
Chapter 6

EXPLOITING VENDOR-DEFINED
MESSAGES IN THE USB POWER
DELIVERY PROTOCOL

Gunnar Alendal, Stefan Axelsson and Geir Olav Dyrkolbotn

Abstract The USB Power Delivery protocol enables USB-connected devices to ne-
gotiate power delivery and exchange data over a single connection such
as a USB Type-C cable. The protocol incorporates standard commands;
however, it also enables vendors to add non-standard commands called
vendor-defined messages. These messages are similar to the vendor-
specific commands in the SCSI protocol, which enable vendors to specify
undocumented commands to implement functionality that meets their
needs. Such commands can be employed to enable firmware updates,
memory dumps and even backdoors.

This chapter analyzes vendor-defined message support in devices that
employ the USB Power Delivery protocol, the ultimate goal being to
identify messages that could be leveraged in digital forensic investiga-
tions to acquire data stored in the devices.

Keywords: USB Power Delivery protocol, vendor-specified messages, exploitation

1. Introduction

An important goal of mobile device forensics is to acquire data. Mo-
bile phones typically have two key data sources: (i) volatile memory
(RAM); and (ii) long-term storage (typically, flash memory). These
two sources differ in content and acquisition methods. RAM is often
proprietary, short-term storage that is not intended for interpretation
by applications other than the one that stored the data. In contrast,
long-term storage such as flash memory contains well-structured data,
usually in a filesystem, that is meant to be re-read, typically by the op-
erating system. Nevertheless, both types of storage maintain data that
is important in digital forensic investigations.

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 101–118, 2019.

https://doi.org/10.1007/978-3-030-28752-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_6&domain=pdf


102 ADVANCES IN DIGITAL FORENSICS XV

Security mechanisms in commercial products are hindering the foren-
sic acquisition of data. Data encryption in flash memory has invalidated
methods such as desoldering (i.e., chip-off) that enable data to be read
directly from a chip. Encryption prevents the extracted data from being
interpreted without the decryption keys. The keys are often protected
by additional encryption keys that tie the data to the specific device
that encrypted the data in long-term storage. Therefore, transplanting
a flash memory chip to a different, but identical, device would not de-
crypt the stored data. Device-tied encryption keys are also protected by
security features such as TrustZone that rely on tamper-proof hardware.
Therefore, in order to access data from a secured device, it is necessary
to exploit security vulnerabilities in the device itself, or leverage un-
documented features such as backdoors or indirectly increase the attack
surface of the device.

The general approach is that any data extraction technique should be
researched extensively, including any and all means it uses to commu-
nicate with other devices. The USB Power Delivery protocol is a com-
munications mode that has the potential to increase the device attack
surface. The idea is that, if undocumented means exist to communicate
with the device, then hidden features and security vulnerabilities could
be identified and exploited to facilitate data acquisition.

The USB Power Delivery protocol provides a uniform means for ven-
dors to implement power negotiation between power sources and devices
such as mobile phones and personal computers in order to maximize the
charging current. The power source can support different power con-
figurations, one power profile for a mobile phone and a different profile
for a personal computer, to enable the devices to obtain the appropri-
ate currents and voltages. Devices can also use the protocol to request
higher currents and voltages from power sources. In the case of two
non-power-source devices (e.g., two mobile phones), the devices can ne-
gotiate a power delivery profile so that one device can charge the other.
Another example is a monitor connected to a personal computer where
the protocol enables the monitor to draw power from the personal com-
puter if it is not connected to an external power source. If the monitor
is connected to an external power source, then it could provide power to
the personal computer. All these negotiations occur over the same USB
cable unbeknownst to the user.

The USB Power Delivery protocol is of interest from a digital foren-
sics perspective because it supports inter-device communications. These
communications could be exploited to expand the attack surface of one
or both devices, enabling the acquisition of data that is otherwise in-
accessible. The focus is on vendor-defined messages in the USB Power



Alendal, Axelsson & Dyrkolbotn 103

Delivery protocol. Undocumented messages discovered in other proto-
cols have been demonstrated to enable firmware updates, memory dumps
and even backdoors. This chapter presents a black-box testing approach
for revealing proprietary messages supported by the USB Power Deliv-
ery protocol that could be leveraged in digital forensic investigations to
acquire data stored in devices that support the protocol.

2. Related Work

Allowing vendors to incorporate proprietary vendor-defined messages
or commands in protocols to provide custom functionality has led to
the release of numerous consumer devices that potentially respond to
undocumented commands with unknown behavior. This can have dev-
astating security implications. As demonstrated by Alendal et al. [2],
vendor-specified SCSI commands can be used to bypass authentication
on self-encrypting hard drives. Whether this research represents the
best-case scenario for law enforcement or the worst-case scenario for the
vendor, one cannot ignore the fact that the existence of hidden com-
mands must be tested carefully. Indeed, as devices and firmware change
over time, such testing should be performed regularly by law enforcement
and security researchers.

Testing the USB Power Delivery protocol for hidden commands re-
quires a means for emulating the protocol. Reydarns et al. [5] have
demonstrated the use of USB Power Delivery protocol emulation in test-
ing different power configurations for a power source. However, there is
little, if any, research on the security of the USB Power Delivery proto-
col and nothing related to digital forensics. This research is important
because it comprehensively analyzes the USB Power Delivery protocol
and attempts to discover how vendor-defined protocol messages could be
leveraged to assist digital forensic examinations of devices that support
the protocol.

3. USB Power Delivery Protocol

Revision 1.0 (version 1.0) of the USB Power Delivery protocol speci-
fication was released in 2012; several revisions have been released since,
the most recent being Revision 2.0 (version 1.3) and Revision 3.0 (version
1.2) [8]. The protocol provides a uniform means for devices to negotiate
power supply configurations across vendors. It is typically supported
by devices with a USB Type-C port/connector with dedicated CC1 and
CC2 links (Figure 1). The USB Type-C connection is reversible, en-
abling devices to communicate on either CC line.



104 ADVANCES IN DIGITAL FORENSICS XV

Figure 1. USB Type-C pinout [4].

The message-based USB Power Delivery protocol has three types of
messages: (i) control messages; (ii) data messages; and (iii) extended
messages. Control messages are short messages that typically require no
data exchange. Data messages contain data objects that are transmitted
between devices. Extended messages are essentially data messages with
larger data payloads. The USB Power Delivery protocol leverages the
three message types to define a wide range of standard messages, which
enable devices to communicate and negotiate power source configura-
tions.

Preamble SOP
Start of Packet

Message Header
16 bit

Data Objects (0-7)
32 bit

CRC EOP
End of Packet

Figure 2. Data message packet.

Figure 2 shows a data message packet comprising a preamble for syn-
chronization, start of packet (SOP), message header, up to eight data
objects of 32-bits each, CRC and end of packet (EOP). The preamble,
SOP, CRC and EOP are part of the physical transport layer; they are
common to all three types of messages, along with the message header.
The optional data objects are only found in data messages.

Table 1 lists example control and data messages in the USB Power
Delivery protocol.

The USB Power Delivery protocol supports different standard mes-
sage sets as indicated by the protocol specification revisions, currently
Revision 2.0 and Revision 3.0. Revision 3.0 is functionally the same
as Revision 2.0, except for new features such as USB authentication.
Interested readers are referred to the protocol specifications [8] for in-
formation pertaining to the differences between the message sets.

The USB Power Delivery protocol also enables cables to take part in
communications; a device can communicate with a cable directly using
the start of packet. Such electronically-marked cables (EMCA) enable
devices to ensure that the cable supports high voltage/current power



Alendal, Axelsson & Dyrkolbotn 105

Table 1. Control and data messages in Revision 3.0 (version 1.2).

Control Messages Data Messages

GoodCRC Source Capabilities
GotoMin Request
Accept BIST
Reject Sink Capabilities
Ping Battery Status
PS RDY Alert
Get Source Cap Get Country Info
Get Sink Cap Vendor Defined
DR Swap
PR Swap
VCONN Swap
Wait
Soft Reset
Not Supported
Get Source Cap Extended
Get Status
FR Swap
Get PPS Status
Get Country Codes

source configurations. According to the protocol specification, devices
can negotiate direct current levels up to 5A, corresponding to a maxi-
mum of 100W at 20V between devices connected via an EMCA cable.
Passive (non-EMCA) cables are rated for a maximum direct current of
3A, which corresponds to 15W at 5V, 36W at 12V or 60W at 20V.

Figure 3 shows a typical power delivery negotiation – referred to as
an explicit contract between two devices or port pairs. According to the
standard, all port pairs are required to make an explicit contract. In a
contract, the device (port) that consumes power is called the sink and
the device (port) that provides power is called the source.

Vendors may implement novel functionality using proprietary vendor-
defined messages, a subgroup of data messages in the USB Power De-
livery protocol. Similar features are found in other protocols, such as
vendor-specific commands in the SCSI protocol [6]. These commands
are implemented and used only by vendors for internal purposes such
as debugging, factory setup and proprietary communications with ven-
dor software; the commands are not used in normal device operations.
Vendor commands are rarely documented because they are reserved for
internal use.



106 ADVANCES IN DIGITAL FORENSICS XV

Start CRCReceiveTimer

Stop CRCReceiveTimer

Start CRCReceiveTimer

Stop CRCReceiveTimer

Start CRCReceiveTimer

Stop CRCReceiveTimer

Start CRCReceiveTimer

Stop CRCReceiveTimer

1: Source_Capabilities

2: GoodCRC

3: Request

4: GoodCRC

5: Accept

6: GoodCRC

7: PS_RDY

8: GoodCRC

SOURCE SINK

Start CRCReceive Timer

Stop CRCReceive Timer

Start SenderResponse Timer

Stop SenderResponse Timer

Stop PSTransition Timer

Start PSTransition Timer

Figure 3. Simplified explicit contract negotiation.

Preamble SOP
Start of Packet

Message Header
16 bit

VDO (0-6)
32 bit

CRC EOP
End of Packet

VDM HeaderVDM Header
(S)VID 16-bit | Command 16-bit

Figure 4. Vendor-defined message packet.

Figure 4 shows a vendor-defined message (VDM) packet in the USB
Power Delivery protocol. Vendor-defined messages are of two types:
(i) structured; and (ii) unstructured. Structured vendor-defined mes-
sage commands are defined in the USB Power Delivery protocol stan-
dard whereas unstructured vendor-defined message commands are im-
plemented by vendors on an ad hoc basis. Note that a “command” is a
subgroup of “message,” which is either a structured vendor-defined mes-



Alendal, Axelsson & Dyrkolbotn 107

SVID/VID
Bit 31...16

Command
Bit 4...0

VDM Type
Bit 15

VDM Version
Bit 14...13

Reserved
Bit 12...11

Object Position
Bit 10...8

Reserved
Bit 5

Cmd Type
Bit 7...6

Figure 5. Structured vendor-defined message header.

Vendor ID (VID)
Bit 31...16

Vendor Use
Bit 14...0

VDM Type
Bit 15

Figure 6. Unstructured vendor-defined message header.

sage or an unstructured vendor-defined message. Thus, while structured
vendor-defined messages have predefined command sets in the protocol
specification, unstructured vendor-defined messages can correspond to
commands defined by vendors.

Because vendor-defined messages are a type of data message, there
is a size limitation on the amount of data a message can contain – this
corresponds to the size of six vendor data objects (VDOs) plus the 32-
bit vendor-defined message header. A vendor data object contains a
32-bit value (data). To prevent vendors from implementing conflicting
messages, the protocol requires either the standard vendor ID (SVID)
defined in the protocol specification or a vendor ID (VID) to be part of
the vendor-defined message header. This means that a vendor must use
one of its 16-bit USB Implementers Forum (USB-IF) vendor IDs [7] in
all the vendor-defined messages it implements.

Example vendor IDs are 0x05ac (Apple) and 0x04e8 (Samsung). As
shown in Figures 5 and 6, the structured vendor ID and vendor ID are
required to be part of the corresponding vendor-defined message headers.
Thus, a vendor with a valid USB-IF-assigned vendor ID can implement
any command that contains up to six additional vendor data objects in
one vendor-defined message. The command is the second part of the
vendor-defined message header that can be any 15-bit value in the case
of an unstructured vendor-defined message.

Table 2 shows example structured vendor-defined message commands.

4. Methodology

Devices come in different architectures from numerous vendors and
without source code or firmware that implement the USB Power Delivery
protocol. Therefore, a black-box method was attempted to test the
existence of vendor-defined messages in the protocol. One approach
is to analyze protocol communications between devices from the same
vendor and determine if vendor-defined messages are employed. This



108 ADVANCES IN DIGITAL FORENSICS XV

Table 2. Structured commands in Revision 3.0 (version 1.2).

Structured Vendor-Defined Message Commands

Discover Identity
Discover SVIDs
Discover Modes
Enter Mode
Exit Mode
Attention
SVID Specific Commands (defined by the SVID)

assumes that, if such messages exist, the connected devices initiate their
use by default.

Instead, a more active approach that directly communicates with a
test device was employed. Since no solution was available to communi-
cate with devices via the USB Power Delivery protocol, a home-grown
approach was employed. A detailed description of this approach is be-
yond the scope of this chapter. However, the concept is simple – set up
a device to act as the source, establish a connection with the test device
and check for vendor-defined messages.

Testing for vendor-defined messages sounds simple, but the reality
is quite different. Because the protocol specification states that any
vendor-defined message must include a vendor ID, it is necessary to
know or guess the expected vendor ID of the device of interest. This is
important because a device would not respond to a vendor-defined mes-
sage containing a correctly-guessed command but an incorrect vendor
ID in the header.

Message Header
16 bit

Product Type VDO
(0-3)

VDM Header
(Discover Identity)

Product
VDO

ID Header
VDO

Cert Stat
VDO

Figure 7. Discover Identity reply packet.

Fortunately, it is possible to leverage the Discover Identity command
in the structured vendor-defined message command set shown in Table 2.
This command is required by the USB Power Delivery protocol, so all
devices should support the command. The command, which enables
devices and cables to identify other end points, has a predefined reply
packet format with a fixed number of vendor data objects and their
content (Figure 7). The ID header of the 32-bit vendor data object has
bits 0–15 reserved for the device USB-IF vendor ID. A connected device
reveals its vendor ID upon receiving a Discover Identity command.



Alendal, Axelsson & Dyrkolbotn 109

The protocol specification also states that structured vendor-defined
messages shall only be used when an explicit contract is in place (ex-
cept for a small number of cables that are not relevant in this context).
The same holds true for unstructured vendor-defined messages. Thus,
a device will not reply to a vendor-defined message until an explicit
contract is in place (i.e., a power source configuration has been negoti-
ated). Therefore, it is required to simulate a complete explicit contract
negotiation with a test device before a vendor-defined message can be
received.

This makes it necessary to simulate many messages (Figure 3) with
corresponding time-outs, such as CRCReceiveTimer (maximum 1.1ms),
SenderResponseTimer (maximum 30ms) and PSTransitionTimer (max-
iumum 550ms). Since the protocol defines the time-out values, the reply
to a packet must be provided in time or the device will time out. Many
of these requirements are strict, so the simulator must have a quick
response, which, in turn, may render a pure software solution infeasible.

By negotiating an explicit contract with a device, it is possible to ex-
plore the existence of unstructured vendor-defined commands. Using the
vendor ID captured from the response of a device to a Discover Iden-
tity command, different unstructured vendor-defined commands could
be sent to the device and the responses, if any, could be examined. This
can be done by brute forcing the lower 15 vendor use bits of the unstruc-
tured vendor-defined message header (Figure 5) with a fixed vendor ID
for each device.

Two approaches are possible. The first is to attempt to measure
the skews in the timing of device responses. The second is to test for
device responses other than the expected GoodCRC message. Testing
for timing skews could indicate that the device spent additional time
to process a correctly-guessed unstructured vendor-defined command.
However, this approach requires high resolution timers. Unfortunately,
the experimental setup could only measure the time elapsed from when a
packet was sent to when the response was received, which was much too
inaccurate. Therefore, the second approach involving device responses
other than the expected GoodCRC message was employed in the exper-
iments.

5. Experimental Results

Not every device with a USB Type-C connector is enabled for the USB
Power Delivery protocol. If a test device with a USB Type-C connector
does not respond with a GoodCRC message to the Source Capabilities



110 ADVANCES IN DIGITAL FORENSICS XV

Table 3. Test devices with USB Type-C connectors and protocol support.

Device Firmware Protocol Exposed
(Model) Version Revision Vendor ID

HTC 10 1.90.401.5 2.0 0x0bb4

(2PS6200) (HTC)

HTC U11 1.13.401.1 3.0 0x05c4

(2PZC100) (Qualcomm)

Huawei Mate 10 Pro 8.0.0.137(C432) 2.0 0x12d1

(BLA-L29) (Huawei)

LG G5 V10i-EUR-XX MMB29M 2.0 0x0000

(LG-H850) (Unknown)

Nokia 8 Sirocco 00WW 3 10F 2.0 0x05c6

(TA-1005) (Qualcomm)

Samsung Galaxy S9 G960FXXU2BRH7 3.0 0x04e8

(G960F) (Samsung)

message in an explicit contract negotiation (Figure 3), then the device
can be assumed to be non-protocol-enabled.

According to Section 6.2.1.1.5 of USB Power Delivery Protocol Speci-
fication Revision 3.0 (v.1.2) [8], the source shall set its highest supported
specification revision in the specification revision field of the Source Ca-
pabilities message and the sink shall reply with its highest supported
specification revision in the specification revision field of the Request
message (Figure 3). Because the specification states that the specifica-
tion revision field value should be backwards compatible, this means the
highest version can always be simulated in the first Source Capabilities
message acting as the source and the Request response from the device
can then be checked.

After negotiating a complete explicit contract (Figure 3) with a test
device, a Discover Identity message was sent to the device to obtain
the USB-IF vendor ID from the device. Table 3 shows the test devices
with USB Type-C connectors that were determined via this technique
to support the USB Power Delivery protocol.

With an explicit contract in place with a test device with protocol
support and its USB-IF vendor ID known, the next step was to send
arbitrary protocol messages to the device and test the responses. Specif-
ically, unstructured vendor-defined messages were sent with the vendor
ID set to the appropriate value, type set to 0 (i.e., unstructured) and
vendor use set to different values corresponding to commands (Figure 5).



Alendal, Axelsson & Dyrkolbotn 111

Table 4. Huawei Mate 10 Pro (BLA-L29) message capture.

ID Time Role Message Data

284 0:41.044.922 Hard Reset

286 0:43.577.218 Source:DFP [0]Source Cap A1 11 F0 90 01 08 FE CA B7 52

290 0:43.577.879 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

293 0:43.580.754 Sink:UFP [0]Request 42 10 C8 20 03 13 52 0F 95 B7

297 0:43.581.374 Source:DFP [0]GoodCRC A1 01 C1 AF C2 81

300 0:43.582.060 Source:DFP [1]Accept 63 03 21 7B 00 96

303 0:43.582.586 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

306 0:43.583.283 Source:DFP [2]PS RDY A6 05 1F FD EE C9

309 0:43.583.915 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

312 0:43.737.641 Source:DFP [0]VDM:DiscIdentity 6F 11 01 80 00 FF 76 31 6B 61

316 0:43.738.185 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

319 0:43.744.295 Sink:UFP [1]VDM:DiscIdentity 4F 52 41 80 00 FF D1 12 00 EC 00 00 00

00 00 00 7E 10 01 00 00 11 80 C1 C7 56

327 0:43.745.502 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

330 0:44.918.448 Source:DFP [1]VDM:Unstructured 6F 13 01 00 D1 12 0D 13 06 BC

334 0:44.919.214 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

337 0:46.507.375 Source:DFP [2]VDM:Unstructured 6F 15 02 00 D1 12 43 49 F3 21

341 0:46.507.960 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

The responses were analyzed and any response other than the expected
GoodCRC was assumed to be an attempt by the test device to reply to
the random “command” it received.

A commercial USB Power Delivery protocol recorder was used to cap-
ture communications with the test devices. Table 4 shows an example
capture of messages to and from the Huawei test device that was config-
ured as the sink. The message capture shows the entire explicit contract
negotiation (message IDs 286–309) and the USB-IF vendor ID discovery
(message IDs 312–327), which are followed by two unstructured vendor-
defined message brute force attempts (message IDs 330–334 and message
IDs 337–341). Note that the Huawei device did not respond to the two
unstructured vendor-defined message tests with anything other than the
expected GoodCRC message.

Very few test devices responded to the brute force test. In fact, only
the Samsung device replied with anything other than a GoodCRC mes-
sage, and only for some messages.

Table 5 shows an example capture of messages to and from the Sam-
sung Galaxy S9 test device that was configured as the sink. Once again,
the message capture shows the entire explicit contract negotiation (mes-
sage IDs 5442–5465) and the USB-IF vendor ID discovery (message IDs



112 ADVANCES IN DIGITAL FORENSICS XV

Table 5. Samsung Galaxy S9 (G960F) message capture.

ID Time Role Message Data

5440 14:36.248.230 Hard Reset
5442 14:39.309.886 Source:DFP [0]Source Cap A1 11 F0 90 01 08 FE CA B7 52

5446 14:39.310.395 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

5449 14:39.311.982 Sink:UFP [0]Request 82 10 F0 C0 03 13 08 11 00 3A

5453 14:39.312.708 Source:DFP [0]GoodCRC A1 01 C1 AF C2 81

5456 14:39.313.284 Source:DFP [1]Accept 63 03 21 7B 00 96

5459 14:39.313.979 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

5462 14:39.314.462 Source:DFP [2]PS RDY A6 05 1F FD EE C9

5465 14:39.315.049 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

5468 14:39.471.248 Source:DFP [0]VDM:DiscIdentity 6F 11 01 80 00 FF 76 31 6B 61

5472 14:39.471.866 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

5475 14:39.476.288 Sink:UFP [1]VDM:DiscIdentity 8F 42 41 80 00 FF E8 04 00 D1 00 00 00

00 00 00 60 68 C2 B2 A2 9E

5482 14:39.477.131 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

5485 14:40.650.372 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46

5489 14:40.651.199 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

5492 14:40.654.796 Sink:UFP [2]VDM:Unstructured 4F 14 41 00 E8 04 FD AA CE 68

5496 14:40.655.473 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

5499 14:41.828.228 Source:DFP [2]VDM:Unstructured 6F 15 02 00 E8 04 A8 71 A3 DB

5503 14:41.829.056 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

5506 14:41.833.325 Sink:UFP [3]VDM:Unstructured 4F 56 42 00 E8 04 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 34 A1 0A 25

5514 14:41.834.581 Source:DFP [3]GoodCRC 61 07 BA DD 5B A3

5517 14:43.008.455 Source:DFP [3]VDM:Unstructured 6F 17 02 00 E8 04 C8 22 63 A1

5521 14:43.009.071 Sink:UFP [3]GoodCRC 41 06 8E C9 D8 41

5524 14:43.013.435 Sink:UFP [4]VDM:Unstructured 4F 58 42 00 E8 04 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 84 AD C5 F6

5532 14:43.014.693 Source:DFP [4]GoodCRC 61 09 BD F0 E3 44

5535 14:44.180.619 Source:DFP [4]VDM:Unstructured 6F 19 03 00 E8 04 CC FB EF A6

5539 14:44.181.134 Sink:UFP [4]GoodCRC 41 08 89 E4 60 A6

5542 14:45.761.683 Source:DFP [5]VDM:Unstructured 6F 1B 02 00 E8 04 C9 CF 93 64

5546 14:45.762.289 Sink:UFP [5]GoodCRC 41 0A A5 85 6E 48

5549 14:45.766.649 Sink:UFP [5]VDM:Unstructured 4F 5A 42 00 E8 04 0D DA 95 63 4A 97 17

B5 F5 34 11 47 53 7E C9 E9 8C 35 3F 0E

5557 14:45.767.917 Source:DFP [5]GoodCRC 61 0B 91 91 ED AA

5560 14:46.933.424 Source:DFP [6]VDM:Unstructured 6F 1D 01 00 E8 04 87 95 66 F9

5564 14:46.934.042 Sink:UFP [6]GoodCRC 41 0C 90 20 0D A1

5567 14:46.937.851 Sink:UFP [6]VDM:Unstructured 4F 1C 41 00 E8 04 3C E1 BE 58

5571 14:46.938.566 Source:DFP [6]GoodCRC 61 0D A4 34 8E 43

5574 14:48.114.825 Source:DFP [7]VDM:Unstructured 6F 1F 02 00 E8 04 09 69 13 91

5578 14:48.115.442 Sink:UFP [7]GoodCRC 41 0E BC 41 03 4F

5581 14:48.119.820 Sink:UFP [7]VDM:Unstructured 4F 5E 42 00 E8 04 0D DA 95 63 4A 97 17

B5 F5 34 11 47 53 7E C9 E9 37 31 C6 1C

5589 14:48.121.075 Source:DFP [7]GoodCRC 61 0F 88 55 80 AD

5592 14:49.303.445 Source:DFP [0]VDM:Unstructured 6F 11 03 00 E8 04 0D B0 9F 96

5596 14:49.304.274 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

5599 14:50.881.168 Source:DFP [1]VDM:Unstructured 6F 13 02 00 E8 04 08 84 E3 54

5603 14:50.881.789 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

5606 14:50.886.156 Sink:UFP [0]VDM:Unstructured 4F 50 42 00 E8 04 60 B3 A9 5A 65 3F 48

3C 3A D6 13 DC 2D 32 8D 16 F6 75 A3 FE

5614 14:50.887.366 Source:DFP [0]GoodCRC 61 01 8F 78 38 4A



Alendal, Axelsson & Dyrkolbotn 113

5468–5482). These are followed by the first unstructured vendor-defined
message test (message ID 5485). The sent message has an unstructured
vendor-defined message header of 0x04e80001, which is decoded accord-
ing to Figure 5 as vendor ID: 0x04e8, type: 0 and vendor use: 0x0001
(15-bit value).

Note that this unstructured vendor-defined message received a re-
sponse other that the GoodCRC (message ID 5492). The response has
an unstructured vendor-defined message header of 0x04e80041, which
is decoded according to Figure 5 as vendor ID: 0x04e8, type: 0 and ven-
dor use: 0x0041. This message appears to be a reply with no additional
data (i.e., vendor data objects).

A similar situation is seen for message 5499 with vendor use: 0x0002,
whose response (message ID 5506) has vendor use: 0x0042 and four
additional vendor data objects: 0x00000000 0x00000000 0x00000000

and 0x00000000.
The two vendor use command/reply pairs of 0x0001/0x0041 and

0x0002/0x0042 imply that bit 6 (0x0040) may be an ACK bit. If the
unstructured headers are interpreted as structured headers (Figure 6),
then bits 6–7 correspond to type where 0x1 (bit 6 set) corresponds to an
ACK. Of course, the real situation is not clear, but it does appear that
the vendor may have mixed the two types of vendor-defined message
headers.

Investigating further, the response (message ID 5506) with vendor use
set to 0x0042 also has four additional vendor data objects: 0x00000000
0x00000000 0x00000000 and 0x00000000. This appears to be data sent
back to the source side from the sink. All the vendor data objects contain
zeroes in the replies to two consecutive messages with vendor use set to
0x0002 (message IDs 5499 and 5517).

However, when a different message (message ID 5535) is sent to the
device with vendor use set to 0x0003, then a completely different re-
ply is received with vendor use set to 0x0002 (message ID 5542) and
four vendor data objects: 0x6395da0d 0xb517974a 0x471134f5 and
0xe9c97e53 (message ID 5549). Sending message 5535 again (message
ID 5574) yields the same four vendor data objects (message ID 5581).
However, another message with vendor use set to 0x0003 (message ID
5592) once again changes the vendor data objects for vendor use set
to 0x0002. Specifically, the four vendor data objects are: 0x5aa9b360

0x3c483f65 0xdc13d63a and 0x168d322d (message ID 5606).
It appears that data in the form of vendor data objects is received

from the device and different data is received when sending a specific
message with vendor use set to 0x0003. The four vendor data objects
appear to change in pseudorandom order. Another observation is that,



114 ADVANCES IN DIGITAL FORENSICS XV

Table 6. Samsung Galaxy S9 (G960F) message capture.

ID Time Role Message Data

162 0:06.589.154 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46

166 0:06.589.982 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

169 0:06.594.059 Sink:UFP [1]VDM:Unstructured 4F 12 41 00 E8 04 5D 5F 8E E7

173 0:06.594.675 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

176 0:06.629.222 Source:DFP [2]VDM:Unstructured 6F 55 02 00 E8 04 1C 47 B3 AB 2E F3 7B AE

F9 09 79 82 02 3B C6 BB 1A D4 E8 41

184 0:06.630.376 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

187 0:06.635.264 Sink:UFP [2]VDM:Unstructured 4F 54 42 00 E8 04 1C 47 B3 AB 2E F3 7B AE

F9 09 79 82 02 3B C6 BB 51 65 55 63

195 0:06.636.524 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

when a message is sent with vendor use set to 0x0002 along with four
random vendor data objects (0xabb3471c, 0xae7bf32e, 0x827909f9,
0xbbc63b02), a reply is received with the same vendor data objects
(Table 6). This implies that a message with vendor use set to 0x0002

corresponds to an initialization command. Repeating the messages with
vendor use set to 0x0003 and 0x0002 gives different vendor data objects,
which may correspond to some form of encryption or obfuscation.

Sending two identical runs of the messages in Table 5 gives the same
results and any randomization of the four vendor data objects sent with
vendor use set to 0x0002 yields seemingly random reply vendor data ob-
jects when intermingled with messages with vendor use set to 0x0003.
This strengthens the belief that encryption is in place and that the mes-
sage with vendor use set to 0x0002 is either transmitting a key or an
initialization vector for a symmetric cipher.

Because the results indicate that Samsung devices respond to vendor-
defined messages in the USB Power Delivery protocol, additional ex-
periments were conducted to confirm the results. The experiments em-
ployed a special factory test device called the Samsung Anyway S103
(Figure 8). This device enables a console interface provided by the de-
vice bootloader, which is useful for debug logging and other activities.
The same console can be reached via a custom USB connector and a
simple RS232-to-USB serial converter on older devices with micro-USB
connectors [3]. Alendal et al. [1] employed this type of connection to
demonstrate an exploit targeting Samsung devices with a certain secu-
rity vulnerability. The exploit assisted in bypassing a security feature in
the devices. This demonstrates the importance of expanding the attack
surface of a device by enabling the factory test feature.



Alendal, Axelsson & Dyrkolbotn 115

Figure 8. Samsung Anyway S103.

The special factory device was hard to obtain because it is usually
provided to Samsung device repair shops and similar outlets. However,
a factory device was procured to communicate with the Samsung test
device using the USB Power Delivery protocol. Table 7 shows a message
capture with the Samsung Anyway S103 and Samsung Galaxy S9 con-
figured as the source and sink, respectively (the vendor data objects are
partially redacted). Note that the communications in the message cap-
ture did not involve an explicit contract negotiation as required in the
protocol specification. Instead, immediate vendor-defined message com-
munications were conducted using the discovered vendor-defined mes-
sages. The capture corresponds to a vendor-defined message with ven-
dor use set to 0x0001, followed by a vendor-defined message with vendor
use set to 0x0002 that provides four pseudorandom vendor data objects.
These are followed by several vendor-defined messages with vendor use
set to 0x0003, each containing four vendor data objects with seemingly
pseudorandom data.

Next, the Samsung Anyway S103 factory device was removed as the
source and a blind replay from the source side of the communications was
attempted. The idea was that, if the source messages from the Samsung
Anyway S103 device were replayed and the same sink messages were
received from the test device, then the Samsung Anyway S103 device
was essentially being emulated. This test was an immediate success.



116 ADVANCES IN DIGITAL FORENSICS XV

Table 7. Samsung Anyway S103 and Samsung Galaxy S9 message capture.

ID Time Role Message Data

1 0:03.900.730 Source:DFP [0]VDM:DiscIdentity 6F 11 01 80 00 FF 76 31 6B 61

5 0:03.901.546 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

8 0:03.905.272 Sink:UFP [0]VDM:DiscIdentity 8F 40 41 80 00 FF E8 04 00 D1 00 00 00 00

00 00 60 68 05 22 9E 4A

15 0:03.906.336 Source:DFP [0]GoodCRC 61 01 8F 78 38 4A

18 0:03.906.881 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46

22 0:03.907.590 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

25 0:03.912.440 Sink:UFP [1]VDM:Unstructured 4F 12 41 00 E8 04 5D 5F 8E E7

29 0:03.913.109 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

32 0:03.913.649 Source:DFP [2]VDM:Unstructured 6F 55 02 00 E8 04 0C DD BB FF REDACTED

40 0:03.914.888 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

43 0:03.919.998 Sink:UFP [2]VDM:Unstructured 4F 54 42 00 E8 04 0C DD BB FF REDACTED

51 0:03.921.093 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

54 0:03.922.149 Source:DFP [3]VDM:Unstructured 6F 57 03 00 E8 04 E6 A9 7F 72 94 CE B1

B6 54 BA B7 75 6A F1 89 B8 01 65 20 E8

62 0:03.923.388 Sink:UFP [3]GoodCRC 41 06 8E C9 D8 41

65 0:03.931.556 Sink:UFP [3]VDM:Unstructured 4F 56 43 00 E8 04 9F B2 F5 F9 F1 68 E2

AF E5 AA 22 73 D0 77 6A 2E B6 3A A9 FB

73 0:03.932.759 Source:DFP [3]GoodCRC 61 07 BA DD 5B A3

76 0:03.934.596 Source:DFP [4]VDM:Unstructured 6F 59 03 00 E8 04 F7 96 A6 2A 08 BB A9

6E 38 40 E4 AF 33 43 7A 23 E6 D7 A8 E9

84 0:03.935.837 Sink:UFP [4]GoodCRC 41 08 89 E4 60 A6

87 0:03.942.701 Sink:UFP [4]VDM:Unstructured 4F 58 43 00 E8 04 9A 01 DB AE 9A 39 26

77 B0 A8 2D 11 A2 C1 76 80 1E 08 1E C2

95 0:03.943.902 Source:DFP [4]GoodCRC 61 09 BD F0 E3 44

The key result is that the same console reached on micro-USB Samsung
devices was enabled without the assistance of the Samsung Anyway S103
factory device.

The successful message replay strengthens the belief that encryption is
involved and that the first four vendor data objects in the vendor-defined
message with vendor use set to 0x0002 are crucial to initialization. These
vendor data objects could correspond to an initialization vector or per-
haps even the key to a symmetric cipher. However, experiments with
several symmetric ciphers using the four vendor data objects as the key
to decrypt vendor data objects in messages with the vendor use set to
0x0003 did not yield positive results.



Alendal, Axelsson & Dyrkolbotn 117

6. Conclusions

The principal contribution of this research is a testing methodology
and implementation for revealing and analyzing proprietary USB Power
Delivery protocol messages. The experimental results demonstrate that
at least one common mobile device, the Samsung Galaxy S9, is amenable
to the testing methodology. In particular, the device responds to certain
vendor-defined messages and the responses indicate the use of encryp-
tion, which raises the possibility of capturing initialization vectors and
keys for symmetric ciphers. Another important result is the ability to
enable factory device features in a test device in order to obtain valuable
log data from the device and to widen its attack surface.

Future research will continue the investigation of vendor-defined mes-
sages in the USB Power Delivery protocol. Since vendors may also im-
plement hidden features in other parts of the protocol, a promising ap-
proach is to investigate the role of the sink device that consumes power.
Connecting two devices that typically serve as sinks – like two mobile
phones – causes one device to assume the source role and provide power
to the other device. This source-sink relationship could be exploited to
expand the attack surface or even to directly acquire data.

Future research will also investigate potential security vulnerabilities.
This is challenging because it is not known how to instrument a USB
Power Delivery chip for feedback (e.g., if it crashes or demonstrates
anomalous behavior). An alternative approach is to conduct a source
code review or extract the chip firmware and apply reverse engineering
techniques. Another approach is to analyze device-side communications
with the USB Power Delivery chip, which could reveal interesting fea-
tures or vulnerabilities in the chip logic as well in the operating system.

The popularity of USB Type-C connectors is increasing and large
numbers of consumer devices will support the USB Power Delivery pro-
tocol. It is hoped that this work will stimulate research on the protocol
and its implementations to advance device security and forensics.

Acknowledgement

This research was sponsored by the Norwegian Research Council IK-
TPLUSS Program under the Ars Forensica Project No. 248094/O70.

References

[1] G. Alendal, G. Dyrkolbotn and S. Axelsson, Forensic acquisition –
Analysis and circumvention of Samsung secure boot enforced com-
mon criteria mode, Digital Investigation, vol. 24(S), pp. S60–S67,



118 ADVANCES IN DIGITAL FORENSICS XV

2018.

[2] G. Alendal, C. Kison and modg, Got HW Crypto? On the
(In)Security of a Self-Encrypting Drive Series, Cryptology ePrint
Archive, Report 2015/1002 (eprint.iacr.org/2015/1002), 2015.

[3] N. Artenstein, Exploiting Android S-Boot: Getting arbitrary code
exec in the Samsung bootloader (1/2), Information Security News-
paper, March 3, 2017.

[4] Chindi.ap (commons.wikimedia.org/wiki/User:Chindi.ap), 2019.

[5] H. Reydarns, V. Lauwereys, D. Haeseldonckx, P. van Willigenburg,
J. Woudstra and S. De Jonge, The development of a proof of con-
cept for a smart DC/DC power plug based on USB Power Delivery,
Proceedings of the Twenty-Second Conference on the Domestic Use
of Energy, 2014.

[6] T10 Technical Committee of the International Committee on Infor-
mation Technology Standards, SCSI Operation Codes (www.t10.
org/lists/op-num.htm), 2015.

[7] USB Implementers Forum, Getting a Vendor ID, Beaverton, Oregon
(www.usb.org/getting-vendor-id), 2019.

[8] USB Implementers Forum, USB Power Delivery, Beaverton, Oregon
(www.usb.org/document-library/usb-power-delivery), 2019.


	6 EXPLOITING VENDOR-DEFINED MESSAGES IN THE USB POWER DELIVERY PROTOCOL
	1. Introduction
	2. Related Work
	3. USB Power Delivery Protocol
	4. Methodology
	5. Experimental Results
	6. Conclusions
	Acknowledgement
	References




