Modified Locking Policy

Tasks are spread across buckets, and each bucket is served by a thread. The
invariant the scheduler tries to maintain is that tasks in different buckets are
independent. This invariant can allow a thread to operate on the nodes within
its bucket without taking locks, since the conflicting requests are now spaced
temporally. Unfortunately, this is violated by the locking requests that span
buckets. While executing a multi-bucket task, the worker thread acquires locks
(using bitmask) on all the overlapping buckets. This ensures safety of the con-
current operation across buckets.

3.4 Nested Bucketing

The approach discussed so far works well when the incoming tasks are uniformly
distributed across the hierarchy, wherein each worker thread receives almost
the same amount of work. However, for skewed distribution, the tasks are non-
uniformly distributed across buckets, leaving some threads idle. In an extreme
case, all the tasks may get scheduled to a single thread leading to completely
sequential execution. Two tasks scheduled to a single bucket are not always
conflicting and they can be run in parallel. To mitigate such effects, Toggle

Toggle: Contention-Aware Task Scheduler 147

Algorithm 1. Toggle Protocol

Input: Bucket B
count < 0
while there are tasks to execute do

1

2

3 if B.Outer Bucket is not empty then

4 Task t «+ ExtractTaskFromOuterBucket()

5 if t spans single inner bucket then

6 call InnerBucket.insert(t)

7 if InnerBucket.size() > Threshold then

8 L call SwitchToInnerBucket()

9 else

/* Task spans multiple inner buckets */

10 call Execute(t)
11 count <« count + 1
12 if count > DelayThreshold then
13 call SwitchToInnerBucket()
14 L count < 0
15 else
16 if InnerBucket is not empty then call SwitchToInnerBucket()
17 else call StealRemoteTask()
18

divides each bucket into two sub-parts: outer bucket A and inner bucket B, as
shown in Fig.2. Algorithm 1 presents the detailed protocol to be followed by
each worker thread. While executing the tasks from the outer part of bucket,
the host thread checks whether the task can be moved into one of the inner
buckets (according to the hash range of inner buckets — line 12). If yes, the host
thread removes the task from the outer bucket, and schedules its execution from
the inner bucket. After every few cycles of tasks (line 7), the host toggles the
mode of execution from outer to inner buckets. An invariant strictly enforced is
that the inner bucket tasks are single-bucket tasks. Therefore, two tasks from
two inner-buckets never overlap. Once the host thread changes its execution
mode to inner bucket (line 8, 13, 16), it also allows other non-host threads to
steal tasks from the inner bucket. Note that, no two threads execute tasks from
the same inner bucket. This achieves good load balancing in the case of skewed
distributions, and no thread remains idle for long.

3.5 Task Stealing

Worker threads can execute tasks from the inner buckets of remote threads if
the worker thread is idle. In Algorithm 1, each worker thread starts stealing
(line 17) if both outer and inner buckets are empty. While stealing, the worker
thread iterates over remote buckets and checks whether any of the host threads

148 S. Kalikar and R. Nasre

are operating on inner bucket. If yes, it coordinates with the host thread to finish
its task from inner bucket by picking one inner bucket at a time. However, while
stealing, we need a proper thread synchronization for checking the status of the
host thread and picking inner buckets.

3.6 Thread Communication

Every host thread maintains a flag indicating one of the execution states, namely,
outer or inner. The worker, by default, executes tasks from the outer bucket.
According to the protocol mentioned in Algorithm 1, whenever the host changes
its state from the outer-bucket to the inner-bucket by reseting the flag, it broad-
casts the message to all the threads. Any remote thread trying to steal the work,
has to wait till the host thread toggles its state to inner bucket and is disal-
lowed from stealing from the inner bucket when the host thread is operating on
the outer bucket. Maintaining this protocol ensures that there are no conflicts
between the remote thread and the host thread. Once the first condition of the
toggle state is satisfied, remote threads are allowed to pick any one of the inner
buckets and start executing the tasks one-by-one. However, as multiple threads
steal in parallel, Toggle enforces (using atomic instructions) that one bucket gets
picked by maximum one thread.

Algorithm 2 presents our lock-free implementation of communication mech-
anism and the task execution at the inner buckets. Variables ToggleFlag and
Atomic_Counter are associated with each hash bucket, and are shared across
threads. Host thread initializes these variables while switching the execution
mode (lines 2, 3). All the remote threads check the state of these variables at
the entry point and enter only when the state of the host thread has changed
to inner and there is at least one inner bucket available for stealing (line 8).
Instead of using heavyweight locks, we use relatively lightweight memory-fence
instructions and atomic increment instructions at lines 4, 5, 7. The calls to
memory_fence (release) and memory_fence(acquire) ensure that the values
of the atomic counter and the ToggleFlag are written/read directly to/from the
main memory (and not from the caches with stale data). Remote as well as host
threads atomically and repetitively pick one inner bucket at a time (by incre-
menting the Atomic_Counter) till all the inner buckets become empty. Finally,
the host thread resets the shared variables and returns to the execution of the
outer bucket.

4 Experimental Evaluation

All our experiments are carried out on an Intel Xeon E5-2650 v2 machine with 32
cores clocked at 2.6 GHz having 100 GB RAM running CentOS 6.5 and 2.6.32-431
kernel. We implement our scheduler as part of STMBench7 [4], a widely used
benchmark for the evaluation of synchronization mechanisms for hierarchical
structures. STMBench?7 represents an application operating on a complex real-
world hierarchy consisting of various types of hierarchical nodes, such as mod-
ules— assemblies— complex assemblies— composite-parts and finally atomic parts

Toggle: Contention-Aware Task Scheduler 149

Algorithm 2. Thread communication in Toggle

Input: Bucket B, Thread T

if T'== B.HostThreadld then

B.Atomic_Counter < 0

B.ToggleFlag < inner

MyInnerBucketld « atomic_increment(Atomic_Counter)
memory_fence(release)

else

memory_fence(acquire)

if B.ToggleFlag == outer OR B.Atomic_Counter > MazxInnerBucketld
then

9 L return

o N0 A W N -

10 MyInnerBucketld « atomic_increment(B.Atomic_Counter)

11 while MylInnerBucketld < MazInnerBucketld do
12 while MylInnerBucket is not empty do
13 L Task t «— ExtractTask()

14 call Execute(t)

15 | MylnnerBucketld «— atomic_increment(B.Atomic_Counter)
16 if T == B.HostThreadld then

17 wait till all remote threads finish their respective tasks

18 B.ToggleFlag <« outer

19 | memory_ fence(release)

at the leaf level. The operations accessing different parts of the hierarchy are
defined to evaluate various synchronization aspects. We evaluate Toggle against
four different locking mechanisms: two from STMBench?7 (namely, coarse-grained
and medium-grained), and two MGL-based techniques: DomLock [6] and Num-
Lock [8].

We also use a real-world hierarchical dataset, tree-bank [15], (available in
XML format) having 2.4 million nodes. For stress-testing our approach, we use
a synthetically generated hierarchy having k-ary tree structure of 1 million nodes
to study the effect of various parameters. A command-line argument skewness
controls the probability of an operation accessing certain parts of the hierarchy.

4.1 STMBench?7

Figure 3(a) shows the overall throughput achieved on STMBench7 by differ-
ent locking mechanisms. In STMBench?7, each parallel thread iteratively picks
one operation at a time from a common pool. This mimics a fair round-robin
task scheduling policy. Our scheduler operates on top of the worker threads
and assigns tasks at runtime. In Fig. 3(a), x-axis shows the number of paral-
lel threads and y-axis is the throughput (tasks/second) across all threads. We
primarily compare with DomLock and NumLock, and extend them with our
scheduler. Across all threads, Toggle achieves maximum throughput compared

150 S. Kalikar and R. Nasre

to coarse-grained, medium-grained, DomLock, and NumLock. This is primarily
due to reduced lock contention. NumlLock is an improved version of DomLock
with optimal locking choices. We plug Toggle with NumLock; Toggle improves
overall throughput with NumLock as well. We observe that the STMBench7 oper-
ations access certain part of hierarchy frequently. Every operation accessing such
a subset of nodes gets sequentialized irrespective of the thread performing the
operation. The scheduler dynamically detects such sequential bottleneck among
the tasks and assigns them to only few threads letting other threads remain idle.
In our experiments, the maximum throughput is achieved with the configura-
tion of only four parallel threads. Overall, Toggle achieves 44%, 22% and 10%
more throughput compared to coarse-grained, medium-grained and DomLock
respectively.

mDomLock & DomLock+Toggle & NumLock O NumLock+Toggle

Throughput (tasks/sec)
Throughput (tasks/sec)

The Number of Threads The Number of Threads

(a) (b)

Fig. 3. (a) Comparison with STMBench7 (b) Effect on XML hierarchy

4.2 XML Hierarchy

We also evaluate our technique on tree-bank, a real-world hierarchical dataset
available in XML format [15]. The hierarchy represents a non-uniform structure
consisting of 2,437,666 nodes with maximum depth of 36 and average depth
of 7.87 levels. We perform parallel tasks on the hierarchy where tasks access
hierarchical nodes with equal probability. The tasks are diverse in nature: Some
tasks exhibit skewed access whereas others are equally distributed. Tasks also
vary with respect to the size of critical sections, i.e., some tasks spend less
time in critical sections representing short transactions and while some are long
transactions. We maintain the ratio of read:write operations as 7:3. Figure 3(b)
shows the throughput gain of our scheduler with a fair round-robin scheduler.
We observe that, our scheduler yields 16% more throughput and scales well with
the number of threads whereas round-robin fails to scale due to lock-contention.

4.3 Effect of Skewness

We use our stress-test implementation to evaluate the effect of various parame-
ters on the performance of Toggle. Figure 4 shows the overall throughput with 16
parallel threads with different levels of skewness. The x-axis shows the skewness
index; skewness = 1 indicates uniform random distribution. As we increase the

Toggle: Contention-Aware Task Scheduler 151

7000 10000

_. 6000

ec

S
& 5000 & -=- DomLock —+—Toggle
B 3
2 2
% 4
£ 4000)
= <1000
5
2 3000 H
2 =3
3 2000 3
= 1000 £
0 100
0 2 4 6 8 10 12 14 16 18
The Number of Threads The Number of Locked Nodes
(a) Average case (b) Worst case

Fig. 4. Throughput improvement with Toggle

skewness index on x-axis, the access pattern becomes more localized to certain
part of the hierarchy. For instance, skewness = 2 indicates two disjoint sub-
sets of hierarchy nodes and any task can access nodes within only one subset.
Figure 4(a) shows that the maximum throughput improvement is obtained with
the most skewed and localized access pattern. Toggle achieves more through-
put than round-robin scheduling because the conflicting tasks gets assigned to
particular buckets according to the hash ranges of buckets.

It is crucial to handle the worst-case scenario for the task scheduling. As
Toggle assigns tasks according to the bucket range and the host thread executes
them sequentially, it is possible that every task falls into a single bucket leaving
all other buckets empty. Note that, the tasks from one bucket may not conflict
and may exhibit concurrency. We evaluate this scenario by forcing tasks to access
multiple nodes from one particular range. In Fig. 4(b), x-axis shows the num-
ber of nodes a task is operating on and y-axis shows throughput (log-scale) for
round-robin and Toggle. As we keep on increasing the value on x-axis, the prob-
ability of conflicts becomes very high. The throughput obtained using Toggle is
consistently better than round-robin because of two reasons. First, even though
the tasks get assigned to single bucket, the host thread allows other threads to
steal tasks from the inner-buckets, utilizing available parallelism. Second, indi-
vidual threads do not execute conflicting tasks, therefore they do not introduce
extra lock contention. However, for tasks accessing only one node, (i.e., at x-axis
value = 1), every task is guaranteed to be independent except the two tasks
accessing exactly the same node. In this case, even though Toggle assigns all
the tasks to a single thread and internally allows other threads to steal tasks,
it fails to achieve better throughput because of synchronization cost involved
in stealing. This is the only case where round-robin scheduling performs better
than Toggle (although round-robin is also suboptimal for this scenario). Figure 4
shows the throughput with DomLock. The results with NumLock are omitted
from Fig. 4(b) as both plots coincide due to the logscale.

4.4 Effect of Task Stealing

In this section, we compare the effect of scheduling in terms of resource utiliza-
tion. As we discussed in the previous section, round-robin and Toggle achieve

152 S. Kalikar and R. Nasre

8000 18000

T
®DomLock: (458) g 16000 = DomLock: (470)

£ 14000

W Toggle without stealing: (539) ® Toggle without stealing: (564)

y
(N
N
o
S
S)

Toggle with stealing: (539) Toggle with stealing: (631)

d

o
1)
IS}
S
S}

8000
6000
4000

4000
£ 3000
3
© 2000
%
© 1000
o PRl BN N BN SN I B B S BN B N

2000
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Thread ID Thread ID

(a) Random distribution (b) Skewed distribution

Tasks executed by a

Fig. 5. Effect of task-stealing

similar throughput for random distribution. Figure5(a) shows the work-load
distribution across worker threads (threadIDs 0..13) for round-robin, Toggle
without and with task stealing. Out of total 16 threads, remaining two threads
are reserved: threadID 14 is a task-generator and threadID 15 is Toggle task-
scheduler. x-axis represents different thread IDs and the y-axis represents the
number of tasks executed by each thread. The obtained throughput with each
scheduling policy is shown along with the legends. We observe that, in round-
robin scheduling, every thread execute nearly equal number of tasks. However,
for Toggle, threads with smaller IDs execute more tasks than the other. In fact,
half of the threads remain idle. Despite this, the obtained throughput is better
than round-robin. Note that the work-load distribution gradually decreases with
the higher thread IDs. This happens because the tasks accessing nodes from a
random distribution generally span multiple buckets, but our scheduler assigns
such multi-bucket tasks to smaller thread IDs. Moreover, there is almost no scope
for task stealing in the case of random distribution, as Toggle with and without
stealing executes a similar number of tasks and achieves equal throughput.
Unlike this, for a skewed distribution, task stealing plays important role in
performance improvement. Figure 5(b) shows tasks distribution across threads
for the configuration of the worst-case scenario with every task accessing exactly
2 nodes. In absence of task stealing, each task gets assigned to a single bucket
and each of them is executed sequentially, still achieving better throughput
than round-robin scheduling. However, permitting other threads to steal tasks
from remote buckets, we achieve further improvement in the overall throughput
(shown with the legends). This shows the importance of task stealing in skewed
distributions, which is prevalent in real-world scenarios. Our scheduler dynami-
cally enables and disables task stealing based on the run-time load distribution.

4.5 Effect of Hierarchy Size

Figure 6(a) shows the throughput against different hierarchy sizes, from 100 to 1
million nodes. As we see, parallel operations on a smaller hierarchy are likely to
get blocked. Toggle achieves throughput gain even in high-contention scenario.
As we increase the hierarchy size, Toggle consistently outperforms DomLock.

Toggle: Contention-Aware Task Scheduler 153

45000€
M DomLock EToggle 40000K

6000

5000 35000« W DomLock: Cache referencesil DomLock: Cache misses
4000 30000

@ Toggle: Cache references [Toggle: Cache misses
25000K

3000
20000K

2000 15000K

Throughput (tasks/sec.)

10000K
1000

Cache references and misses

5000K

1000 10000 100000 1000000 100000 1000000

The Number of Nodes in Hierarchy The Number of Nodes in Hierarchy

(a) Scalability with the hierarchy size (b) Effect on cache references

Fig. 6. Effect of hierarchy size on throughput and cache misses

We also see the benefit of scheduling in terms of caching. A worker thread
primarily executes operations within its bucket. Tasks within a bucket are mostly
conflicting, i.e., access same nodes, therefore it avoids extra cache misses as the
data would be available in processors private cache. As we increase the hierarchy
size, the bucket ranges become wider. The tasks in such a wider bucket are less
likely to be conflicting, therefore for every task, accessing new nodes leads to
cache miss. In Fig. 6(b), this effect is visible for large sized hierarchies.

5 Related Work

Hierarchical locking is imposed in many ways. Traditionally, in database context,
hierarchical locking is implemented as multiple granularity locks using intention
locks [3] at ancestor nodes. However, in multi-threads applications, threads get
contended while acquiring these intention locks. DomLock [6] solves this problem
by dominator locking using nested intervals. NumLock [8] further improves by
generating optimal hierarchical locking combination. Our task scheduler can be
used with any of these hierarchical locking protocols. Similar to the idea of
interval locking, key-range locking [9,10] is in databases locks a range of records
satisfying certain predicates. In this case, key-range lock guards not only the
keys present in the databases but also any phantom insertions. However, it is
not a hierarchical locking technique. Although Toggle works with hierarchical
locking, it can be tuned to work with key-range locking as well.

Task scheduling has been the topic of interest in many domains. Hugo Rito et
al. proposed ProPS [13], a fine-grained pessimistic scheduling policy for STMs.
ProPS also used STMBench7 for evaluating different STM implementations. We
use it for evaluating Toggle over locking techniques. Several techniques have been
proposed for scheduling task DAGs where nodes represent tasks and directed
edges are precedence relation. Zhao et al. [5] proposed a policy for scheduling
multiple task DAGs on heterogeneous systems. Cui et al. [1] present a lock-
contention-aware scheduler at the kernel level. However, none of the schedulers
addresses the challenges with lock-contention for hierarchical locks.

154 S. Kalikar and R. Nasre

6 Conclusion

We presented Toggle, a contention-aware task scheduler for hierarchies. It coor-
dinates with the lock manager for scheduling tasks to maximize throughput,
using nested bucketing and work-stealing. Using large hierarchies and STM-
Bench7 benchmarks, we illustrated the effectiveness of Toggle, which consider-
ably improves the average throughput over DomLock.

7 Data Availability Statement and Acknowledgments

We thank all the reviewers whose comments improved the quality of the paper
substantially. The artifacts of the work have been successfully evaluated and are
available at: https://doi.org/10.6084 /m9.figshare.8496464.

References

1. Cui, Y., Wang, Y., Chen, Y., Shi, Y.: Lock-contention-aware scheduler: a scalable
and energy-efficient method for addressing scalability collapse on multicore sys-
tems. ACM Trans. Archit. Code Optim. 9(4), 44:1-44:25 (2013). https://doi.org/
10.1145/2400682.2400703

2. Ganesh, K., Kalikar, S., Nasre, R.: Multi-granularity locking in hierarchies with
synergistic hierarchical and fine-grained locks. In: Aldinucci, M., Padovani, L.,
Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014, pp. 546-559. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96983-1_39

3. Gray, J.N., Lorie, R.A., Putzolu, G.R.: Granularity of locks in a shared data base.
In: VLDB. pp. 428-451. ACM, New York (1975)

4. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: a benchmark for software
transactional memory. In: Proceedings of the 2Nd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2007, pp. 315-324. EuroSys 2007, ACM,
New York (2007). https://doi.org/10.1145/1272996.1273029

5. Zhao, H., Sakellariou, R.: Scheduling multiple dags onto heterogeneous systems. In:
Proceedings 20th IEEE International Parallel Distributed Processing Symposium,
p- 14. April 2006

6. Kalikar, S., Nasre, R.: Domlock: a new multi-granularity locking technique for
hierarchies. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 23:1-23:12. PPoPP 2016, ACM, New
York (2016). https://doi.org/10.1145/2851141.2851164

7. Kalikar, S., Nasre, R.: DomLock: a new multi-granularity locking technique for
hierarchies. ACM Trans. Parallel Comput. 4(2), 7:1-7:29 (2017)

8. Kalikar, S., Nasre, R.: NumLock: towards optimal multi-granularity locking in
hierarchies. In: Proceedings of the 47th International Conference on Parallel Pro-
cessing, pp. 75:1-75:10. ICPP 2018, ACM, New York (2018). https://doi.org/10.
1145/3225058.3225141

9. Lomet, D., Mokbel, M.F.: Locking key ranges with unbundled transaction services.
Proc. VLDB Endow. 2(1), 265-276 (2009)

10. Lomet, D.B.: Key range locking strategies for improved concurrency. In: Proceed-
ings of the 19th International Conference on Very Large Data Bases, pp. 655—664.
VLDB 1993, Morgan Kaufmann Publishers Inc., San Francisco (1993)

https://doi.org/10.6084/m9.figshare.8496464
https://doi.org/10.1145/2400682.2400703
https://doi.org/10.1145/2400682.2400703
https://doi.org/10.1007/978-3-319-96983-1_39
https://doi.org/10.1145/1272996.1273029
https://doi.org/10.1145/2851141.2851164
https://doi.org/10.1145/3225058.3225141
https://doi.org/10.1145/3225058.3225141

11.

12.

13.

14.

15.

Toggle: Contention-Aware Task Scheduler 155

MSDN: Sql server 2016 database engine (2015). https://msdn.microsoft.com/en-
us/library /ms187875.aspx

Oracle: Oracle database 10g r2 (2015). http://docs.oracle.com/cd/B19306-01/
index.htm

Rito, H., Cachopo, J.: ProPS: a progressively pessimistic scheduler for software
transactional memory. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par
2014. LNCS, vol. 8632, pp. 150-161. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-09873-9_13

Sybase: Adaptive server enterprise: Performance tuning and locking (2003). http://
infocenter.sybase.com/help/topic/com.sybase.help.ase_12.5.1/title.htm

Treebank: Xml data repository (2002). http://aiweb.cs.washington.edu/research/
projects/xmltk/xmldata/www /repository.html

https://msdn.microsoft.com/en-us/library/ms187875.aspx
https://msdn.microsoft.com/en-us/library/ms187875.aspx
http://docs.oracle.com/cd/B19306_01/index.htm
http://docs.oracle.com/cd/B19306_01/index.htm
https://doi.org/10.1007/978-3-319-09873-9_13
https://doi.org/10.1007/978-3-319-09873-9_13
http://infocenter.sybase.com/help/topic/com.sybase.help.ase_12.5.1/title.htm
http://infocenter.sybase.com/help/topic/com.sybase.help.ase_12.5.1/title.htm
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html

	Toggle: Contention-Aware Task Scheduler for Concurrent Hierarchical Operations
	1 Introduction
	2 Background and Motivation
	3 Toggle: Contention-Aware Scheduler
	3.1 Representing Hierarchy as a System of Nested Intervals
	3.2 Concurrent Data Structure for Task Classification and Scheduling
	3.3 Modified Locking Policy
	3.4 Nested Bucketing
	3.5 Task Stealing
	3.6 Thread Communication

	4 Experimental Evaluation
	4.1 STMBench7
	4.2 XML Hierarchy
	4.3 Effect of Skewness
	4.4 Effect of Task Stealing
	4.5 Effect of Hierarchy Size

	5 Related Work
	6 Conclusion
	7 Data Availability Statement and Acknowledgments
	References

