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Abstract. Dutertre and de Moura developed a simplex-based solver
for linear rational arithmetic that has an incremental interface and pro-
vides unsatisfiable cores. We present a verification of their algorithm in
Isabelle/HOL that significantly extends previous work by Spasić and
Marić. Based on the simplex algorithm we further formalize Farkas’
Lemma. With this result we verify that linear rational constraints are
satisfiable over Q if and only they are satisfiable over R. Hence, our ver-
ified simplex algorithm is also able to decide satisfiability in linear real
arithmetic.
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1 Introduction

CeTA [7] is a verified certifier for checking untrusted safety and termination proofs
from external tools such as AProVE [12] and T2 [6]. To this end, CeTA also
contains a verified SAT-modulo-theories (SMT) solver, since these untrusted
proofs contain claims of validity of formulas. It is formalized as a deep embedding
and is generated via code generation.

The ultimate aim of this work is the optimization of the existing verified SMT
solver, as it is quite basic: The current solver takes as input a quantifier free
formula in the theory of linear rational arithmetic, translates it into disjunctive
normal form (DNF), and then tries to prove unsatisfiability for each conjunction
of literals with the verified simplex implementation of Spasić and Marić [16]. This
basic solver has at least two limitations: It only works on small formulas, since
the conversion to DNF often leads to an exponential blowup in the formula size;
and the procedure is restricted to linear rational arithmetic, i.e., the existing
formalization only contain results on satisfiability over Q, but not over R.

Clearly, instead of the expensive DNF conversion, the better approach is
to verify an SMT solver that is based on DPLL(T) or similar algorithms [4,11].
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Although there has been recent success in verifying a DPLL-based SAT solver [2],
for DPLL(T), a core component is missing, namely a powerful theory solver.

Therefore, in this paper we will extend the formalization of the simplex algo-
rithm due to Spasić and Marić [16]. This will be an important milestone on
the way to obtain a fully verified DPLL(T)-based SMT solver. To this end, we
change the verified implementation and the existing soundness proofs in such
a way that minimal unsatisfiable cores are computed instead of the algorithm
merely indicating unsatisfiability. Moreover, we provide an incremental inter-
face to the simplex method, as required by a DPLL(T) solver, which permits
the incremental assertion of constraints, backtracking, etc. Finally, we formalize
Farkas’ Lemma, an important result that is related to duality in linear program-
ming. In our setting, we utilize this lemma to formally verify that unsatisfiability
of linear rational constraints over Q implies unsatisfiability over R. In total, we
provide a verified simplex implementation with an incremental interface, that
generates minimal unsatisfiable cores over Q and R.

We base our formalization entirely on the incremental simplex algorithm
described by Dutertre and de Moura [10]. This paper was also the basis of the
existing implementation by Spasić and Marić, of which the correctness has been
formalized in Isabelle/HOL [14].

Although the sizes of the existing simplex formalization and of our new one
differ only by a relatively small amount (8143 versus 11167 lines), the amount
of modifications is quite significant: 2940 lines have been replaced by 5964 new
ones. The verification of Farkas’ Lemma and derived lemmas required another
1647 lines. It mainly utilizes facts that are proved in the existing simplex for-
malization, but it does not require significant modifications thereof.

The remainder of our paper is structured as follows. In Sect. 2 we describe
the key parts of the simplex algorithm of Dutertre and de Moura and its for-
malization by Spasić and Marić. We present the development of the extended
simplex algorithm with minimal unsatisfiable cores and incremental interfaces
in Sect. 3. We formalize Farkas’ Lemma and related results in Sect. 4. Finally,
we conclude with Sect. 5.

Our formalization is available in the Archive of Formal Proofs (AFP) for
Isabelle 2019 under the entries Simplex [13] and Farkas [5]. The Simplex entry
contains the formalization of Spasić and Marić with our modifications and exten-
sions. Our Isabelle formalization can be accessed by downloading the AFP, or by
following the hyperlink at the beginning of each Isabelle code listing in Sects. 3
and 4.

Related Work. Allamigeon and Katz [1] formalized and verified an implemen-
tation of the simplex algorithm in Coq. Since their goal was to verify theoretical
results about convex polyhedra, their formalization is considerably different from
ours, as we aim at obtaining a practically efficient algorithm. For instance, we
also integrate and verify an optimization of the simplex algorithm, namely the
elimination of unused variables, cf. Dutertre and de Moura [10, end of Section 3].
This optimization also has not been covered by Spasić and Marić.
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Layer 1: Arbitrary Constraints

Phase 1: Translation to Non-Strict Constraints

Layer 2: Non-Strict Constraints

Phase 2: Translation to Tableau and Atoms

Layer 3: Tableau and Atoms

Phase 3: Solving Tableau and Atoms

input: cs

ns

(t,as)

Unsat (t,as)

Unsat ns

output: Unsat cs

v |= (t,as)

w |= ns

output: u |= cs

Fig. 1. The layers and phases of the simplex algorithm

Chaieb and Nipkow verified quantifier elimination procedures (QEP) for
dense linear orders and integer arithmetic [9], which are more widely appli-
cable than the simplex algorithm. Spasić and Marić compared the QEPs with
their implementation on a set of random quantifier-free formulas [16]. In these
tests, their (and therefore our) simplex implementation outperforms the QEPs
significantly. Hence, neither of the formalizations subsumes the other.

There is also work on verified certification of SMT proofs, where an untrusted
SMT solver outputs a certificate that is checked by a verified certifier. This is an
alternative to the development of a verified SMT prover, but the corresponding
Isabelle implementation of Böhme and Weber [3] is not usable in our setting, as
it relies on internal Isabelle tactics, such as linarith, which are not accessible
in Isabelle-generated code such as CeTA.

2 The Simplex Algorithm and the Existing Formalization

The simplex algorithm as described by Dutertre and de Moura is a decision
procedure for the question whether a set of linear constraints is satisfiable over Q.
We briefly recall the main steps.

For the sake of the formalization, it is useful to divide the work of the algo-
rithm into phases, and to think of the data available at the beginning and end
of each phase as a layer (see Fig. 1). Thus, Layer 1 consists of the set of input
constraints, which are (in)equalities of the form p ∼ c, for some linear poly-
nomial p, constant c ∈ Q, and ∼ ∈ {<,≤,=,≥, >}. Phase 1, the first prepro-
cessing phase, transforms all constraints of Layer 1 into non-strict inequalities
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involving δ-rationals, i.e. rationals in combination with a symbolic value δ, rep-
resenting some small positive rational number.1 In Phase 2, each constraint with
exactly one variable is normalized; in all other constraints the linear polynomial
is replaced by a new variable (a slack variable). Thus, Phase 2 produces a set of
inequalities of the form x ≤ c or x ≥ c, where x is a variable (such constraints
are called atoms). Finally, the equations defining the newly introduced slack
variables constitute a tableau, and a valuation (a function assigning a value to
each variable) is taken initially to be the all-zero function.

At this point, the preprocessing phases have been completed. At the end of
Phase 2, on Layer 3, we have a tableau of equations of the form sj =

∑
aixi,

where the sj are slack variables, together with a set of atoms bounding both
original and slack variables. The task now is to find a valuation that satisfies
both the tableau and the atoms. This will be done by means of two operations,
assert and check, that provide an incremental interface: assert adds an atom to
the set of atoms that should be considered, and check decides the satisfiability of
the tableau and currently asserted atoms. Both operations preserve the following
invariant: Each variable occurs only on the left-hand or only on the right-hand
side of tableau equations, and the valuation satisfies the tableau and the asserted
atoms whose variables occur on the right-hand side of tableau equations.

In order to satisfy the invariant, the assert operation has to update the
valuation whenever an atom is added whose variable is the right-hand side of
the tableau. If this update conflicts with previously asserted atoms in an easily
detectable way, assert itself can detect unsatisfiability at this point. Otherwise,
it additionally recomputes the valuation of the left-hand side variables according
to the equations in the tableau.

The main operation of Phase 3 is check, where the algorithm repeatedly
modifies the tableau and valuation, aiming to satisfy all asserted atoms or detect
unsatisfiability. The procedure by which the algorithm actually manipulates the
tableau and valuation is called pivoting, and works as follows: First, it finds
a tableau equation where the current valuation does not satisfy an asserted
atom, A, involving the left-hand side variable, x. If no such x can be found,
the current valuation satisfies the tableau and all asserted atoms. Otherwise,
the procedure looks, in the same equation, for a right-hand side variable y for
which the valuation can be modified so that the resulting value of x, as given by
the equation, exactly matches the bound in A. If no such y can be found, the
pivoting procedure concludes unsatisfiability. Otherwise, it updates the valuation
for both x and y, and flips the sides of the two variables in the equation, resulting
in an equation that defines y. The right-hand side of the new equation replaces
all appearances of y on the right-hand side of other equations, ensuring that
the invariant is maintained. Since y’s updated value may no longer satisfy the
asserted atoms involving y, it is not at all clear that repeated applications of
pivoting eventually terminate. However, if the choice of variables during pivoting
is done correctly, it can be shown that this is indeed the case.

1 Arithmetic on δ-rationals is defined pointwise, e.g., (a + bδ) + (c + dδ) := (a + c) +
(b + d)δ, and a + bδ < c + dδ := a < c ∨ (a = c ∧ b < d) for any a, b, c, d ∈ Q.
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Fig. 2. Example run of the simplex algorithm

Consider the example in Fig. 2. The input constraints A–D are given in step 1
and converted into non-strict inequalities with δ-rationals in the step 2. In step 3,
the constraint 2y ≥ 6 is normalized to the atom y ≥ 3, two slack variables
s = 2x + y and t = x − 3y are created, and the constraints 2x + y ≤ 12 and
x − 3y ≤ 2 are simplified accordingly. The equations defining s and t then form
the initial tableau, and the initial valuation v0 is the all-zero function. In step 4,
the three atoms A, B and D are asserted (indicated by boldface font) and the
valuation is updated accordingly. Next, the algorithm invokes check and performs
pivoting to find the valuation v2 that satisfies A, B, D and the tableau. This
valuation on Layer 3 assigns δ-rationals to all variables x, y, s, t and can then be
translated to a satisfying valuation over Q for constraints A, B, D on Layer 1.
If the incremental interface is then used to also assert the atom C (step 6),
unsatisfiability is detected via check after two further pivoting operations (step
7). Hence, the constraints A–D on Layer 1 are also unsatisfiable.

Spasić and Marić use Isabelle/HOL for the formalization, as do we for the
extension. Isabelle/HOL is an interactive theorem prover for higher-order logic.
Its syntax conforms to mathematical notation, and Isabelle supports keywords
such as fixes, assumes and shows, allowing us to state theorems in Isabelle in a
way which is close to mathematical language. Furthermore, all terms in Isabelle
have a well-defined type, specified with a double-colon: term :: α. We use Greek
letters for arbitrary types. Isabelle has built-in support for the types of rational
numbers (rat) and real numbers (real). The type of a function f from type α
to type β is specified as f :: α ⇒ β. There is a set type (α set), a list type (α
list), an option type (α option with constructors Some :: α ⇒ α option and
None :: α option) and a sum type (α + β with constructors Inl :: α ⇒ α+β

and Inr :: β ⇒ α + β). The syntax for function application is f arg1 arg2 . In
this paper we use the terms Isabelle and Isabelle/HOL interchangeably.
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Spasić and Marić proved the following main theorem about their simplex
implementation simplex :: rat constraint list ⇒ rat valuation option .

lemma simplex_spasic_maric:

shows simplex cs = None −→ � v :: rat valuation. v |= cs

shows simplex cs = Some v −→ v |= cs

The lemma states that if simplex returns no valuation, then the constraints
cs are unsatisfiable. If simplex returns a valuation Some v , then v satisfies cs .

To prove the correctness of their algorithm they used a modular approach:
Each subalgorithm (e.g. pivoting, incremental assertions) and its properties were
specified in a locale, a special feature of Isabelle. Locales parameterize definitions
and theorems over operations and assumptions. The overall algorithm is then
implemented by combining several locales and their verified implementations.
Soundness of the whole algorithm is then easily obtained via the locale structure.
The modular structure of the formalization allows us to reuse, adapt and extend
several parts of their formalization.

3 The New Simplex Formalization

In the following we describe our extension of the formalization of Spasić and
Marić through the integration of minimal unsatisfiable cores (Sect. 3.1), the inte-
gration of an optimization during Phase 2 (Sect. 3.2) and the development of an
incremental interface to the simplex algorithm (Sect. 3.3).

3.1 Minimal Unsatisfiable Cores

Our first extension is the integration of the functionality for producing unsatis-
fiable cores, i.e., given a set of unsatisfiable constraints, we seek a subset of the
constraints which is still unsatisfiable. Small unsatisfiable cores are crucial for a
DPLL(T)-based SMT solver in order to derive small conflict clauses, hence it is
desirable to obtain minimal unsatisfiable cores, of which each proper subset is
satisfiable. For example, in Fig. 2, {A,B,C} is a minimal unsatisfiable core. We
will refer to this example throughout this section.

Internally, the formalized simplex algorithm represents the data available on
Layer 3 in a data structure called a state, which contains the current tableau,
valuation, the set of asserted atoms,2 and an unsatisfiability flag. Unsatisfiability
is detected by the check operation in Phase 3, namely if the current valuation of
a state does not satisfy the atoms, and pivoting is not possible.3 For instance,
in step 7 unsatisfiability is detected as follows: The valuation v3 does not satisfy

2 In the simplex algorithm [10] and the formalization, the asserted atoms are stored
via bounds, but this additional data structure is omitted in the presentation here.

3 Asserting an atom can also detect unsatisfiability, but this gives rise to trivial unsat-
isfiable cores of the form {x ≤ c, x ≥ d} for constants d > c.



Verifying an Incremental Theory Solver in Isabelle/HOL 229

the atom x ≥ 5+ δ since v3(x) = 9
2 . The pivoting procedure looks at the tableau

equation for x,

x =
1
2
s − 1

2
y, (1)

and checks whether it is possible to increase the value of x. This is only possible if
the valuation of s in increased (since s occurs with positive coefficient in (1)), or
if y is decreased (since y occurs with a negative coefficient). Neither is possible,
because v3(s) is already at its maximum (s ≤ 12) and v3(y) at its minimum
(y ≥ 3). Hence, in order prove unsatisfiability on Layer 3, it suffices to consider
the tableau and the atoms {x ≥ 5 + δ, s ≤ 12, y ≥ 3}.

We formally verify that this kind of reasoning works in general: Given the
fact that some valuation v of a state does not satisfy an atom x ≥ c for some
left-hand side variable x, we can obtain the corresponding equation x = p of
the tableau T , and take the unsatisfiable core as the set of atoms formed of:
x ≥ c, all atoms y ≥ v(y) for variables y of p with coefficient < 0, and all atoms
s ≤ v(s) for variables s of p with coefficient > 0. The symmetric case x ≤ c is
handled similarly by flipping signs.

We further prove that the generated cores are minimal w.r.t. the subset
relation: Let A be a proper subset of an unsatisfiable core. There are two cases.
If A does not contain the atom of the left-hand side variable x, then all atoms in
A only contain right-hand side variables. Then by the invariant of the simplex
algorithm, the current valuation satisfies both the tableau T and A. In the other
case, some atom with a variable z of p is dropped. But then it is possible to apply
pivoting for x and z. Let T ′ be the new tableau and v be the new valuation after
pivoting. At this point we use the formalized fact that pivoting maintains the
invariant. In particular, v |= T ′ and v |= A, where the latter follows from the
fact that A only contains right-hand side variables of the new tableau T ′ (note
that x and z switched sides in the equation following pivoting). Since T and T ′

are equivalent, we conclude that v satisfies both T and A.
In the formalization, the corresponding lemma looks as follows:

lemma check_minimal_unsat_state_core: assumes |=nolhs s and 	 s and ...

shows ¬ U s −→ U (check s) −→ minimal_unsat_state_core (check s)

The assumptions in the lemma express precisely the invariant of the simplex
algorithm, and the lemma states that whenever the check operation sets the
unsatisfiability flag U , then indeed a minimal unsatisfiable core is stored in the
new state check s . Whereas the assumptions have been taken unmodified from
the existing simplex formalization, we needed to modify the formalized definition
of the check operation and the datatype of states, so that check can compute
and store the unsatisfiable core in the resulting state.

At this point, we have assembled a verified simplex algorithm for Layer 3 that
will either return satisfying valuations or minimal unsatisfiable cores. The next
task is to propagate the minimal unsatisfiable cores upwards to Layer 2 and 1,
since, initially, the unsatisfiable cores are defined in terms of the data available
at Layer 3, which is not meaningful when speaking about the first two layers.

http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Simplex/Simplex.html#lem:check_minimal_unsat_state_core
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A question that arises here is how to represent unsatisfiable cores. Taking the
constraints literally is usually not a desirable solution, as then we would have to
convert the atoms {x ≥ 5 + δ, s ≤ 12, y ≥ 3} back to the non-strict constraints
{x ≥ 5 + δ, 2x + y ≤ 12, 2y ≥ 6} and further into {x > 5, 2x + y ≤ 12, 2y ≥ 6},
i.e., we would have to compute the inverses of the transformations in Phases 2
and 1. A far more efficient and simple solution is to use indexed constraints in the
same way, as they already occur in the running example. Hence, the unsatisfiable
core is just a set of indices ({A,B,C} in our example). These indices are then
valid for all layers and do not need any conversion.

Since the formalization of Spasić and Marić does not contain indices at all, we
modify large parts of the source code so that it now refers to indexed constraints,
i.e., we integrate indices into algorithms, data structures, definitions, locales,
properties and proofs. For instance, indexed constraints ics are just sets of pairs,
where each pair consists of an index and a constraint, and satisfiability of indexed
constraints is defined as

(I, v) |= ics if and only if v |= {c | (i, c) ∈ ics ∧ i ∈ I},

where I is an arbitrary set of indices.
In order to be able to lift the unsatisfiable core from Layer 3 to the upper lay-

ers, we have to prove that the two transformations (elimination of strict inequali-
ties and introduction of slack variables) maintain minimal unsatisfiable cores. To
this end, we modify existing proofs for these transformation, since they are not
general enough initially. For instance, the soundness statement for the introduc-
tion of slack variables in Phase 2 states that if the transformation on non-strict
constraints N produces the tableau T and atoms A, then N and the combination
of T and A are equisatisfiable, i.e.,

(∃v. v |= N) ←→ (∃v. v |= T ∧ v |= A).

However, for lifting minimal unsatisfiable cores we need a stronger property,
namely that the transformation is also sound for arbitrary indexed subsets I:4

(∃v. (I, v) |= N) ←→ (∃v. v |= T ∧ (I, v) |= A). (2)

Here, the indexed subsets in (2) are needed for both directions: given a min-
imal unsatisfiable core I of T and A, by the left-to-right implication of (2) we
conclude that I is an unsatisfiable core of N , and it is minimal because of the
right-to-left implication of (2). Note that tableau satisfiability (v |= T ) is not
indexed, since the tableau equations are global.

Our formalization therefore contains several new generalizations, e.g., the
following lemma is the formal analogue to (2), where preprocess is the function
that introduces slack variables. In addition to the tableau t and the indexed
atoms ias , it also provides a computable function trans_v to convert satisfying
valuations for t and ias into satisfying valuations for ics .
4 This stronger property is also required, if the preprocessing is performed on the

global formula, i.e., including the Boolean structure. The reason is that also there
one needs soundness of the preprocessing for arbitrary subsets of the constraints.
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lemma preprocess: assumes preprocess ics = (t, ias, trans_v)

shows (I,v) |= ias −→ v |= t −→ (I, trans_v v) |= ics

shows (∃ v. (I,v) |= ics) −→ (∃ v. (I,v) |= ias ∧ v |= t)

After all these modifications we obtain a simplex implementation that indeed
provides minimal unsatisfiable cores. The corresponding function simplex_index

returns a sum type, which is either a satisfying valuation or an unsatisfiable core
represented by a set of indices.

lemma simplex_index:

shows simplex_index ics = Inr v −→ v |= {c | (i,c) ∈ ics}
shows simplex_index ics = Inl I −→ � v. (I,v) |= ics

shows simplex_index ics = Inl I −→ J ⊂ I −→
distinct_indices ics −→ ∃ v. (J,v) |= ics

Here, the minimality of the unsatisfiable cores can only be ensured if the
indices in the input constraints are distinct. That distinctness is essential can
easily be seen: Consider the following indexed constraints {(E, x ≤ 3), (F, x ≤ 5),
(F, x ≥ 10)} where index F refers to two different constraints. If we invoke the
verified simplex algorithm on these constraints, it detects that x ≤ 3 is in conflict
with x ≥ 10 and hence produces {E,F} as an unsatisfiable core. This core is
clearly not minimal, however, since {F} by itself is already unsatisfiable.

Some technical problems arise, regarding distinctness in combination with
constraints involving equality. For example, the Layer 1-constraint (G, p = c)
will be translated into the two constraints (G, p ≥ c) and (G, p ≤ c) on Layer 2,5

violating distinctness. These problems are solved by weakening the notion of
distinct constraints on Layers 2 and 3, and strengthening the notion of a minimal
unsatisfiable core for these layers: For each proper subset J of the unsatisfiable
subset, each inequality has to be satisfied as if it were an equality, i.e., whenever
there is some constraint (j, p ≤ c) or (j, p ≥ c) with j ∈ J , the satisfying
valuation must fulfill p = c.

3.2 Elimination of Unused Variables in Phase 2

Directly after creating the tableau and the set of atoms from non-strict con-
straints in Phase 2, it can happen that there are unused variables, i.e., variables
in the tableau for which no atoms exist.

Dutertre and de Moura propose to eliminate unused variables by Gaussian
elimination [10, end of Section 3] in order to reduce the size of the tableau. We
integrate this elimination of variables into our formalization. However, instead
of using Gaussian elimination, we implement the elimination via pivoting. To be
more precise, for each unused variable x we perform the following steps.

5 Note that it is not possible to directly add equality constraints on Layer 1 to the
tableau: First, this would invalidate the incremental interface, since the tableau
constraints are global; second, the tableau forms a homogeneous system of equations,
so it does not permit equations such as x − y = 1 which have a non-zero constant.

http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Simplex/Simplex.html#lem:preprocess
http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Simplex/Simplex.html#lem:simplex_index
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– If x is not already a left-hand side variable of the tableau, find any equation
y = p in the tableau that contains x, and perform pivoting of x and y, so
that afterwards x is a left-hand side variable of the tableau.

– Drop the unique equation from the tableau that has x on its left-hand side,
but remember the equation for reconstructing satisfying valuations.

Example 1. Consider the non-strict constraints {x+y ≥ 5, x+2y ≤ 7, y ≥ 2} on
Layer 2. These are translated to the atoms {s ≥ 5, t ≤ 7, y ≥ 2} in combination
with the tableau {s = x+y, t = x+2y}, so x becomes an unused variable. Since
x is not a left-hand side variable, we perform pivoting of x and s and obtain the
new tableau {x = s−y, t = s+y}. Then we drop the equation x = s−y resulting
in the smaller tableau {t = s + y}. Moreover, any satisfying valuation v for the
variables {y, s, t} will be extended to {x, y, s, t} by defining v(x) := v(s) − v(y).

In the formalization, the elimination has been integrated into the preprocess

function of Sect. 3.1. In fact, preprocess just executes both preprocessing steps
sequentially: first, the conversion of non-strict constraints into tableau and
atoms, and afterwards the elimination of unused variables as described in this
section. Interestingly, we had to modify the locale-structure of Spasić and Marić
at this point, since preprocessing now depends on pivoting.

3.3 Incremental Simplex

The previous specifications of the simplex algorithm are monolithic: even if two
(consecutive) inputs differ only in a single constraint, the functions simplex (in
Sect. 2) and simplex_index (in Sect. 3.1) will start the computation from scratch.
Hence, they do not specify an incremental simplex algorithm, despite the fact
that an incremental interface is provided on Layer 3 via assert and check.

Since the incrementality of a theory solver is a crucial requirement for devel-
oping a DPLL(T)-based SMT solver, we will provide a formalization of the sim-
plex algorithm that provides an incremental interface at each layer. Our design
closely follows Dutertre and de Moura, who propose the following operations.

– Initialize the solver by providing the set of all possible constraints. This will
return a state where none of these constraints have been asserted.

– Assert a constraint. This invokes a computationally inexpensive deduction
algorithm and returns an unsatisfiable core or a new state.

– Check a state. Performs an expensive computation that decides satisfiability
of the set of asserted constraints; returns an unsat core or a checked state.

– Extract a solution of a checked state.
– Compute some checkpoint information for a checked state.
– Backtrack to a state with the help of some checkpoint information.

Since a DPLL(T)-based SMT solver basically performs an exhaustive search,
its performance can be improved considerably by having it keep track of checked
states from which the search can be restarted in a different direction. This is
why the checkpointing and backtracking functionality is necessary.
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In Isabelle/HOL we specify this informal interface for each layer as a locale,
which fixes the operations and the properties of that layer. For instance, the
locale Incremental_Simplex_Ops is for Layer 1, where the type-variable σ repre-
sents the internal state for the layer, and γ is the checkpoint information.

locale Incremental_Simplex_Ops =

fixes init :: (ι × constraint) list ⇒ σ

and assert :: ι ⇒ σ ⇒ ι list + σ

and check :: σ ⇒ ι list + σ

and solution :: σ ⇒ rat valuation

and checkpoint :: σ ⇒ γ

and backtrack :: γ ⇒ σ ⇒ σ

and invariant :: (ι × constraint) list ⇒ ι set ⇒ σ ⇒ bool

and checked :: (ι × constraint) list ⇒ ι set ⇒ σ ⇒ bool

assumes checked cs {} (init cs)

and checked cs J s −→ invariant cs J s

and invariant cs J s −→ assert j s = Inr s ′ −→
invariant cs ({j} ∪ J) s ′

and invariant cs J s −→ assert j s = Inl I −→
I ⊆ {j} ∪ J ∧ minimal_unsat_core I cs

and invariant cs J s −→ check s = Inr s ′ −→ checked cs J s ′

and invariant cs J s −→ check s = Inl I −→
I ⊆ J ∧ minimal_unsat_core I cs

and checked cs J s −→ solution s = v −→ (J, v) |= cs

and checked cs J s −→ checkpoint s = c −→ invariant cs K s ′ −→
backtrack c s ′ = s ′′ −→ J ⊆ K −→ invariant cs J s ′′

The interface consists of the six operations init , . . . , backtrack to invoke
the algorithm, and the two invariants invariant and checked , the latter of which
entails the former.

Both invariants invariant and checked take the three arguments cs , J and s .
Here, cs is the global set of indexed constraints that is encoded in the state s . It
can only be set by invoking init cs and is kept constant otherwise. J indicates
the set of all constraints that have been asserted in the state s .

We briefly explain the specification of assert and backtrack and leave the
usage of the remaining functionality to the reader.

For the assert operation there are two possible outcomes. If the assertion of
index j was successful, it returns a new state s ′ which satisfies the same invariant
as s , and whose set of indices of asserted constraints contains j , and is otherwise
the same as the corresponding set in s . Otherwise, the operation returns a set of
indices I , which is a subset of the set of indices of asserted constraints (including
j), such that the set of all I -indexed constraints is a minimal unsatisfiable core.

The backtracking facility works as follows. Assume that one has computed
the checkpoint information c in a state s , which is only permitted if s satis-
fies the stronger invariant for some set of indices J . Afterwards, one may have

http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Simplex/Simplex_Incremental.html#loc:Incremental_Simplex_Ops
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performed arbitrary operations and transitioned to a state s ′ corresponding to
a superset of indices K ⊇ J. Then, solely from s ′ and c , one can compute via
backtrack a new state s ′′ that corresponds to the old set of indices J . Of course,
the implementation should be done in such a way that the size of c is small in
comparison to the size of s ; in particular, c should not be s itself. And, indeed,
our implementation behaves in the same way as the informally described algo-
rithm by Dutertre and de Moura: for a checkpoint c of state s we store the
asserted atoms of the state s , but neither the valuation nor the tableau. These
are taken from the state s ′ when invoking backtrack c s ′.

In order to implement the incremental interface, we take the same modular
approach as Spasić and Marić, namely that for each layer and its corresponding
Isabelle locale, we rely upon the existing functionality of the various phases,
together with the interface of the lower layers, to implement the locale.

In our case, a significant part of the work has already been done via the results
described in Sect. 3.1: most of the generalizations that have been performed in
order to support indexed constraints, play a role in proving the soundness of
the incremental simplex implementation. In particular, the generalizations for
Phases 1 and 2 are vital. For instance, the set of indices I in lemma preprocess

on page 9 can not only be interpreted as an unsatisfiable core, but also as the
set of currently asserted constraints. Therefore, trans_v allows us to convert a
satisfying valuation on Layer 2 into a satisfying valuation on Layer 1 for the
currently asserted constraints that are indexed by I . Consequently, the internal
state of the simplex algorithm on Layer 1 not only stores the state of Layer 3 as
it is described at the beginning of Sect. 3.1, but additionally stores the function
trans_v , in order to compute satisfying valuations on Layer 1.

We further integrate and prove the correctness of the functionality of check-
pointing and backtracking on all layers, since these features have not been formal-
ized by Spasić and Marić. For instance, when invoking backtrack c s ′ on Layer 3
with check_point s = c , we obtain a new state that contains the tableau t ′ and
valuation v ′ of state s ′, but the asserted atoms as of state s . Hence, we need to
show that v ′ satisfies those asserted atoms of as that correspond to right-hand
side variables of t ′. To this end, we define the invariant on Layer 3 in a way
that permits us to conclude that the tableaux t and t ′ are equivalent. Using
this equivalence, we then formalize the desired result for Layer 3. Checkpointing
and backtracking on the other layers is just propagated to the next-lower layers,
i.e., no further checkpointing information is required on Layers 1 and 2.

Finally, we combine the implementations of all phases and layers to obtain
a fully verified implementation of the simplex algorithm w.r.t. the specification
defined in the locale Incremental_Simplex_Ops .

Note that the incremental interface does not provide a function to assert
constraints negatively. However, this limitation is easily circumvented by passing
both the positive and the negative constraint with different indices to the init

function. For example, instead of using (A, x > 5) as in Fig. 2, one can use
the two constraints (+A, x > 5) and (−A, x ≤ 5). Then one can assert both
the original and the negated constraint via indices +A and −A, respectively.
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Only the negation of equations is not possible in this way, since this would
lead to disjunctions. However, each equation can easily be translated into the
conjunction of two inequalities on the formula-level, i.e., they can be eliminated
within a preprocessing step of the SMT-solver.

4 A Formalized Proof of Farkas’ Lemma

Farkas’ Lemma states that a system of linear constraints is unsatisfiable if and
only if there is a linear combination of the constraints that evaluates to a trivially
unsatisfiable inequality (e.g. 0 ≤ d for a constant d < 0). The non-zero coeffi-
cients in such a linear combination are referred to as Farkas coefficients, and can
be thought of as an easy-to-check certificate for the unsatisfiability of a set of lin-
ear constraints (given the coefficients, one can simply evaluate the corresponding
linear combination and check that the result is indeed unsatisfiable.)

One way to prove Farkas’ Lemma is by using the Fundamental Theorem of
Linear Inequalities; this theorem can in turn be proved in the same way as the
fact that the simplex algorithm terminates (see [15, Chapter 7]). Although Spasić
and Marić have formalized a proof of termination for their simplex implemen-
tation [16], this is not sufficient to immediately prove Farkas’ Lemma. Instead,
our formalization of the result begins at the point where the simplex algorithm
detects unsatisfiability in Phase 3, because this is the only point in the execu-
tion of the algorithm where Farkas coefficients can be computed directly from the
available data.6 Then, these coefficients need to be transferred up to Layer 1. In
the following we illustrate how Farkas coefficients are computed and propagated
through the various phases of the algorithm, by giving examples and explaining,
informally, intermediate statements that have been formalized.

To illustrate how Farkas coefficients are determined at the point where the
check-operation detects unsatisfiability in Phase 3, let us return once more to
the example in Fig. 2. In step 7, the algorithm detects unsatisfiability via the
equation x = s−y

2 , and generates the unsatisfiable core based on this equation.
This equality can also be used to obtain Farkas coefficients. To this end, we
rewrite the equation as −x + 1

2s − 1
2y = 0, and use the coefficients in this

equation (−1 for x, 1
2 for s, and − 1

2 for y) to form a linear combination of the
corresponding atoms involving the variables:

− (x ≥ 5 + δ) +
1
2
(s ≤ 12) − 1

2
(y ≥ 3) (FC3)

= (−x ≤ −5 − δ) +
(

1
2
s ≤ 6

)

+
(

−1
2
y ≤ −3

2

)

=
(

−x +
1
2
s − 1

2
y

)

︸ ︷︷ ︸
p

≤
(

−δ − 1
2

)

︸ ︷︷ ︸
d

,

6 Again, we here consider only the check operation, since obtaining Farkas coefficients
for a conflict detected by assert is trivial, cf. footnote 3.
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where p = 0 is a reformulation of an equation of the tableau and d is a negative
constant. Consequently, we show in the formalization that whenever unsatisfia-
bility is detected for a given tableau T and set of atoms A, there exist Farkas
coefficients ri, i.e., that there is a linear combination (

∑
riai) = (p ≤ d), where

d < 0, ai ∈ A for all i, each riai is a ≤-inequality, and T |= p = 0. The second-to-
last condition ensures that only inequalities are added which are oriented in the
same direction, so that the summation is well-defined. The condition T |= p = 0
means that for every valuation that satisfies T , p evaluates to 0.

Recall that before detecting unsatisfiability, several pivoting steps may have
been applied, e.g., when going from step 3 to step 7. Hence, it is important to
verify that Farkas coefficients are preserved by pivoting. This is easily achieved
by using our notion of Farkas coefficients: Spasić and Marić formally proved
that pivoting changes the tableau T ′ into an equivalent tableau T , and, hence,
the condition T |= p = 0 immediately implies T ′ |= p = 0. In the example, we
conclude that T ′ |= −x + 1

2s − 1
2y = 0 for any tableau T ′ in steps 3–7. Thus,

(FC3) provides Farkas coefficients for the atoms and tableau mentioned in any
of these steps.

Layer 2 requires a new definition of Farkas coefficients, since there is no
tableau T and set of atoms A at this point, but a set N of non-strict constraints.
The new definition is similar to the one on Layer 3, except that the condition
T |= p = 0 is dropped, and instead we require that p = 0. To be precise, ri
are Farkas coefficients for N if there is a linear combination (

∑
rici) = (0 ≤ d)

where d < 0, ci ∈ N for all i, and each rici is a ≤-inequality.
We prove that the preprocessing done in Phase 2 allows for the transformation

of Farkas coefficients for Layer 3 to Farkas coefficients for Layer 2. In essence,
the same coefficients ri can be used, one just has to replace each atom ai by
the corresponding constraint ci. The only exception is that if a constraint ci has
been normalized, then one has to multiply the corresponding ri by the same
factor. However, this will not change the constant d, and we formally verify that
the polynomial resulting from the summation will indeed be 0.

In the example, we would obtain (FC2) for Layer 2. Here, the third coefficient
has been changed from − 1

2 to − 1
2 · 1

2 = − 1
4 , where the latter 1

2 is the factor used
when normalizing the constraint 2y ≥ 6 to obtain the atom y ≥ 3.

−(x ≥ 5 + δ) +
1
2
(2x + y ≤ 12) − 1

4
(2y ≥ 6) =

(

0 ≤ −δ − 1
2

)

(FC2)

Finally, for Layer 1 the notion of Farkas coefficients must once again be
redefined so as to work with a more general constraint type that also allows
strict constraints. In particular, we have that either the sum of inequalities is
strict and the constant d is non-positive, or the sum of inequalities is non-strict
and d is negative. In the example we obtain (again with the same coefficients,
but using the original, possibly strict inequalities in the linear combination):

−(x > 5) +
1
2
(2x + y ≤ 12) − 1

4
(2y ≥ 6) =

(

0 < −1
2

)

. (FC1)
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Farkas coefficients ri on Layer 2 are easily translated to Layer 1, since no
change is required, i.e., the same coefficients ri can be used. We just prove that
whenever the resulting inequality in Layer 2 is 0 ≤ d for d = a+bδ with a, b ∈ Q,
then the sum of inequalities on Layer 1 will be 0 ≤ a (and b = 0), or it will be
0 < a. In both cases we use the property that a + bδ = d is negative, to show
that the ri are Farkas coefficients for Layer 1.

We illustrate the results of our formalization of Farkas coefficients by pro-
viding the formal statements for two layers. In both lemmas, cs is a set of
linear constraints of the form p ∼ d for a linear polynomial p, constant d and
∼ ∈ {≤, <}. Here, the first theorem is an Isabelle statement of [8, Lemma 2], i.e.,
Farkas’ Lemma over δ-rationals. The second theorem is a more general version
of Farkas’ Lemma which also permits strict inequalities, i.e., our statement on
Layer 1. It is known as Motzkin’s Transposition Theorem [15, Cor. 7.1k] or the
Kuhn–Fourier Theorem [17, Thm. 1.1.9].

lemma Farkas ′_Lemma_Delta_Rationals: assumes finite cs

and ∀ c ∈ cs. ∃ p d. c = (p ≤ d) (* only ≤−constraints *)

shows (� v :: QDelta valuation. v |= cs) ←→
(∃ C d. d < 0 ∧ (∀ (r, c) ∈ C. r > 0 ∧ c ∈ cs)

∧ (Σ(r,c) ← C. r · c) = (0 ≤ d))

theorem Motzkin ′s_transposition_theorem: assumes finite cs

shows (� v :: rat valuation. v |= cs) ←→
(∃ C ineq d. (∀ (r, c) ∈ C. r > 0 ∧ c ∈ cs)

∧ (Σ (r,c) ← C. r · c) = ineq

∧ ((ineq = (0 ≤ d) ∧ d < 0) ∨ (ineq = (0 < d) ∧ d ≤ 0)))

The existence of Farkas coefficients not only implies unsatisfiability over Q,
but also unsatisfiability over R: lifting the summation of linear inequalities from
Q to R yields the same conflict 0 ≤ d, with d negative, over the reals. Hence,
we formalize the property that satisfiability of linear rational constraints over Q

and over R are the same. Consequently, the (incremental) simplex algorithm is
also able to prove unsatisfiability over R.

lemma rat_real_conversion: assumes finite (cs :: rat constraint set)

shows (∃ v :: rat valuation. v |= cs)

←→ (∃ v :: real valuation. v |= cs)

Note that the finiteness condition of the set of constraints in the previ-
ous three statements mainly arose from the usage of the simplex algorithm
for doing the underlying proofs, since the simplex algorithm only takes finite
sets of constraints as input. However, the finiteness of the constraint set is
actually a necessary condition, regardless of how the statements are proved:
none of the three properties hold for infinite sets of constraints. For instance,
the constraint set {x ≥ c | c ∈ N} is unsatisfiable over Q, but there are
no Farkas coefficients for these constraints. Moreover, the rational constraints
{x ≥ c | c ≤ π, c ∈ Q} ∪ {x ≤ c | c ≥ π, c ∈ Q} have precisely one real solution,
v(x) = π, but there is no rational solution since π /∈ Q.

http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Farkas/Farkas.html#lem:Farkas_Lemma_Delta_Rationals
http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Farkas/Farkas.html#lem:Motzkins_transposition_theorem
http://cl-informatik.uibk.ac.at/isafor/experiments/simplex/frocos2019/browser_info/AFP/Farkas/Simplex_for_Reals.html#lem:rat_real_conversion
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5 Conclusion

We have presented our development of an Isabelle/HOL formalization of a sim-
plex algorithm with minimal unsatisfiable core generation and an incremental
interface. Furthermore, we gave a verified proof of Farkas’ Lemma, one of the
central results in the theory of linear inequalities. Both of these contributions are
related to the simplex formalization of Spasić and Marić [16]: the incremental
simplex formalization is an extension built on top of their work, and the formal
proof of Farkas’ Lemma follows their simplex implementation through the phases
of the algorithm.

In our formalization we use locales as the main structuring technique for
obtaining modular proofs – as was done by Spasić and Marić. Our formal proofs
were mainly written interactively, with frequent use of find theorems rather than
sledgehammer (which only provided a few externally generated proofs).

Both of our contributions form a crucial stepping stone towards our initial
goal, the development of a verified SMT solver that is based on the DPLL(T)
approach and supports linear arithmetic over Q and R. The connection of the
theory solver and the verified DPLL-based SAT solver [2] remains as future
work. Here, we already got in contact with Mathias Fleury to initiate some
collaboration. However, he immediately informed us that the connection itself
will be a non-trivial task on its own. One issue is that his SAT solver is expressed
in the imperative monad, but in our use case we need to apply it outside this
monad, i.e., it should have a purely functional type such as formula ⇒ bool .

Acknowledgments. We thank the reviewers and Mathias Fleury for constructive
feedback.
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