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Abstract Non-State Armed Groups (NSAGs) operate in complex environments,
commonly existing as one of the many organizations engaged in one-sided violent
attacks against the state and/or the civilian population. When trying to explain
the execution and timing of these attacks, most theories look at NSAGs’ internal
organizational features or how these groups interact with the state or civilian
population. In this study, we take a different approach: we use a self-exciting
temporal model to ask if the behavior of one NSAG affects the behavior of other
groups operating in the same country and if the actions of groups with actual ties
(i.e., groups with some recognized relationship) have a larger effect than those with
environmental ties (i.e., groups simply operating in the same country). We focus on
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three cases where multiple NSAGs operated at the same time: Afghanistan, Iraq,
and Colombia, from 2001 to 2005. We find mixed results for the notion that the
actions of one NSAG influence the actions of others operating in the same conflict.
In Iraq and Afghanistan, we find evidence that NSAG actions do influence the timing
of attacks by other NSAGs; however, there is no discernible link between NSAG
actions and the timing of attacks in Colombia. Nevertheless, we do consistently find
that there is no significant difference between the effect that actual or environmental
ties could have in these three cases.

Keywords Armed groups · Multi-party conflict · Attack timing · Hawkes
process · Agent-based model (ABM)

1 Introduction

The escalation of violent attacks from Non-State Armed Groups (NSAGs), in
frequency and number of casualties, is a central threat to international security
today. In 2017, while we saw a decrease in the overall number of inter-state armed
conflicts, the number of armed actors engaged in one-sided violence increased
noticeably (Pettersson and Eck, 2018). Understanding the dynamics of violent attack
execution better is essential for both scholarly research and policy-making. Efforts
to effectively counter these threats would benefit from a more detailed understanding
of the dynamics of their execution.

NSAGs do not operate in isolation. Despite widespread assumptions made by
theories of violence (e.g., in civil war research), armed conflict is rarely dyadic
(Jentzsch, 2014). The portrayal of conflict both as combat between an incumbent
state and a rebel organization, and of armed groups operating and making decisions
in isolation, obscures the fact that multiple armed organizations commonly operate
in the same conflict settings. To cite just one dramatic example, during the peak of
the Syrian civil war, it was believed that as many as 1000 non-state armed groups
were commanding about 100,000 fighters (BBC, 2013).

Given the prevalence of conflict settings where multiple NSAGs operate, coop-
erating and creating alliances (Christia, 2012; Horowitz and Potter, 2014; Gade
et al., 2019) and/or competing against each other (Phillips, 2015; Gade et al., 2019),
there are good reasons to believe that the behavior of a given group is not (or
at least not entirely) independent from the behavior of other groups operating in
the same environment. This interdependence might involve, for example, decisions
of whether and/or when to commit a violent attack (either as a first mover or
in response to others’ attacks), as well as decisions to declare a ceasefire and/or
sit down in the negotiation table with the government. Nevertheless, as Phillips
(2014, p. 336) notes, research often ignores the possibility that armed groups can
affect each other in nontrivial ways. We contend that exploring these potential
interdependencies in the behavior of Non-State Armed Group (NSAG) in multi-
party conflicts is a proper avenue of research to understand various conflict
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dynamics. Moreover, recognizing and identifying this interdependence might have
important implications for both security and peace policy. This is exemplified by
the conflict trajectories in Eastern Congo where the enthusiasm that followed the
military defeat of the M23 rebel group in 2015 was doomed by the fact that 69
other NSAGs were also operating in the region (Stearns and Vogel, 2015). Similarly,
violence has persisted in Colombia after sealing a historic peace deal with the
FARC—the most extensive and powerful rebel group in the country’s long-standing
civil war—as other NSAGs have been fighting to fill in the power voids left by the
rebels (Idler and Masullo, 2019).

Does the behavior of one NSAG affect the behavior of other armed groups
operating in the same environment? Furthermore, is behavior only affected by the
more formal relationships that have captured the attention of the literature, or can it
also be affected by the mere fact of operating in the same environment or fighting
in the same conflict? In this paper we provide a preliminary exploration of these
questions, focusing exclusively on the execution of one-sided violent attacks. To
understand violent dynamics, instead of looking within armed organizations (see,
e.g. Weinstein, 2007) or at the interactions of armed groups with civilian populations
(see, e.g. Kalyvas, 2006) or with the government (see, e.g. Hultman, 2007), we focus
on the relational environment in which NSAGs operate and examine how they might
influence each other’s actions—something that has received relatively less attention
in the conflict literature.

Our core contention is that the behavior of a given group is not independent
of the behavior of other groups operating in the same environment. Specifically,
we explore whether there is evidence suggesting that the timing of an attack by a
given NSAG is affected by the attacks executed by others. If there is some sort of
interdependence between attacks, in this preliminary exploration we should at least
observe that once an armed organization commits an attack, the probability that
another attack will take place increases. Moreover, if what is taking place is in some
way related to this form of interdependence, we expect the impact of this additive
effect to decay over time.

We are not the first to explore how interorganizational relationships are related
to armed group behavior. For example, Asal and Rethemeyer (2008) and Phillips
(2014) have looked at how the number of alliances affect group behavior, while
others have emphasized on whom the group is connected to, noting that what matters
is the quality of the partners and the location of the tie within the overall network
(Horowitz and Potter, 2014). In this paper, we consider all the possible connections
between all the groups that are present in a given environment (what in social
network language would be a “fully connected network” or a “complete graph”) and
differentiate between actual ties (groups with a relationship as defined by the Big,
Allied, and Dangerous dataset1) and environmental ties (groups simply operating
in the same country). This allows us to explore not only whether there are some

1See Sect. 2 for details on the dataset.
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interdependent dynamics in the timing of violent attacks, but also whether different
types of ties have different effects.

Despite undeniable advances in our knowledge of how NSAGs operate, the study
of interdependence between multiple groups operating in the same environment
and its consequences on an armed group’s violent behavior still requires more
sophisticated empirical analysis and better theorization. By combining different
methods to generate, analyze, and compare simulation and empirical data, this
paper aims to make an empirical contribution to this task. Supportive evidence
for interdependent behavior in the timing of violence attacks would constitute a
necessary first step to begin exploring these dynamics more deeply, disaggregating
data further (e.g., spatially, by the type of attack, armed group, and/or conflict type)
and exploring—theoretically and empirically—potential mechanisms.

This paper is structured as follows. In the next section, we present the empirical
data that we used and the three cases that we chose to begin exploring whether
NSAGs influence each other in attack timing and frequency. In Sect. 3 we introduce
the methods detailing the fundamentals of both the analytical estimation from the
empirical data and the generative model and simulation. Section 4 presents the
main results and, to conclude, Sect. 5 briefly discusses the results, identifying some
limitations of this study and delineating a road ahead.

2 Data and Case Settings

The empirical data for our study comes from the Global Terrorism Database (GTD).
With information on over 180,000 domestic and international attacks between
1970 and 2017, including kidnappings, assassinations, and bombings, this is the
most comprehensive open-source database on terrorist attacks. While including
more events than any other available dataset, it rests on clear inclusion/exclusion
criteria. It excludes criminal incidents devoid of political or ideological motivations,
incidents arising from clashes between opposing armed groups, and incidents
perpetrated by the state. In this sense, it allows us to focus specifically on the
outcome we are interested in: one-sided violent attacks by NSAGs.2

In addition, we use data on ties between armed organizations. These data come
from Phillips (2015),3 which is an extension of the Big, Allied, and Dangerous
(BAAD) dataset (Asal and Rethemeyer, 2015). These ties are manually curated
based on the Terrorism Knowledge Database, media reports, and legal documents
and represent a variety of known incidents of activity between two groups, such as
training another group’s members, providing safe harbor, or collaborating on attacks

2For a detailed description of the data, including the history behind its collection, digitization,
and consolidation process, see LaFree and Dugan (2007). For recent updates and to access the
codebook and download the data, visit https://www.start.umd.edu/gtd/using-gtd/.
3We are grateful to Phillips for sharing these data with us.

https://www.start.umd.edu/gtd/using-gtd/
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together.4 In this work, we treat the ties between organizations in an undirected
manner (i.e., groups in the relationships are coded regardless of who is addressing
whom).

For this exploratory analysis, we use three conflicts as our case studies—
Afghanistan, Colombia, and Iraq—and restrict the period to 2001–2005. Multiple
armed groups were active in each of these conflicts for the period under study,
all executed a considerable number of violent attacks, and at least one actual tie
was observed between two of them. In addition, these three conflicts provide us
with variation in dimensions that can prove theoretically relevant: e.g., the macro-
cleavage and the stage of the conflict, as well as the profile of the armed group.
First, Colombia constitutes a clear example of an irregular, guerrilla type of war that
started in the mid-1960s (four decades before our time frame) and pits left-wing
rebel groups with Marxist-Leninist ideals against right-wing paramilitaries and the
forces of the state. Then, Afghanistan, starting in 2001 (the first year of our time
frame), shortly after the 9/11 attacks. Here a coalition of international forces and a
new Afghan government faced a local insurgency and multiple armed groups, with
fundamentalist, sectarian, and sometimes ethnicity-driven characteristics. Finally,
the war in Iraq started in 2003 and ended the Baathist regime in Baghdad. Here,
like in Afghanistan, US-led forces were faced with a large-scale insurgency and
a number of terrorist organizations targeting the international military presence,
civilian population, and aiming to disrupt the ongoing nation-building efforts.

For each of these countries, we carefully cleaned the data to make sure it included
a meaningful and internally valid set of NSAGs and ties between them. Based on
historical records, secondary sources and first-hand knowledge of each of these
conflicts, we excluded organizations that we knew were not operating in the same
environment and/or were mostly inactive during the time frame under analysis.5

Additionally, we merged observations when the same organization was coded as two
or three different ones given the use of various names in the sources used to build
the original dataset.6 This process considerably reduced the number of organizations
we are working with and explains the difference in the number of observations (both
organizations and attacks) relative to GTD and Phillips (2014).

Finally, to account for variation in NSAGs’ capacity to execute violent attacks,
and inform the parameters in our simulated data with empirical priors (see Sect. 3.2),
we estimated the capacity to commit a violent attack for each armed group that
made it into our final list. Given that the measurement of our outcome of interest
directly involves the number of attacks by each organization, we did not use this
information to estimate capacity. Therefore, we relied on two different variables to

4For a more detailed description of these data, please refer to the source papers (Phillips, 2014,
2015; Asal and Rethemeyer, 2008).
5For example, the IRA was originally included in the data for Colombia from 2001 to 2005.
6For example, we merged groups which emanated from name-changes during the conflict and were
a continuation of a group and its activities. During the transition, names of these groups were used
interchangeably by international news outlets.
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Table 1 Descriptives Colombia Iraq Afghanistan

Armed groups 9 31 8

Actual ties 4 5 2

Environmental ties 32 460 26

Total ties 36 465 28

Attacks 428 181 428

proxy capacity, both from the GTD data: the number of attack types that each group
has engaged in and the number of deaths caused by their attacks.7

Table 1 summarizes the basic data for the three cases under study after we
construct a fully connected network for each country.

3 Methods

To better understand the potential impact of all NSAGs’ actions within a country
on the timing of the execution of attacks by specific NSAGs, we approached the
problem with two distinct methodological strategies. The first consists of using
empirical data to estimate the extent to which any NSAG’s action is reactive to any
and all other NSAGs’ actions within the same environment. The second consists of
constructing a generative model that implements a basic model of action to explore
how much of an impact environmental ties could have and still produce an attack
time series that is statistically indistinguishable from the actual historical record.
These two tracks combined allow for an exploration of any evidence for latent
influence of NSAG’s actions on another’s actions in the same setting.8

3.1 Analytical Estimation

From the empirical data, we analytically estimated possible latent influences from
one NSAG’s attacks on the timing to another NSAG with a Hawkes process
(Hawkes, 1971). A Hawkes process is a self-exciting point process that takes the
form of

7When combining these two variables, we did not use any weighting as we did not have any
theoretical reason to believe that any of the two variables should matter more than the other as
proxies of NSAG’ capacity to commit an attack. We also considered a large set of variables that
provide a good sense of capacity to commit an attack from the Non-State Actors in Armed Conflict
Dataset (NSA) compiled by Cunningham et al. (2013). However, as we found that many of the
relevant variables in this dataset were highly correlated for the organizations we were working
with, we decided to use weights only from the GTD.
8All data and code is available at https://github.com/adamrpah/BIGSSS-Terror.

https://github.com/adamrpah/BIGSSS-Terror
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λ∗
g(t) = μg +

∑

j :tg,j <t

αge
−βg(t−tg,j ) (1)

where μg is the base rate of “attacking” for a given NSAG; g, αg is the additive
effect that a prior attack has; βg is how quickly the additive effect from a prior attack
decays; tg,j is how long ago the attack was carried out; and λ∗

g is the resultant rate
for NSAG g at time t . Without the additive term that accounts for the influence
of prior attacks on the future attack probability, a Hawkes process reduces to a
Poisson process. Empirically λ∗

g(t) is the attack rate for an individual group during
the interval of interest.

The mathematical extension of a Hawkes process from a single NSAG reacting
to its own past actions (univariate Hawkes) to a NSAG incorporating signals from
non-self actors (multivariate Hawkes) is relatively straightforward. We model the
multivariate Hawkes process as

λ∗
gi

(t) = μgi
+

∑

gk∈G

∑

j :tgk ,j <t

αgk
e−βgi

(t−tgk ,j ) (2)

where the impact of each attack tgk
is integrated with an individual αgk

for each
NSAG gk when we calculate the rate λ∗ for a single NSAG gi at time t . We use
the pyhawkes package to estimate the parameters for this function, which uses
Markov Chain Monte Carlo (MCMC) for the estimation (Linderman and Adams,
2014).

A difficulty with a MCMC approach is with identifying when the parameters
have converged. To ensure that our parameter estimation is robust we use the scale
reduction factor (Rubin and Gelman, 1992) and continue sampling on all chains
until the variation is less than 0.01 on all μ parameters.

The only empirical information that the multivariate Hawkes process requires
is the attack time series for each NSAG within a setting. Since all parameters are
estimated, there is no reason for the α parameter that controls how much a NSAG
reacts to the recent attacks of another NSAG to be larger (or smaller) for actual than
environmental ties.

3.2 Generative Model and Simulation

Our generative model implements a modified form of the multivariate Hawkes
process (Equation 2) in order to theoretically explore the possible amount of
influence of environmental information (attacks by NSAGs with no actual ties) on
a NSAG’s future attacks in comparison to the influence of the attacks of known
NSAGs with which they have an actual tie. Our modified version of the multivariate
Hawkes process for the generative model is

λ∗
gi

← μgi
+

∑

gk∈G

∑

j :tgk ,j <t

wgk
αe−β(t−tgk ,j ), (3)
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Table 2 Parameters of the ABM

Parameter Range Description

α {0.05, 0.1, 0.15, . . . , 0.9} Increase of intensity of impact from an attack

β {4, 4.5, 5, . . . , 8} Decay rate of attack intensity

ω {0, 0.1, 0.2, . . . , 1} Weight of environmental ties

where α (the additive impact of past attacks), β (the decay of influence over
time), and ω (the edge weight between two NSAGs) are general parameters of the
simulation (see Table 2 for simulation parameter ranges).

With Eq. 3, we simulate the multivariate Hawkes process for the set G of NSAGs
in the country of interest. Unlike the analytical estimation, here we specify that all
NSAGs in G are connected in a fully connected network with weight wgk

for each
tie that NSAG gi has. We set wgk

= 1 when gi = gk or there is an actual tie
between NSAG gi and gk from prior work (Phillips, 2015). If there is no actual tie
between NSAG gi and gk then we set wgk

= ω. Since the magnitude of wgk
is fixed

at 1 for actual ties, this allows us to systematically simulate the potential impact of
environmental ties on the timing of a NSAG’s attacks.

To restrict the potential parameter space, we estimate μg for each NSAG from
the empirical data. Since μg is the inherent rate of attacking for a NSAG it could
be, roughly, estimated from the attack time series directly. However, we do not use a
NSAG’s empirical attack rate so that no direct information about the attacking rate
is incorporated into the simulation. Instead, we regress the number of attack types
that a group engages in against the log total of casualties that the NSAG inflicts as
a proxy for a NSAG’s capability to successfully launch attacks. To operationalize
this relationship as a rate (μg) for each group, we scale the calculated value for each
NSAG by the average number of attacks per casualty across all NSAGs and reduce
that rate by 20% to account for possible latent influences.9

We simulate each run of our model for steps t ∈ [0 . . 1865], where each step
is a day to match the time span in the empirical setting. At each time step t , we
enumerate all attacks for each NSAG up to time t and recalculate λ∗

g for each group.
For each group, we make a random draw from a Poisson distribution with λ∗

g as the
mean and record that random value as the number of attacks at time step t .

To assess whether a set of simulation parameters generate realistic time series
for a setting, we perform 500 independent runs for each unique set of simulation
parameter values. To statistically test if the simulated data differ from the empirical

9The rate reduction of 20% is an arbitrary constant to ensure that μg �= λ∗
g . The exact percentage

chosen is not important since we are performing a parameter sweep with the simulation. If there
is an effect from the attacks of others on the timing of a NSAG’s attacks, then a rate reduction
that is too small would simply increase the magnitude of the α parameter (and vice versa if
the rate reduction was too large). If there is not a systematic effect from the attacks of others,
then the landscape of feasible parameter combinations should be rugged (i.e., isolated parameter
combinations that duplicate the empirical time series) which would be an artifact of the rate
reduction chosen.
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data, we test if the inter-event time distribution for each NSAG differs from the
empirical inter-event time distribution with the Kolmogorov-Smirnov test. Across
all runs for a simulation parameter set with a typical threshold of p = 0.05, we
would expect 5% of the inter-attack time series to differ by chance alone. Thus, if
more than 5% of the inter-event series are significantly different, we conclude that
the given simulation parameter set fails to reproduce the empirical data.

4 Results

4.1 Analytical Estimation of Basal and Additive Rates

After estimating Eq. (2) from the empirical data, we can establish the baseline
differences between individual NSAGs. Primarily, we aim to further clarify how μ,
which represents an individual NSAG’s basal rate and capacity to attack, compares
to the additive component α, the reactionary attacks in response to attacks from
others.

We find a dramatic difference between the magnitude and proportionality of α

and μ in our case studies (Fig. 1). In Colombia, the additive effect of another group’s
attack on a group’s own attacking rate is small in comparison to its basal attack rate.
FARC stands as a stark outlier in comparison to all groups, with its μ more than two
orders of magnitude larger than the additive α effect. This would suggest that the
timing of FARC attacks has almost no relationship or influence from prior attacks
by any group within the region.

In contrast, in both Iraq and Afghanistan the additive effect α is larger than μ for
a majority of NSAGs—with multiple groups having an α value that is two or nearly
three magnitudes larger than μ. Under the assumptions of the Hawkes process, this
means that the timing for the majority of attacks that NSAGs commit are more in
response to the actions of other NSAGs in the region than an independently timed
attack.
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μ
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10−3
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100

α

Iraq
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Fig. 1 Comparison of the estimated μ for each NSAG against the α coefficient it has for every
other NSAG in the same country. The plotted line is for μ = α
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Fig. 2 Comparison of the
calculated prior μ to the
analytically estimated μ for
NSAGs in all three countries
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However, if we examine the difference between actual and environmental ties
amongst these three settings, we find no significant differences (p = 0.24, t-test). If
we exclude all ties that originate from Colombia, this result still holds (p = 0.41,
t-test). This suggests that despite the differences found in the settings in terms of
the impact of the additive effect α, whether a tie is actual or environmental is not a
major contributing factor.

As a check for the initialization parameters for the generative model, we also
compare the analytically estimated μ values with the estimated μ priors for the
generative model and find a good agreement overall (Fig. 2, R2 = 0.49). The
notable outlier is again FARC, which has an analytically estimated value that
is approximately 150% of its calculated prior. This suggests that the estimation
strategy is a good, general approximation of a NSAG’s μ without the usage of
empirical rate-related information.

4.2 Comparison of Inferred Networks to the Network of Actual
Ties

To better understand the implications of the inferred α parameters on the entire
network of relationships within a country, we explicitly construct an inferred
network where α serves as tie strength and compare it to the network of actual
ties amongst NSAGs (Fig. 3).10

10We set a threshold on the strength of α for creating a connection at α ≥ 10−3.
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Fig. 3 Actual and inferred networks. Circles indicate NSAGs and lines indicate ties. Lines colored
in red indicate the ties present in both the actual and inferred networks

As we would expect from the previous results, the inferred networks for
Afghanistan and Iraq are densely connected. Interestingly, we infer no relationship
for almost half of the actual ties in Iraq and Colombia, while we capture both of the
actual ties in Afghanistan. These results suggest that groups react to a number of
other NSAGs within the same country that are not captured through formal known
ties and that not all formal known ties are equivalent in nature.

To better quantify how different the inferred network is in each country, we
compute the normalized degree and transitivity statistics (Table 3). The normalized
degree accounts for the number of ties that a NSAG has given the number of possible
ties in the network, which allows for a comparison between countries. We find that
in Colombia the normalized degree grows 150% from the network of actual ties to
the inferred network, while the growth in degree in Afghanistan and Iraq is over
1000%. This again highlights the difference in countries, with the inferred network
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Table 3 Descriptive
statistics for observed and
estimated networks

Average normalized degree Transitivity

Actual Inferred Actual Inferred

Afghanistan 0.07 0.93 0.00 0.93

Colombia 0.40 0.60 0.60 1.00

Iraq 0.01 0.98 0.50 0.98

of groups that react to one another barely differing from the known network in
Colombia and these two networks drastically diverging in the emerging conflicts in
Afghanistan and Iraq.

Transitivity measures the amount of triadic closures, that is, if A is connected
to B and B is connected to C, then A is also connected C. In this context, it would
imply that if group A reacts to actions taken by group B, then it would also react to
actions taken by group C so long as group B also reacts to C. A larger transitivity
value in this context would imply that the total volume of attacks in a country is
more dynamic since an attack made by one group could start a chain of reactionary
attacks from its connected neighbors (given a sufficiently large α). Surprisingly,
despite the difference in transitivity for the actual ties networks, all three countries
have similar levels of transitivity—meaning that for groups that we have inferred
ties for, those ties are closed into triads. In terms of the change from the actual ties
network to the inferred ties network, the increase is most notable in Afghanistan. In
the observed network, only the Taliban is connected to Jaysh al-Muslimin and Al-
Qaeda producing a transitivity of 0, while the inferred network transitivity is 0.93. In
Colombia, the magnitude change in transitivity is not as dramatic as in Afghanistan,
but it is notable that FARC is isolated from the inferred network which is a contrast
to its known ties to the ELN (the second largest left-wing rebel group).

These statistics correspond to the stark visual discrepancies between the actual
and inferred network structures. Despite the fact that the actual ties are records of
known, shared activities (whether that be training recruits, planning attacks, etc.),
we find that the actual network lacks the majority of ties, and the resulting structure,
identified in the inferred network. Given our focus on the timing of attacks, this
suggests that the “strategic” actual ties do not capture the range of actors and actions
that a NSAG may take into account when choosing exactly when to execute an
attack.

4.3 Generative Model Results and Correspondence to
Analytical Findings

To better interpret our generative model, we plot our sweep through the three
parameter ranges for each country, focusing on the parameter region where the
model successfully replicates the empirical data (Fig. 4). Once again, Colombia
stands out since no parameter combination was able to produce NSAGs time series
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Fig. 4 Generative model results for defined parameter combinations (α, β, ω) in Afghanistan,
Colombia, and Iraq. Each cell is the result of comparing the inter-event time series for 500
generative runs against the empirical data with the Kolmogorov-Smirnov (K-S) test. If less than
5% of the runs differ from the empirical data, the cell is marked as ‘Pass,’ otherwise, it is marked
as ‘Fail.’ Each grid in a column is a different α value (the additive effect from previous attacks),
while β (the rate of decay of previous attack effects) on the horizontal axis of each graph. The
vertical axis for each graph is ω, which is the relative strength of environmental to actual ties

similar to the empirical data. This is in general agreement with the analytical
findings, since FARC has a μ value that is nearly three orders of magnitude larger
than any additive effect from another NSAG’s actions and conducted more than
50% of the attacks during the study period. Even the ELN, the second most active
rebel/insurgent group and the one that conducted nearly 20% of the attacks during
the period of analysis, has an estimated μ value that is roughly one order of
magnitude larger than the additive effect from any other NSAG’s actions.

The results for Afghanistan and Iraq present a different picture, as both cases
yielded model parameter combinations that successfully reproduce the empirical
data. Since there are only two successful combinations in Afghanistan, the interpre-
tation is straightforward: only when groups react, nearly, as much to the actions
of other groups as they do to the actions of their allied groups is the empirical
data reproduced. Iraq is similar to Afghanistan in so much as there must be a
high additive amount to the rate from each attack in order for the simulation
to statistically reproduce the empirical data. There is an expected dependence
on the strength of environmental ties—as this link becomes stronger the range
of permissible α values grows, to the point that nearly half of the parameter
combinations are successful when α = 0.5. The primary difference is that in this
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case not even a weak dependence on how quickly the impact of prior attacks decays
seems to play a role. This could be due to the large number of NSAGs operating
in this environment and the limited number of attacks that each group committed
during the period of analysis (31 NSAGs operated during this period, committing an
average of 5.84 attacks). However, the results for both Afghanistan and Iraq confirm
the analytical estimates, with both countries having average α values that are larger
than the average μ, suggesting that reactionary attacks play a role in the timing of
attacks in these two countries.

5 Conclusion

Our preliminary answer to the guiding question of “does the behavior of one NSAG
affect the behavior of other armed groups operating in the same environment?” is
nuanced. We find clear support in both Iraq and Afghanistan that the actions of other
groups affect the timing of attacks; however, no support is found for this notion in
Colombia. This mixed result with only three case studies prevents us from drawing
any general conclusions on the notion that previous attacks from other groups affect
the future timing, and thus frequency, of NSAG attacks within a region.

Quantitatively, it is necessary to expand the analysis to a larger sample with more,
if not all, countries with active NSAGs. There are recorded attacks in over 200
countries (without disambiguation for geographical renaming) in the GTD, which
would provide enough statistical power to test this hypothesis exhaustively. If the
effect were general across countries, then greater insight could be obtained from the
estimated magnitude of the impact that prior actions have on the future timing of
attacks.

Qualitatively, our initial analysis would suggest that the general stage of the
conflict that NSAGs are engaged in is a contributing factor as to whether or not prior
attacks influence future attack timings. During the study period, both Afghanistan
and Iraq were severely destabilized with the large-scale introduction of foreign
forces and joint political instability. In both settings, this resulted in constantly
changing circumstances as insurgents, global jihadi movements, foreign powers,
and counterinsurgent forces. In contrast, the conflict in Colombia is one that has had
the same dominant actors for years before the study period. This is demonstrated
by the fact that between 1980 and 2002, hijacking, hostage taking, and kidnapping
totaled 76.3% of attacks conducted by FARC, the most dominant actor in Colombia
(Eccarius-Kelly, 2012). On the contrary, hostage taking constitutes only 7.2% of
attacks conducted by the Taliban, the most dominant actor in Afghanistan. These
differences in attack type underscore the qualitative difference in the nature of the
conflicts we study here.

Importantly, we find no difference in the relative importance of actual ties to
environmental ties. If we examine the results from the analytical model, the mean tie
strength does not differ between actual and environmental ties. From the generative
model, we find that only as the strength of the additive effect increases can we
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successfully replicate the empirical data. In Afghanistan, successful reproductions
only occur when environmental ties are weighted nearly as much as actual ties. In
Iraq, the space of permissible ω values increases as the additive effect α increases—
since an increase in the magnitude of the effect compensates for the weakening tie
strength. While alliances and rivalries, the basis of our actual ties, have been shown
to have long-term effects on group outcomes (Phillips, 2015; Asal and Rethemeyer,
2008), there does not appear to be any relationship to a short-term effect, specifically
one on the timing of attacks. While the actions of cooperation, one group training
another group or coordinating attacks, does relate to the timing of individual attacks,
it does not appear to rise to a systematic level of how attacks are coordinated and
executed.

Without expanding the scale of the study, it is not possible to discern if this
study is simply further proof of the empirical limits on predicting the timing of
NSAGs’ attacks (as demonstrated by the failure of the approach in Colombia) or if
it is only in specific contexts that prior actions can inform future predictions. We can,
at least, state that while formal relationships and the position that a group occupies
within that formal structure has a long-term impact, these relationships do not have
a systematic impact on daily activities and their timing.
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