
Ensuring the Consistency Between User
Requirements and GUI Prototypes:

A Behavior-Based Automated Approach

Thiago Rocha Silva1(&) , Marco Winckler2 ,
and Hallvard Trætteberg1

1 Department of Computer Science,
Norwegian University of Science and Technology (NTNU), Trondheim, Norway

{thiago.silva,hal}@ntnu.no
2 SPARKS-i3S, Université Nice Sophia Antipolis (Polytech),

Sophia Antipolis, France
winckler@unice.fr

Abstract. In a user-centered design process, graphical user interface
(GUI) prototypes may be seen as an important early artifact to design and
validate user requirements before making strong commitments with a full-
fledged version of the user interface. Ensuring the consistency of GUI proto-
types with other representations of the user requirements is then a critical aspect
of the design process. This paper presents an approach which extends Behavior-
Driven Development (BDD) by employing an ontology in order to provide
automated assessment for GUI prototypes as design artifacts. The approach has
been evaluated by exploiting user requirements described by a group of experts
in the flight tickets e-commerce domain. Such requirements gave rise to a set of
User Stories that have been used to automatically check the consistency of
Balsamiq prototypes which were reengineered from an existing web system for
booking business trips. The results have shown our approach was able to
identify different types of inconsistencies in the set of analyzed artifacts,
allowing to build an effective correspondence between user requirements and
their representation in GUI prototypes.

Keywords: Behavior-Driven Development (BDD) � User Stories �
GUI Prototypes � User Requirements Assessment

1 Introduction

In iterative processes, the design of graphical user interfaces (GUIs) can evolve all
along the software development process as a result of requirements evolution and
change, or the need of understanding and validating a given interpretation of
requirements [1]. While the beginning of the project usually requires a low-level of
formality with GUI prototypes being hand-sketched to explore design solutions and
clarify user requirements, the development phase requires more refined versions

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
D. Lamas et al. (Eds.): INTERACT 2019, LNCS 11746, pp. 644–665, 2019.
https://doi.org/10.1007/978-3-030-29381-9_39

http://orcid.org/0000-0001-8961-4663
http://orcid.org/0000-0002-0756-6934
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29381-9_39&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29381-9_39&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29381-9_39&domain=pdf
https://doi.org/10.1007/978-3-030-29381-9_39

frequently describing presentation and dialog aspects of interaction. Full-fledged ver-
sions of user interfaces are generally produced only later in the design process, and
frequently corresponds to how the user “see” the system. In the users’ point of view, if
some feature is not available through the presentation of a user interface, this feature
does not exist for them.

Behavior-Driven Development (BDD) [2] has stood out in the software engineering
community as an effective approach to provide automated acceptance testing by
specifying natural language user requirements and their tests in a single textual artifact.
BDD benefits from a requirements specification based on User Stories [3] which are
easily understandable for both technical and non-technical stakeholders. In addition,
User Stories allow specifying “executable requirements”, i.e. requirements that can be
directly tested from their textual specification. Despite its benefits providing automated
testing of user requirements, BDD and other testing approaches focus essentially on
assessing interactive artifacts that are produced late in the design process, such as full-
fledged versions of user interfaces. As far as early artifacts such as rough GUI pro-
totypes are a concern, current approaches offer no support for automated
assessment.

Motivated by such a gap, this paper presents an approach based on BDD and User
Stories to support the specification and the automated assessment of user requirements
on low-fidelity web GUI prototypes designed along the development cycle of inter-
active systems. The approach helps to align methods for GUI design and assessment
with methods for engineering interactive systems. On one hand, our method proposes
to engineer GUIs by guiding the development team (especially designers) to avoid
design solutions that conflict with the user requirements. On the other hand, the method
also helps to pinpoint eventual violations of user requirements at the user interface
level, helping designers to have a better understanding of where and when violations of
user requirements occur.

The common-ground of concepts for describing the prototypes as well as the set of
user-system interactive behaviors is provided by means of an ontology [4, 5].
Requirements in BDD stories can be formulated and tested at two levels: the domain
level and the interaction level. Our approach targets requirements at the interaction
level, and this paper shows how the ontology can support test automation of require-
ments at this level without manually coding the tests. The following sections present
the related works and foundations, the proposed approach with its technical imple-
mentation, and the results we got by assessing the reengineered GUI prototypes from
an existing web system to book business trips.

2 Related Works

Artifacts other than final versions of user interfaces are not commonly tested. A com-
mon argument is that they cannot be “executed” in order to be tested. Since long time
ago, the design aspect of early representations of user interfaces is usually only
inspected manually in an attempt to verify its adequacy [6]. Inspections can be of
different types including formal technical reviews, walkthroughs, peer desk check,
informal ad-hoc feedback, and so on [7]. When evaluation of the user requirements

Ensuring the Consistency Between User Requirements and GUI Prototypes 645

representation on such artifacts is considered, requirements traceability techniques are
employed as a way to trace such requirements along their multiple versions (horizontal
traceability) or along their representation in another artifacts (vertical traceability) [8].

Some approaches concentrated efforts in providing automated tools to keep com-
patibility between requirements and their own artifacts. Luna et al. [9], for example,
propose WebSpec which is a requirement artifact that can be used in conjunction with
mockups to provide UI simulations, allowing some level of requirements validation, but
not for out-of-approach UI prototypes like Balsamiq. Buchmann and Karagiannis [10]
presents a modeling method for the elicitation of requirements for mobile apps that
enables semantic traceability for the requirements representation. The method however
is not focused on UI prototypes and can only validate requirements modeled within the
approach. As far as a common vocabulary for the dialog aspect of a UI is at a concern,
SWC [11] and SXCML [12] offer a language based on the state machine concepts.
PANDA [13] is a tool which exploits the aforementioned ontology [4, 5] to design
medium-to-high fidelity executable prototypes allowing the use of interactive behaviors
semantically meaningful to the user interface elements. However, PANDA does not
support the design and assessment of low-fidelity wireframes and sketches. Other
solutions focused on generating UIs from other software models, which in theory would
keep them consistent, is also a topic that has received attention for long time [14–17].

When considering user requirements specified through BDD to evaluate software
models, studies have been conducted to explore its use within user-centered [18] and
agile [19] approaches to support enterprise modeling, when analyzing automated
acceptance testing to support BDD traceability [20], as well as its compatibility with
business modeling [21, 22] and BPMN [23].

There is also an intrinsic relationship between user interface design and task
modeling, when considered in a user requirements perspective. Some authors have
even tried to establish linguistic task modeling for designing user interfaces [24] where
a notation enables identification of task input elements based on the task state diagram
and dynamic tasks. Martinie et al. [25], followed by Campos et al. [26], propose a tool-
supported framework and a model-based testing approach to support linking task
models to an existing, executable, and interactive application, defining a systematic
correspondence between the user interface elements and user tasks. The problem with
this approach is that it only covers the interaction of task models with a concrete fully-
functional user interfaces, not covering user interface prototypes.

Finally, previous studies [27, 28] which analyzed the current state-of-the-art pro-
totyping tools have concluded that features to support (at some level) the assessment of
prototypes and scenario-based specifications have been covered by less than 10% of the
tools analyzed.

3 Foundations

3.1 Behavior-Driven Development and User Stories

Behavior-Driven Development (BDD) is a specialization of Test-Driven Development
(TDD) [29, 30], and is intended to make the practice of writing automated testing more

646 T. Rocha Silva et al.

accessible and intuitive to newcomers and experts alike. It shifts the vocabulary from
being test-based to behavior-based. It positions itself as a development paradigm,
emphasizing communication and automation as equal goals. In BDD, the behaviors
represent both the requirements specification and the test cases.

BDD drives development teams to a requirements specification based on User
Stories in an understandable natural language format. User Stories were firstly pro-
posed by Cohn [3] and provide in the same artifact a narrative, briefly describing a
feature in the business point of view, and a set of scenarios to give details about
business rules and to be used as acceptance criteria, giving concrete examples about
what should be tested to consider a given feature as done. Cohn and North [3, 31]
propose a useful template for that:

Title (one line describing the story)
Narrative: As a [role], I want [feature], So that [benefit]
Scenario 1: Title
Given [context], When [event], Then [outcome]

This structure is largely used in BDD and has been named by North [31] as a “BDD
story”. According to this template, a User Story is described with a title, a narrative and
a set of scenarios representing acceptance criteria. The title provides a general
description of the story, referring to a feature this story represents. The narrative
describes the referred feature in terms of role that will benefit from the feature, the
feature itself, and the benefit it will bring to the business. The acceptance criteria are
defined through a set of scenarios, each one with a title and three main clauses: “Given”
to provide the context in which the scenario will be actioned, “When” to describe
events that will trigger the scenario and “Then” to present outcomes that might be
checked to verify the proper behavior of the system. Each one of these clauses can
include an “And” statement to provide multiple contexts, events and/or outcomes. Each
statement in this representation is called step.

This format allows specifying executable requirements by means of a Domain-
Specific Language (DSL) provided by Gherkin [32]. Gherkin is a DSL that has been
developed for BDD to let users and developers describe software behavior without
detailing how that behavior is implemented. By using this language, requirements
specifications can be used to implement automated tests, which can conduct to living
documentation, making easier for clients and other stakeholders to set their final
acceptance tests. The drawback of using plain-vanilla Gherkin to specify requirements
at the domain level, as proposed in [31], is to require that a developer manually
implements the tests corresponding to each individual step of the scenarios.

3.2 Ontological Support for GUI Automated Testing

A GUI prototype is an early representation of a graphical user interface for an inter-
active system. In a software development perspective, GUI prototypes can be seen as
concrete and tangible design artifacts [33]. By running simulations on prototypes, we
can also determine potential scenarios that users can perform in the system and relate
them to the requirements. When such requirements are specified through User Stories, a

Ensuring the Consistency Between User Requirements and GUI Prototypes 647

recurrent problem is that they often contain semantic inconsistencies. For example, it is
not rare to find scenarios that specify an action such as a selection to be made in a
widget such as a Text Field that does not support that action. To tackle this problem,
previous works explored the use of an ontology describing common behaviors with a
standard vocabulary for writing User Stories as scenario artifacts [4, 5]. The main
benefit of this strategy is that User Stories using this common vocabulary can support
specification and execution of automated test scenarios on GUI prototypes. The
ontology covers concepts related to presentation and behavior of interactive compo-
nents used in web and mobile applications. It also models concepts describing the
structure of User Stories, tasks, scenarios and prototypes.

The dialog part of a GUI, as illustrated by Fig. 1, is described in the ontology by
means of concepts borrowed from abstract state machines. The User Story scenario
meant to be run in a given GUI is represented as a transition. States are used to
represent the original and resulting GUIs after a transition occur (states A and B in
Fig. 1). Scenarios in the transition state always have at least one or more conditions
(represented in scenarios by the “Given” clause), one or more events (represented in
scenarios by the “When” clause), and one or more actions (represented in scenarios by
the “Then” clause). The presentation part of a GUI is described in the ontology through
interaction elements which represent an abstraction of the different widgets commonly
used in web and mobile user interfaces.

State A

Condition

[X] Given I go to “#page”

Event

[V] When I choose “#value” in the
field “#field”

Action

[X] Then will be displayed “#mes-
sage”

State B

Fig. 1. Representation of a User Story scenario using the state machine concepts.

Fig. 2. Structure of a behavior as specified in the ontology.

648 T. Rocha Silva et al.

The common behaviors in the ontology describe textually how users could interact
with the system whilst manipulating graphical elements of the user interface. An
example of behavior specification is illustrated by Fig. 2. The specification of behav-
iors encompasses when the interaction can be performed (using “Given”, “When”
and/or “Then” clauses), and which graphical elements (i.e. CheckBoxes, TextFields,
Buttons, etc.) can be affected. Altogether, behaviors and interaction elements are used
to implement the test of expected system behavior. In the example of Fig. 2, the
behavior “I choose ‘<value>’ referring to ‘<field>’” has two parameters: “<value>”
and “<field>”. The first parameter is associated to data, whilst the second parameter
refers to the interaction element supported by this behavior: “Radio Button”,
“CheckBox”, “Calendar” and “Link”.

The ontological model describes only behaviors that report steps performing
actions directly on the user interface through interaction elements, i.e. behaviors
referring to the interaction level in the user requirements description. This is a powerful
resource because it allows keeping the ontological model domain-free, which means it
is not subject to particular business characteristics in the User Stories, promoting the
reuse of steps in multiple scenarios. Thus, steps can be easily reused to build different
behaviors for different scenarios in different business domains.

When representing the various interaction elements that can attend a given
behavior, the ontology also allows extending multiple design solutions for the UI while
still keeping the consistency of the interaction. For example, even if a Dropdown List
has been chosen to attend, for example, a behavior setInTheField in a first version of a
prototype, an Auto Complete field could be chosen to attend this behavior on a next
version, once both UI elements share the same ontological property for this behavior.
This kind of flexibility keeps the consistency of the interaction, leaving the designer

Table 1. Example of interactive behaviors described in the ontology. Transition: (C)ontext, (E)
vent, (A)ction.

Behavior Transition Interaction Elements C E A
choose ≡ select Calendar, Checkbox, Radio Button, and Link
chooseByIndexInTheField Dropdown List
chooseReferringTo Calendar, Checkbox, Radio Button, and Link
chooseTheOptionOfValueInTheField Dropdown List
clickOn Menu, Menu Item, Button, and Link
clickOnReferringTo Menu, Menu Item, Button, and Link
doNotTypeAnyValueToTheField ≡
resetTheValueOfTheField Text Field

goTo Browser Window
isDisplayed Browser Window

setInTheField ≡ tryToSetInTheField Dropdown List, Text Field, Autocomplete, and
Calendar

typeAndChooseInTheField ≡
informAndChooseInTheField Autocomplete

willBeDisplayed Text

Ensuring the Consistency Between User Requirements and GUI Prototypes 649

free for choosing the best solutions in a given time of the project, without modifying
the behavior specified for the system. The current version of the ontology covers more
than 60 interactive behaviors and almost 40 interaction elements for both web and
mobile user interfaces. Table 1 exemplifies some of these interactive behaviors, the
transition component during which they can be triggered and the set of corresponding
interaction elements.

4 The Proposed Approach for Automated Assessment

There are multiple notations and tools with different implementations for designing and
modeling GUI prototypes [27]. Among these, we have chosen to implement a proof of
concept of our approach with the wireframe sketching tool Balsamiq1 in its current
version (2.2.28), since it is a wide-spread and highly-regarded prototyping tool and
uses a documented XML format for persisting the prototypes. Nonetheless, we have
designed a flexible and open architecture where other notations and tools could benefit
from our approach by just implementing new classes in accordance with their own
patterns to implement and model prototypes.

The assessment of GUI prototypes in our approach is an automated process. Our
strategy for testing Balsamiq prototypes is parsing their XML source files and

Fig. 3. Grouped field “Departure Date” and its XML source file.

Fig. 4. Button “Search” and its XML source file.

1 balsamiq.com.

650 T. Rocha Silva et al.

http://balsamiq.com

identifying UI elements that match the ontology description for each behavior. The first
step for assessing such prototypes is therefore getting from the ontology the list of UI
elements which support the behavior under testing. Taking a step “And I set ‘Valid
Departure Date’ in the field ‘Departure Date’” as an example, according to the
ontology, the associated interactive behavior “setInTheField” is supported by the UI
elements “Dropdown List”, “Text Field”, “Autocomplete” and “Calendar”, when
performing an action (Then) or an event (When) in a state machine transition.

After getting such a list of supported UI elements, we analyze the Balsamiq XML
file to identify firstly if a field named “Departure Date” exists (Fig. 3). This is made by
reading the tag “<text>” identified in the parent tag “<controlProperties>” for a given
“<control>” element. If such a field exists, i.e. there is a tag “<text>” carrying its name
(case insensitive), so we retrieve which interaction element is associated with it. At this
point, we implemented a reference file containing the mapping between the abstracted
interaction elements in the ontology and the Balsamiq concrete implementation of such
elements.

Notice at the left side of Fig. 3 that the field “Departure Date” has been modeled
with a “Calendar”, i.e. the UI designer has chosen the UI element “Calendar” to design
the field “Departure Date”. Thus, by checking the list of supported UI elements in the
ontology, we find that the behavior “setInTheField”, addressed by the field “Departure
Date”, is supported by a “Calendar” element, so the test passes. If other elements than
“Dropdown List”, “Text Field”, or “Autocomplete” had been chosen, the test would fail.

Our algorithm (see Fig. 5) must take into account that Balsamiq has two methods
for representing UI elements on its XML source files. They can be directly assigned
with a unique “controlID” (Fig. 4) or be part of a group that encompasses a label and
the UI element itself (Fig. 3). In the first case, the label “Search” in Fig. 4 is directly
associated with the element “Button” itself (com.balsamiq.mockups::Button). In the
second case, we can notice the label for “Departure Date” in Fig. 3 is part of a group
(isInGroup=‘15’). In the same group, but with other “controlID”, we find the element

Fig. 5. Testing algorithm for assessing Balsamiq prototypes.

Ensuring the Consistency Between User Requirements and GUI Prototypes 651

“Calendar” itself (com.balsamiq.mockups::Calendar). When looking for matching
elements, the algorithm identifies which Balsamiq method has been used to design the
element. If the parent tag is a label, it means that the element is part of a group that
contains the element itself in a sibling tag. This sibling tag is then identified by reading
the attribute “isInGroup”. If the parent tag is not a label, so it is already the element
itself. After identifying it, the algorithm checks if some of the UI elements received
from the ontology matches with the element from the prototype that is being investi-
gated. If so, the variable “numTasks” is increased by one. After investigating the whole
set of tags, the value of this variable is returned and must be equal to “1”, which means
only one UI element for representing the “fieldname” has been found. If this value is
equal to “0”, it means that no UI element has been found in the prototype with that
“fieldname”, while if it is greater than “1”, it means that more than one UI element has
been found with the same “fieldname”. In both cases, the algorithm identifies the
failure and the test does not pass. This process is conducted for each step of the
scenario.

Notice that for GUI prototypes at this level of refinement, we only assess the
presentation aspect of the prototype. We are not considering for testing at this level
the dialog aspect and the consequent dynamic aspect of the interaction. It means that
to check the consistency of the UI elements modeled in the prototype, we only
consider the presence (or the absence) of the right kind of interaction elements on the
GUI prototype where the interaction is supposed to occur. Behaviors that perform a
state transition (e.g. navigating from one screen to another or getting mock values
from the fields as a result of an interaction) are not being taken into account in the
results.

4.1 Tool Support

The algorithm presented in the previous section has been implemented in Java as an
open source project and integrates different frameworks such as JUnit and JDOM.
Figure 6 represents the flow of calls we have designed for running tests on Balsamiq
prototypes. The flow starts with the class “MyTest.java” that is a JUnit class in charge
of triggering the battery of tests (its content is illustrated in Fig. 7). This class indicates
which files will be used for testing (flow 1). These files are distributed in two packages.
The first one contains the User Story files (“.story” files where the scenarios for testing
are), and the second one contains the Balsamiq files (which are the BMML source files
of Balsamiq prototypes). Both the User Story and the Balsamiq files remain separate
files in each package and are tested individually. In the example provided in Fig. 7, it
has been indicated for testing the User Story “Flight Ticket Search.story” on the
Balsamiq prototype “Book Flights.bmml”.

Each one of the steps in the User Story under testing makes calls to the class
“MySteps.java” (flow 2) that knows which behaviors are supported. Based on the
behavior referenced by the step, this class makes a call to the class “Balsamiq.java” to
get the list of Balsamiq interaction elements that supports such a behavior (flow 3). The
class “Balsamiq.java” in its turn makes a call to the class “MyOntology.java” (flow 4)
in charge of reading the OWL file of the ontology and recovering the list of abstract
interaction elements supported by a given behavior. Such a list is then returned to the

652 T. Rocha Silva et al.

class “Balsamiq.java” (flow 5) that checks, for each abstract element returned by the
ontology, which are the corresponding concrete interaction elements in Balsamiq in
charge of implementing the mentioned behavior (flow 6). This mapping is recovered
from the file “Balsamiq.mapping” (flow 7).

Afterward, the class “Balsamiq.java” returns such a list with the concrete Balsamiq
elements to the class “MySteps.java” (flow 8) that originally made the call. With the list
of supported Balsamiq elements for the step under testing, the class “MySteps.java”
calls to the class “MyXML.java” (flow 9) in charge of parsing the Balsamiq “.bmml” file
(flow 10). This parsing aims to check if the prototype carries the interaction element
mentioned in the step under testing, and if so, if such an element supports the behavior
mentioned in the step. The result of this parsing is then returned to the class
“MySteps.java” (flow 11). At this point, based on the algorithm presented in the pre-
vious section, we verify how many instances have been found for the searched element.
Finally, the class “MySteps.java” asserts the value and returns the result to the class
“MyTest.java” (flow 12) that indicates if the test has failed or not.

Notice the independence of the components assigned at the core of the structure
represented in Fig. 6 (highlighted in yellow). Those components are related to the
particularities of test implementation for Balsamiq prototypes. “Balsamiq.java” treats

Fig. 6. Flow of calls for running tests on Balsamiq prototypes. (Color figure online)

Fig. 7. “MyTest.java”: class for running tests on Balsamiq prototypes.

Ensuring the Consistency Between User Requirements and GUI Prototypes 653

the demands for getting the correspondent abstract interaction elements from the
ontology and translates them to the concrete interaction elements implemented by
Balsamiq. “Balsamiq.mapping” provides such a translation. Finally, “MyXML.java” is
in charge of parsing the BMML files of Balsamiq, searching for the element under
testing. By this way, we deliver a flexible architecture allowing, in the future, that UI
prototypes modeled by other prototyping tools could also be tested by just imple-
menting new interfaces for this core.

In summary, considering the presented architecture, to setup and run a battery of
tests, we must: (i) place the set of BMML files that will be tested in the package
“Balsamiq UI Prototypes”, (ii) place the set of User Stories files (“.story”) that will be
tested in the package “User Stories”, (iii) indicate in the “MyTest” class which pro-
totype will be tested with which User Story (only a prototype with a User Story at a
time), and (iv) run the “MyTest” class as a JUnit test.

5 Case Study

To evaluate our approach, we have conducted a case study with an existing web system
for booking business trips. In a previous study [34], domain experts were invited to
produce some User Stories to describe a feature they considered important to that
system. This previous study aimed at analyzing how the experts write User Stories (and
the difficulties they have) whilst using a predefined template. In the present study, the
gathered User Stories were refined to get a representative set of user requirements to be
assessed on the GUI prototypes of the existing system, showing how we can automate
the test of Balsamiq prototypes. This refinement was only necessary because, in the
context of the previous study, the experts were deliberately not trained to use the
ontology vocabulary, so we had to refine the User Stories produced by them to use this
vocabulary and to include additional test scenarios.

To obtain the GUI prototypes for testing, we have studied the current implemen-
tation of the existing system, and by applying reverse engineering [35], we redesigned
the targeted GUI prototypes in Balsamiq. The aim of this software reengineering was to
have such artifacts to run our tests and examine which types of inconsistencies our
approach would be able to identify.

5.1 Methodology

To conduct the case study, we first set up an initial version of the User Stories and their
test scenarios. We then reengineered initial versions of Balsamiq prototypes from the
existing web system. Following this step, we ran the initial version of User Stories to
initial versions of the prototypes designed with Balsamiq.

The strategy we follow for running tests on the prototypes parses each step of the
scenario at a time, so if an error is found out, the test stops until the error is fixed. That
requires to run several batteries of tests until having the entire scenario tested. It leads us
to fix all the inconsistencies step-by-step, and consequently to get fully consistent
scenarios at the end of running. However, when analyzing the reason related with each
inconsistency, we can eventually conclude that the origin of the inconsistency is actually

654 T. Rocha Silva et al.

in the specification of the step in the User Story scenario, and not in the artifact itself. As
a result, to fix such an inconsistency, steps of User Story scenarios may also be modified
along the battery of tests to comply with a consistent specification of the user require-
ments. An immediate consequence of this fact is that the steps used to test a given
version of an artifact can be different than that ones used to test another artifact
previously. It means that regression tests are crucial to ensure that a given modification
in the set of User Stories scenarios did not break some previous test in other artifacts and
made some artifact (that so far was consistent with the requirements) inconsistent
again.

5.2 Results

In total, we set up for assessment 3 User Stories with 15 different scenarios and
reengineered 11 Balsamiq prototypes. The sequence of prototypes (a–h) in Fig. 8
shows the different states and designs of some of the developed prototypes. The
prototype (a) presents our first design for a UI prototype to search flights. The
figure represents a UI for searching flights based on a round trip (and (b) based on
a one-way/multidestination trip). The prototype (c) presents the next UI in sequence,
showing the list of flights matching the selection criteria. When the user selects one
of the available flights, then the system turns out to the state shown in (d). The
user, at this state, can confirm his/her selection or change the fare profile of his/her
flight.

The prototype (e) finally shows the UI of confirmation of a flight selection. The user
can accept the general terms and conditions and confirm the booking or withdraw the
trip. In the latter case, the system asks the user to confirm the choice (g), and if
confirmed, cancels the trip (h). If the user does not confirm the withdrawing or opt to
confirm the trip at the first stage, then the system shows a message confirming the
booking (f). To discuss the results that we got by testing different versions of Balsamiq
prototypes, we present in Table 2 results of several batteries of testing in each version
of the prototypes developed to perform a successful roundtrip booking (one of the
possible full scenarios). We present sequentially each step of the target scenario, the
corresponding elements in the Balsamiq source files, errors that have been found in a
given battery, and finally the subsequent battery of tests following the fixes. Once the
goal is to assess the most possible number of interaction elements in the prototype, we
have chosen to run our tests presented below on the full versions of the scenarios, i.e. in
those ones interacting with all the optional fields.

We notice that the first battery of tests found an error already in the first step
(“Given I go to ‘Book Flights’”). It was expected a correspondent element
“BrowserWindow” associated to the name “Book Flights” in the prototype, but the
element found was a “SubTitle”. The “BrowserWindow” was named “Travel Planet”,
the name of the system under testing. As the behavior “goTo” is supposed to be
performed only in a window (and its variants), such a step could not be performed in a
field describing a “SubTitle”, which is a semantically inconsistent field for that
behavior. At the end, the window ended up being named “Flight Search” and both the
scenario and the prototype have been updated accordingly.

Ensuring the Consistency Between User Requirements and GUI Prototypes 655

Fig. 8. Balsamiq prototypes reengineered for testing.

656 T. Rocha Silva et al.

Table 2. Test results in Balsamiq prototypes.

Scenario: Successful Roundtrip Tickets Search With Full Options
Battery Step Balsamiq source file Error

1
1 - Given I go to “Book Flights” (FAILED,
assertion error: expected <1> but was <0>).

Element: SubTitle
Name: Book Flights

Expected
“BrowserWindow”,
but the element was
“SubTitle”.

2

2 - When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field
“Departure”

-

3 - And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” in the field
“Destination”

-

4 - When I set “Sam, Déc 1, 2018” in the field
“Departure Date” (FAILED, assertion error:
expected <1> but was <0>).

Element: Label, Group: 0
Name: Departure Date

Element: DateChooser, Group: 22

The label “Departure
Date” and the element
“DataChooser” are in
different groups.

3

5 - And I set “08:00” in the field “Departure Time Frame” -
6 - When I choose “Round Trip” -

7 - And I set “Lun, Déc 10, 2018” in the field
“Arrival Date” (FAILED, assertion error:
expected <1> but was <0>).

Element: Label, Group: 0
Name: Arrival Date

Element: DateChooser, Group: 23

The label “Arrival
Date” and the element
“DataChooser” are in
different groups.

4

8 - When I set “10:00” in the field “Arrival Time Frame” -
9 - And I choose the option of value “2” in the
field “Number of Passengers” (FAILED,
assertion error: expected <1> but was <0>).

?
The field “Number of
Passengers” does not
exist.

5
10 - When I set “6” in the field
“Timeframe” (FAILED, assertion error:
expected <1> but was <0>).

Element: ComboBox
Name: Time Frame

Expected field
“Timeframe” but was
“Time Frame”.

6
11 - And I select “Direct Flights Only”
(FAILED, assertion error: expected <1> but
was <0>).

Element: CheckBox
Name: Only direct flights

Expected field “Direct
Flights Only” but was
“Only direct flights”.

7

12 - When I choose the option of value
“Economique” in the field “Flight Class”
(FAILED, assertion error: expected <1> but
was <0>).

Element: ComboBox
Name: Class

Expected field “Flights
Class” but was
“Class”.

8
13 - And I set “Air France” in the field “Com-
panies” (FAILED, assertion error: expected
<1> but was <3>).

Element: Label, Group: 27
Name: Companies

Element: SearchBox, Group: 27
Element: SearchBox, Group: 27
Element: SearchBox, Group: 27

Three elements
“SearchBox” to
address the same field
“Companies”.

9

14 - When I submit “Search” -

15 - Then will be displayed “2. Sélectionner un
voyage” (FAILED, assertion error: expected
<1> but was <0>).

-

Dynamic behavior
between screens.
Untraceable interac-
tion.

Scenario: Select a Return Flight Searched With Full Options
Battery Step Balsamiq source file Error

1
16 - Given “Availability Page” is displayed
(FAILED, assertion error: expected <1> but
was <0>).

?
“Availability Page”
does not exist.

2
17 - When I click on “No Bag” referring to
“Air France 7519” (FAILED, assertion error:
expected <1> but was <0>).

Element: DataGrid
Name: Flight, Discount, Classic,
Flex

Expected field “No
Bag” but was “Dis-
count”.

3

18 - And I click on “No Bag” referring to “Air France 7522” -
19 - When I click on “Book” -
20 - Then will be displayed “J'accepte les
Conditions d'achat concernant le(s) tarif(s)
aérien(s).” (FAILED, assertion error: ex-
pected <1> but was <0>).

-

Dynamic behavior
between screens.
Untraceable interac-
tion.

(continued)

Ensuring the Consistency Between User Requirements and GUI Prototypes 657

During the second battery of tests, the steps 1, 2 and 3 passed, and an error was
found at the step 4 (“When I set ‘Sam, Déc 1, 2018’ in the field ‘Departure Date’”).
This error refers to the label “Departure Date” that has been found in a different group
than the element “DataChooser” which was used to model it. As detailed in Sect. 3,
Balsamiq implements UI elements either as independent instances (i.e. with the name
and the interaction element defined in the same tag), or as part of a group (i.e. defining
the name in the tag “label” and the interaction element itself in another tag). In the
second case, the group must be modeled as a single unit, with a unique identifier. The
label “Departure Date” was found in a given group and its interaction element
“DataChooser” in another one, so they could not be recognized as a single unit. To fix
the error, they were regrouped.

During the third battery of tests, the steps 4, 5 and 6 passed, and the same error was
found at the step 7 (“And I set ‘Lun, Déc 10, 2018’ in the field ‘Arrival Date’”). The
label “Arrival Date” and its correspondent element “DataChooser” were found in
different groups. The same solution to fix it was applied. During the fourth battery of
tests, the steps 7 and 8 passed, and an error was found at the step 9 (“And I choose the
option of value ‘2’ in the field ‘Number of Passengers’”). The field “Number of
Passengers” was not found in the prototype. It was added to fix the error.

During the fifth battery of tests, the step 9 passed, and an error was found at the step
10 (“When I set ‘6’ in the field ‘Timeframe’”). The field “Timeframe” was named as
“Time Frame”. The field was renamed in the prototype to fix the inconsistency. The
same occurred during the sixth and seventh battery of tests, respectively with the fields
“Direct Flights Only” (step 11) and “Flight Class” (step 12). They were named as
“Only direct flights” and “Class” respectively. They were also renamed, so the test
passed.

During the eighth battery of tests, an error was found at the step 13 (“And I set ‘Air
France’ in the field ‘Companies’”). Three elements “SearchBox” were found to
address the same field named only as “Companies”. The solution was to identify
uniquely each one of the fields “SearchBox”, once each one of them is able to receive
different values during the interaction. If we redesign the step to call specifically one of
the fields (e.g. Company 1) the test passes, as we are interacting with just a unique and

Table 2. (continued)

Scenario: Confirm a Flight Selection (Full Version)
Battery Step Balsamiq source file Error

1
21 - Given “Confirmation Page” is displayed
(FAILED, assertion error: expected <1> but
was <0>).

?
“Confirmation Page”
does not exist.

2

22 - When I choose “J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s).”

-

23 - And I click on “Finalize the trip”
(FAILED, assertion error: expected <1> but
was <0>).

Element: Button
Name: Confirm Booking

Expected field “Final-
ize the trip” but was
“Confirm Booking”.

3
24 - Then will be displayed “Votre voyage a
été confirmé!” (FAILED, assertion error:
expected <1> but was <0>).

-

Dynamic behavior
between screens.
Untraceable interac-
tion.

658 T. Rocha Silva et al.

determined field. If otherwise we call the group Companies as a whole, we do not know
with which field we should interact. The three fields were named respectively as
“Company 1”, “Company 2” and “Company 3”, leaving the name “Companies” to
reference only the group as a whole. Once again, both the scenario and the prototype
have been updated.

During the ninth battery of tests, the steps 13 and 14 passed. For the step 15, at the
end of the first scenario, the message referenced by the last step is supposed to be
displayed in another screen as a result of the interaction. As stated in Sect. 3, tests on
prototypes at this level of refinement do not consider the dynamic aspect of the
interaction, so tests like this, involving navigation between screens, will always fail.

Following the booking process, the second scenario (“Select a Return Flight
Searched With Full Options”) ran only 3 batteries of tests before getting a consistent
prototype. The first battery found an error in the element “Availability Page” that is
missing in the prototype. During the second battery, the field “No Bag” was named as
“Discount” in the grid. Finally, the third battery fell in the case mentioned previously,
which consists in checking a message that is supposed to be displayed in the next
screen as a result of the interaction.

The third and last scenario to conclude the booking (“Confirm a Flight Selection
Full Version”), also ran only 3 batteries of tests before getting a consistent prototype.
The first one found the same error related to the name of the page. In the second one,
the button “Finalize the trip” was named as “Confirm Booking”, and the third and last
battery felt in the case of dynamic behavior between screens. Notice that, for testing
purposes, the message “I accept the General Terms and Conditions” in English was
considered equivalent to the message “J’accepte les Conditions d’achat concernant le
(s) tarif(s) aérien(s).” in French.

In our further test batteries with other scenarios, we got errors when testing steps
such as “And I choose ‘One-way Trip’” and “When I choose ‘Multidestination Trip’”
because these options do not exist in the UI prototypes for searching flights. In fact, the
corresponding option was named “One-way/Multidestination” (Fig. 8, (a)). Here we
get an important inconsistency related with the design options. During the specification
of scenarios, we can notice that three options were planned to select the trip type: one-
way, roundtrip, or multidestination. However, in this version of the prototype, it has
been modeled only two options: one for choosing a roundtrip, and another for choosing
a one-way/multidestination trip. This option has been made for the prototype because,
in terms of interaction, the action required for providing data for multidestination
flights is actually the same as the one for providing data for a set of one-way flights. In
terms of user requirements, this is a conflicting specification, so such an inconsistency
needs to be identified and fixed. Thus, either the prototype should follow what has been
specified in the scenarios, or the scenarios should be fixed to comply with the inter-
action supported by the prototype.

In a scenario for describing a successful multi-destination ticket search, our algo-
rithm has identified, as expected, three fields named “Departure” and “Destination” (see
Fig. 8, (b)). For each element, the results returned the count of 3, when it was expected
to be 1. When designing such a UI, as the three fields have been just replicated (copied

Ensuring the Consistency Between User Requirements and GUI Prototypes 659

and pasted) with the same name, with the purpose of illustrating the change on the UI
when the “One-way/Multidestination” option is selected, the group to which such fields
belonged has been maintained, so this set up the inconsistency. Otherwise, if the fields
had the same name, but belonged to different groups, an inconsistency would not be
signalized as it would indicate that the fields were intentionally modeled as different
objects.

Finally, for the step “And I set ‘Sam, Déc 1, 2018’ in the field ‘Departure Date’” in
the same scenario, the field “Departure Date” was also replicated, but the pair of
elements (labels and actual fields) has not been associated to a group, i.e. each element
(label and field) has been found belonging to distinct groups in each instance of the
field “Departure Date”. The inconsistency was also detected and signalized.

5.3 Discussion and Limitations

By summarizing the results presented above, below we can categorize the types of
inconsistencies found by our testing approach when assessing the Balsamiq prototypes
as follows:

• Conflict between expected and actual elements
• Element and label in different groups
• Missing elements
• Element semantically inconsistent
• More than one element to represent the same field
• Untraceable interaction between screens

As presented above, we identified 6 different types in the tested scenarios. “Conflict
between expected and actual elements” was the most frequent type and refers to
elements that are specified with different names in the step and in the prototype.
“Missing elements” and “untraceable interaction between screens” comes next and
refer respectively to the real absence in the prototypes of elements that are specified in
the step, and to the cases where the interaction changes the state of the interface (e.g.
transitioning between screens or making appear a given value in a field). “Untraceable
interaction between screens” is a particular type of inconsistency due to the level of
refinement we are considering for prototypes. Balsamiq is a prototype tool that actually
supports a basic dialog description, using links between prototypes and simulating a
real navigation on user interfaces. However, we have chosen to not cover such a feature
for now, since the ontology we use can already support more robust interactions in
other levels of prototype refinements, such as the one that has been implemented by
PANDA [13].

“Elements and labels in different groups” is the next type in line and refers to one
of the mechanisms of modeling used by Balsamiq when there is an absence of group
links between labels and the actual interaction element in the prototype. When a given
UI element is composed by a label name and the interaction element itself, this
encompassed structure is modeled by an entity named “group”. Thus, to be considered
as a unique and single element, both the label and the interaction element itself must be

660 T. Rocha Silva et al.

placed at the same group. If it is not the case, we are not able to reach the element and
then an inconsistency is detected. This inconsistency leads to a misidentification of
elements in Balsamiq but could eventually not be an issue in other prototyping
tools.

“More than one element to represent the same field” is a type of inconsistency
caused when there are at least two elements (or more) in the prototype which are of the
same type and are placed in the same group (or have the same name) of the searched
field. Finally, the type of inconsistency named “elements semantically inconsistent”
refers to the core problem we address with the ontology, i.e. the use of interaction
elements in the prototype that are semantically inconsistent with the behavior they are
supposed to model. This kind of inconsistency is detected when we get the list of
supported interaction elements from the ontology and check if the interaction element
used in the prototype is equivalent to one of them.

The types of inconsistencies identified by our approach are useful to provide
information about the consistency between user requirements and GUI prototypes at
any stage of a user-centered design process. Especially at the early stages, where user
requirements still have a high level of uncertainty, the identification of these incon-
sistencies is an important resource to both designers and domain experts to validate a
given understanding of the requirements and to ensure that the multiple proposed
design options still remain consistent with the requirements. A conducive factor to that
is our strategy based on a static analysis for implementing the assessment of GUI
prototypes. When opting for a static analysis of Balsamiq source files, we gain in
performance and availability of tests. Unlike approaches implementing co-execution,
and specially in environments requiring a high-availability of tests to be executed
continuously along multiple iterations, static approaches benefit from an instantaneous
consistency checking by analyzing in seconds several hundreds of source files at the
same time.

As limitations, we point out that this study has been conducted performing a
manual reverse engineering of the existing system currently in production to obtain the
respective prototypes for testing. Therefore, as a manual process, it was expected that
inconsistencies would be naturally introduced during the modeling. Indeed, these
inconsistencies were identified and that allowed us to evaluate our approach.
Nonetheless, if an automated approach of reverse engineering had been used instead,
such inconsistencies would probably not have taken place. Future studies should
confirm this hypothesis. Since both the conduction of the study and the interpretation
and analysis of the results have initially been made by the authors, a possible bias
should be considered as a threat to validity. To mitigate that, the results were cross-
checked by independent reviewers, experts in software engineering and modeling.
They examined both the reengineered GUI prototypes and the testing results, then they
performed a qualitative analysis of the types of inconsistencies identified. The results
presented in this paper are thus a consolidated and revised version of the testing
outcomes.

Ensuring the Consistency Between User Requirements and GUI Prototypes 661

5.4 Conclusion

In this paper, we describe a novel approach for assessing low-fidelity wireframes and
sketches developed by commercial prototyping tools like Balsamiq. Our approach has
the main advantage of ensuring a reliable correspondence between the different
interaction elements modeled in GUI prototypes and the user requirements specified by
stakeholders. By using a supporting ontology, the approach provides automated testing
for Balsamiq prototypes, implementing an open and flexible architecture which allows
other GUI prototyping tools fitting in the future. For that, it is enough to implement a
new core interface for describing the way such tools deal with their interaction elements
and how they can be identified in their source files.

This approach has also been extended and adapted to assess other early artifacts
such as task models, as well as late artifacts such as final UIs [36–40]. As an integrated
approach, User Stories can also be assigned to automatically assess both task models,
UI prototypes in different levels of abstraction, and final UIs, ensuring a consistent
verification, validation and testing (VV&T) approach for interactive systems with high-
availability of tests and immediate feedback about the consistency of artifacts and user
requirements since the early stages of development.

Next steps on this research include evaluating the impact of maintaining and
successively evolving UI prototypes throughout a real software development process.
Future studies should also explore the assessment of GUI prototypes using new
interaction techniques, which has the potential to bring new challenges. Concerning the
tools, the development of an Eclipse plugin to suggest and autocomplete steps of the
User Stories scenarios based on the interactive behaviors of the ontology is also
envisioned. It would allow experts and other stakeholders to directly create their own
User Stories by following the proposed vocabulary.

References

1. Wood, D.P., Kang, K.C.: A Classification and Bibliography of Software Prototyping.
Pittsburgh, Pennsylvania (1992)

2. Chelimsky, D., Astels, D., Helmkamp, B., North, D., Dennis, Z., Hellesoy, A.: The RSpec
Book: Behaviour Driven Development with RSpec, Cucumber, and Friends. Pragmatic
Bookshelf, New York (2010)

3. Cohn, M.: User Stories Applied for Agile Software Development. Addison-Wesley, Boston
(2004)

4. Silva, T.R., Hak, J.-L., Winckler, M.: A behavior-based ontology for supporting automated
assessment of interactive systems. In: Proceedings of the 11th IEEE International
Conference on Semantic Computing (ICSC 2017), pp. 250–257 (2017). https://doi.org/10.
1109/ICSC.2017.73

5. Silva, T.R., Hak, J.-L., Winckler, M.: A formal ontology for describing interactive behaviors
and supporting automated testing on user interfaces. Int. J. Semant. Comput. 11(04), 513–
539 (2017). https://doi.org/10.1142/S1793351X17400219

662 T. Rocha Silva et al.

http://dx.doi.org/10.1109/ICSC.2017.73
http://dx.doi.org/10.1109/ICSC.2017.73
http://dx.doi.org/10.1142/S1793351X17400219

6. Jeffries, R., Miller, J.R., Wharton, C., Uyeda, K.: User interface evaluation in the real world:
a comparison of four techniques. In: Proceedings of CHI 1991 Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 119–124 (1991). https://doi.org/
10.1145/108844.108862

7. Tian, J.: Software inspection. In: Jeff, T. (ed.) Software Quality Engineering: Testing,
Quality Assurance, and Quantifiable Improvement, pp. 237–250. John Wiley & Sons, Inc.,
New York (2005). https://doi.org/10.1002/0471722324.ch14

8. Ebert, C.: Global Software and IT: A Guide to Distributed Development, Projects, and
Outsourcing. Wiley, Hoboken (2011)

9. Luna, E.R., Garrigós, I., Grigera, J., Winckler, M.: Capture and evolution of web
requirements using webspec. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 173–188. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13911-6_12

10. Buchmann, R.A., Karagiannis, D.: Modelling mobile app requirements for semantic
traceability. Requir. Eng. 22(1), 41–75 (2017). https://doi.org/10.1007/s00766-015-0235-1

11. Winckler, M., Palanque, P.: StateWebCharts: a formal description technique dedicated to
navigation modelling of web applications. In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha,
J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 61–76. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-39929-2_5

12. Barnett, J.: State Chart XML (SCXML): State Machine Notation for Control Abstraction.
W3C (2017). http://www.w3.org/TR/scxml/

13. Hak, J., Winckler, M., Navarre, D.: PANDA: prototyping using annotation and decision
analysis. In: Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, pp. 171–176 (2016). https://doi.org/10.1145/2933242.2935873

14. Elkoutbi, M., Khriss, I., Keller, R.K.: Generating user interface prototypes from scenarios.
In: Proceedings of the IEEE International Symposium on Requirements Engineering (Cat.
No. PR00188), pp. 150–158 (1999). https://doi.org/10.1109/ISRE.1999.777995

15. Han, L., Yang, J., Zhao, W., Sheng, Q.Z.: User interface derivation for business processes.
IEEE Trans. Knowl. Data Eng. (2019). https://doi.org/10.1109/TKDE.2019.2891655

16. Schlungbaum, E., Elwert, T.: Automatic user interface generation from declarative models.
Comput. Aided Des. User Interfaces (CADUI) 5, 3–18 (1996)

17. Wolff, A., Forbrig, P., Dittmar, A., Reichart, D.: Linking GUI elements to tasks – supporting
an evolutionary design process. In: Proceedings of the 4th International Workshop on Task
Models and Diagrams, pp. 27–34 (2005). https://doi.org/10.1145/1122935.1122941

18. Valente, P., Silva, T.R., Winckler, M., Nunes, N.J.: The goals approach: enterprise model-
driven agile human-centered software engineering. In: Bogdan, C., et al. (eds.)
HCSE/HESSD-2016. LNCS, vol. 9856, pp. 261–280. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44902-9_17

19. Valente, P., Silva, T., Winckler, M., Nunes, N.: The goals approach: agile enterprise driven
software development. In: Gołuchowski, J., Pańkowska, M., Linger, H., Barry, C., Lang, M.,
Schneider, C. (eds.) Complexity in Information Systems Development. LNISO, vol. 22,
pp. 201–219. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52593-8_13

20. Lucassen, G., Dalpiaz, F., Van Der Werf, J.M.E.M., Brinkkemper, S., Zowghi, D.:
Behavior-driven requirements traceability via automated acceptance tests. In: Proceedings -
2017 IEEE 25th International Requirements Engineering Conference Workshops, REW
2017, pp. 431–434 (2017). https://doi.org/10.1109/REW.2017.84

Ensuring the Consistency Between User Requirements and GUI Prototypes 663

http://dx.doi.org/10.1145/108844.108862
http://dx.doi.org/10.1145/108844.108862
http://dx.doi.org/10.1002/0471722324.ch14
http://dx.doi.org/10.1007/978-3-642-13911-6_12
http://dx.doi.org/10.1007/978-3-642-13911-6_12
http://dx.doi.org/10.1007/s00766-015-0235-1
http://dx.doi.org/10.1007/978-3-540-39929-2_5
http://dx.doi.org/10.1007/978-3-540-39929-2_5
http://www.w3.org/TR/scxml/
http://dx.doi.org/10.1145/2933242.2935873
http://dx.doi.org/10.1109/ISRE.1999.777995
http://dx.doi.org/10.1109/TKDE.2019.2891655
http://dx.doi.org/10.1145/1122935.1122941
http://dx.doi.org/10.1007/978-3-319-44902-9_17
http://dx.doi.org/10.1007/978-3-319-44902-9_17
http://dx.doi.org/10.1007/978-3-319-52593-8_13
http://dx.doi.org/10.1109/REW.2017.84

21. de Carvalho, R.A., Manhães, R.S., de Carvalho e Silva, F.L.: Filling the gap between
business process modeling and behavior driven development (2010). arXiv: https://arxiv.org/
abs/1005.4975

22. de Carvalho, R.A., de Carvalho e Silva, F.L., Manhaes, R.S.: Mapping business process
modeling constructs to behavior driven development ubiquitous language (2010). arXiv:
https://arxiv.org/abs/1006.4892

23. Lübke, D., Van Lessen, T.: Modeling test cases in BPMN for behavior- driven development.
IEEE Softw. 33, 15–21 (2016). https://doi.org/10.1109/MS.2016.117

24. Khaddam, I., Mezhoudi, N., Vanderdonckt, J.: Towards task-based linguistic modeling for
designing GUIs. In: 27th Conference on l’Interaction Homme-Machine (2015). https://doi.
org/10.1145/2820619.2820636

25. Palanque, P., Martinie, C., Winckler, M.: Designing and assessing interactive systems using
task models. In: Bernhaupt, R., Dalvi, G., Joshi, A., KB, D., O’Neill, J., Winckler, M. (eds.)
INTERACT 2017. LNCS, vol. 10516, pp. 383–386. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68059-0_35

26. Campos, J.C., Fayollas, C., Martinie, C., Navarre, D., Palanque, P., Pinto, M.: Systematic
automation of scenario-based testing of user interfaces. In: Proceedings of the 8th
ACM SIGCHI Symposium on Engineering Interactive Computing Systems - EICS 2016,
pp. 138–148 (2016). https://doi.org/10.1145/2933242.2948735

27. Silva, T.R., Hak, J.-L., Winckler, M., Nicolas, O.: A comparative study of milestones for
featuring GUI prototyping tools. J. Softw. Eng. Appl. 10(06), 564–589 (2017). https://doi.
org/10.4236/jsea.2017.106031

28. Silva, T.R., Hak, J.-L., Winckler, M.A.: A review of milestones in the history of GUI
prototyping tools. In: IFIP TC.13 International Conference on Human-Computer Interaction
– INTERACT 2015 Adjunct Proceedings, pp. 267–279 (2015)

29. Beck, K.: Test Driven Development: By Example, 1st edn. Addison-Wesley Professional,
Boston (2002)

30. Astels, D.: Test-Driven Development: A Practical Guide, 1st edn. Prentice Hall, Upper
Saddle River (2003)

31. North, D.: What’s in a Story? (2019). https://dannorth.net/whats-in-a-story/. Accessed 01 Jan
2019

32. Gherkin. Gherkin Reference. https://cucumber.io/docs/gherkin/reference/
33. Beaudouin-Lafon, M., Mackay, W.E.: Prototyping tools and techniques. In: Prototype

Development and Tools, pp. 1–41 (2000)
34. Silva, T.R., Winckler, M., Bach, C.: Evaluating the usage of predefined interactive behaviors

for writing user stories: an empirical study with potential product owners. Cognit. Technol.
Work, 1–21 (2019). https://doi.org/10.1007/s10111-019-00566-3

35. Chikofsky, E.J., Cross II, J.H.: Reverse engineering and design recovery: a taxonomy. IEEE
Softw. 7, 13–17 (1990). https://doi.org/10.1109/52.43044

36. Silva, T.R., Winckler, M.A.A.: Towards automated requirements checking throughout
development processes of interactive systems. In: 2nd Workshop on Continuous Require-
ments Engineering (CRE), REFSQ 2016, pp. 1–2 (2016)

37. Silva, T.R.: Definition of a behavior-driven model for requirements specification and testing
of interactive systems. In: Proceedings of the 24th International Requirements Engineering
Conference (RE 2016), pp. 444–449 (2016). https://doi.org/10.1109/RE.2016.12

38. Silva, T.R., Hak, J.-L., Winckler, M.: Testing prototypes and final user interfaces through an
ontological perspective for behavior-driven development. In: Bogdan, C., et al. (eds.)
HCSE/HESSD -2016. LNCS, vol. 9856, pp. 86–107. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44902-9_7

664 T. Rocha Silva et al.

https://arxiv.org/abs/1005.4975
https://arxiv.org/abs/1005.4975
https://arxiv.org/abs/1006.4892
http://dx.doi.org/10.1109/MS.2016.117
http://dx.doi.org/10.1145/2820619.2820636
http://dx.doi.org/10.1145/2820619.2820636
http://dx.doi.org/10.1007/978-3-319-68059-0_35
http://dx.doi.org/10.1007/978-3-319-68059-0_35
http://dx.doi.org/10.1145/2933242.2948735
http://dx.doi.org/10.4236/jsea.2017.106031
http://dx.doi.org/10.4236/jsea.2017.106031
https://dannorth.net/whats-in-a-story/
https://cucumber.io/docs/gherkin/reference/
http://dx.doi.org/10.1007/s10111-019-00566-3
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1109/RE.2016.12
http://dx.doi.org/10.1007/978-3-319-44902-9_7
http://dx.doi.org/10.1007/978-3-319-44902-9_7

39. Silva, T.R., Hak, J.-L., Winckler, M.: An approach for multi-artifact testing through an
ontological perspective for behavior-driven development. Complex Syst. Inform. Model. Q.
7, 81–107 (2016). https://doi.org/10.7250/csimq.2016-7.05

40. Silva, T.R., Winckler, M.: A scenario-based approach for checking consistency in user
interface design artifacts. In: Proceedings of the 16th Brazilian Symposium on Human
Factors in Computing Systems (IHC 2017), vol. 1, pp. 21–30 (2017). https://doi.org/10.
1145/3160504.3160506

Ensuring the Consistency Between User Requirements and GUI Prototypes 665

http://dx.doi.org/10.7250/csimq.2016-7.05
http://dx.doi.org/10.1145/3160504.3160506
http://dx.doi.org/10.1145/3160504.3160506

	Ensuring the Consistency Between User Requirements and GUI Prototypes: A Behavior-Based Automated Approach
	Abstract
	1 Introduction
	2 Related Works
	3 Foundations
	3.1 Behavior-Driven Development and User Stories
	3.2 Ontological Support for GUI Automated Testing

	4 The Proposed Approach for Automated Assessment
	4.1 Tool Support

	5 Case Study
	5.1 Methodology
	5.2 Results
	5.3 Discussion and Limitations
	5.4 Conclusion

	References

