
Chapter 8
Related Topics

In this chapter we briefly review some aspects of the literature on circle packing that
unfortunately we do not have space to get into in depth in this course. We hope this
will be useful as a guide to further reading.

1. Double circle packing. If one wishes to study planar graphs that are not
triangulations, it is often convenient to work with double circle packings, which
enjoy similar rigidity properties to usual circle packings, but for the larger class of
polyhedral planar graphs. Here, a planar graph is polyhedral if it is both simple
and 3-connected, meaning that the removal of any two vertices cannot disconnect
the graph. Double circle packings also satisfy a version of the ring lemma [45,
Theorem 4.1], which means that they can be used to produce good straight-
line embeddings of polyhedral planar graphs that have bounded face degrees but
which are not necessarily triangulations.

Let G be a planar graph with vertex set V and face set F . A double circle
packing of G is a pair of circle packings P = {Pv : v ∈ V } and P † = {Pf : f ∈
F } satisfying the following conditions:

(a) (G is the tangency graph of P .) For each pair of vertices u and v of G, the
discs Pu and Pv are tangent if and only if u and v are adjacent in G.

(b) (G† is the tangency graph of P †.) For each pair of faces f and g of G, the
discs Pf and Pg are tangent if and only if f and g are adjacent in G†.

(c) (Primal and dual circles are perpendicular.) For each vertex v and face f

of G, the discs Pf and Pv have non-empty intersection if and only if f is
incident to v, and in this case the boundary circles of Pf and Pv intersect at
right angles.

See Fig. 8.1 for an illustration.
Thurston’s proof of the circle packing theorem also implies that every finite

polyhedral planar graph admits a double circle packing. This was also shown
by Brightwell and Scheinerman [13]. As with circle packings of triangulations,
the double circle packing of any finite polyhedral planar map is unique up to
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Fig. 8.1 A finite polyhedral plane graph (left) and its double circle packing (right). Primal circles
are filled and have solid boundaries, dual circles have dashed boundaries

Möbius transformations or reflections. The theory of double circle packings in
the infinite setting follows from the work of He [37], and is exactly analogous
to the corresponding theory for triangulations. Indeed, essentially everything we
have to say in these notes about circle packings of simple triangulations can
be generalized to double circle packings of polyhedral planar maps (sometimes
under the additional assumption that the faces are of bounded degree).

2. Packing with other shapes. A very powerful generalization of the circle packing
theorem known as the monster packing theorem was proven by Schramm in his
PhD thesis [76]. One consequence of this theorem is as follows: Let T = (V ,E)

be a finite planar triangulation with a distinguished boundary vertex ∂ . Specify a
bounded, simply connected domain D ⊂ C with smooth boundary, and for each
v ∈ V \{∂} specify a strictly convex, bounded domain Dv with smooth boundary.
Then there exists a collection of homotheties (compositions of translations and
dilations) {hv : v ∈ V } such that

• If u, v ∈ V \ {∂} are distinct, then the closure of hvDv and huDu have disjoint
interiors, and intersect if and only if v and u are adjacent in T .

• If v ∈ V \ {∂}, then the closure of hvDv and C \D have disjoint interiors, and
intersect if and only if v is adjacent to ∂ in T .

In other words, we can represent the triangulation of T by a packing with
arbitrary smooth convex shapes that are specified up to homothety (it is quite
surprising at first that rotations are not needed). The full monster packing theorem
also allows one to relax the smoothness and convexity assumptions above in
various ways. The proof of the monster packing theorem is based upon Brouwer’s
fixed point theorem, and does not give an algorithm for computing the packing.

3. Square tiling. Another popular method of embedding planar graphs is the square
tiling, in which vertices are represented by horizontal line segments and edges
by squares; such square tilings can take place either in a rectangle, the plane, or
a cylinder. Square tiling was introduced by Brooks et al. [14], and generalized
to infinite planar graphs by Benjamini and Schramm [10]. Like circle packing,
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Fig. 8.2 The square tiling of
the 7-regular triangulation

square tiling can be thought of as a discrete version of conformal mapping, and
in particular can be used to approximate the uniformizing map from a simply
connected domain with four marked boundary points to a rectangle. For studying
the random walk, a very nice feature of the square tiling that is not enjoyed by
the circle packing is that the height of a vertex in the cylinder is a harmonic
function, so that the height of a random walk is a martingale. Furthermore,
Georgakopoulos [28] observed that if one stops the random walk at the first time
it hits some height, then its horizontal coordinate at this time is uniform on the
circle (this takes some interpretation to make precise). Further works on square
tiling include [1, 28, 46] (Fig. 8.2).

Unlike circle packing, however, square tilings do not enjoy an analogue of
the ring lemma, and can be geometrically very degenerate. Indeed, it is possible
for edges to be represented by squares of zero area, and is also possible for two
distinct planar graphs to have the same square tiling. Furthermore, square tilings
are typically defined with reference to a specified root vertex, and it is difficult
to compare the two different square tilings of the same graph that are computed
with respect to different root vertices. These differences tend to mean that square
tilings are best suited to quite different problems than circle packing.

We also remark that a different sort of square tiling in which vertices are
represented by squares was introduced independently by Cannon et al. [15] and
Schramm [74].

4. Multiply-connected triangulations. Several works have studied generalizations
of the circle packing theorem to triangulations that are either not simply
connected or not planar. Most notably, He and Schramm [39] proved that every
triangulation of a domain with countably many boundary components can be
circle packed in a circle domain, that is, a domain all of whose boundary com-
ponents are either circles or points: see Fig. 8.3 for examples. The corresponding
statement for a triangulation of an arbitrary domain is a major open problem,
and is closely related to the Koebe conjecture.

Gurel-Gurevich, the current author, and Suoto [32] generalized the part of the
He-Schramm Theorem concerning recurrence of the random walk as follows: A
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Fig. 8.3 Left: A circle packing in the multiply-connected circle domain U \ {0}. Right: A circle
packing in a circle domain with several boundary components

bounded degree triangulation circle packed in a domain D is transient if and only
if Brownian motion on D is transient, i.e. leaves D in finite time almost surely.

5. Isoperimetry of planar graphs. In [66], Miller, Teng, Thurston, and Vavasis
used circle packing to give a new proof of the Lipton-Tarjan planar separator
theorem [60], which concerns sparse cuts in planar graphs. Precisely, the theorem
states that for any n-vertex planar graph, one can find a set of vertices of size at
most O(

√
n) such that if this vertex set is deleted from the graph then every

connected component that remains has size at most 3n/4. More precisely, the
authors of [66] showed that if one circle packs a planar graph in the unit sphere
of R3, normalizes by applying an appropriate Möbius transformation, and takes
a random plane passing through the origin in R3, then the set of vertices whose
corresponding discs intersect the plane will have the desired properties with high
probability.

A related result of Jonasson and Schramm [47] concerns the cover time of
planar graphs, i.e., the expected number of steps for a random walk on the graph
to visit every vertex of the graph. They used circle packing to prove that the cover
time of an n-vertex planar graph with maximum degree M is always at least
cMn log2 n for some positive constant cM depending only on M . This bound
is attained (up to the constant) for large boxes [−n, n]2 in Z2. In general, it is
possible for n-vertex graphs to have cover time as small as (1 + o(1))n log n.

6. Boundary theory. Benjamini and Schramm [9] proved that if P is a circle
packing of a bounded degree triangulation in the unit disc U, then the simple
random walk on the circle packed triangulation converges to a point in the
boundary of U, and that the law of the limit point is non-atomic and has full
support. (That is, the walk has probability zero of converging to any specific
boundary point, and has positive probability of converging to any positive-length
interval.) They used this result to deduce that a bounded degree planar graph
admits non-constant bounded harmonic functions if and only if it is transient
(equivalently, the invariant sigma-algebra of the random walk on the triangulation
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is non-trivial if and only if the walk is transient), and in this case it also admits
non-constant bounded harmonic functions of finite Dirichlet energy. They also
gave an alternative proof of the same result using square tiling instead of circle
packing in [10].

Indeed, given the result of Benjamini and Schramm, one may construct a non-
constant bounded harmonic function h on T by taking any bounded, measurable
function f : ∂U → R and defining h to be the harmonic extension of f , that is,

h(v) = Ev

[
f

(
lim

n→∞ z(Xn)
)]

,

where Ev denotes expectation taken with respect to the random walk X started at
v, and z(u) denotes the center of the circle in P corresponding to u. Angel et al.
[6] proved that, in fact, every bounded harmonic function on a bounded degree
triangulation can be represented in this way. In other words, the boundary ∂U can
be identified with the Poisson boundary of the triangulation. Probabilistically,
this means that the entire invariant σ -algebra of the random walk coincides
with the σ -algebra generated by the limit point. They also proved the stronger
result that ∂U can be identified with the Martin boundary of the triangulation.
Roughly speaking, this means that every positive harmonic function on the
triangulation admits a representation as the harmonic extension of some measure
on ∂U. A related representation theorem for harmonic functions of finite Dirichlet
energy on bounded degree triangulations was established by Hutchcroft [43].

The results of [6] regarding the Poisson boundary followed earlier work by
Georgakopoulos [28], which established a corresponding result for square tilings.
Both results were revisited in the work of Hutchcroft and Peres [46], which gave
a simplified and unified proof that works for both embeddings.

A parallel boundary theory for circle packings of unimodular random
triangulations of unbounded degree was developed by Angel, Hutchcroft, the
current author, and Ray in [7].

7. Harnack inequalities, Poincaré inequalities, and comparison to Brownian
motion. The work of Angel et al. [6] also established various quite strong
estimates for random walk on circle packings of bounded degree triangulations.
Roughly speaking, these estimates show that the random walk behaves similarly
to the image of a Brownian motion under a quasi-conformal map, that is, a
bijective map that distorts angles by at most a bounded amount (i.e., maps
infinitesimal circles to infinitesimal ellipses of bounded eccentricity). These
estimates were central to their result concerning the Martin boundary of the
triangulation, and are also interesting in their own right. Further related estimates
have also been established by Chelkak [17].

Recent work of Murugan [67] has built further upon these methods to establish
very precise control of the random walk on (graphical approximations of) various
deterministic self-similar fractal surfaces.

8. Liouville quantum gravity and the KPZ correspondence. Statistical physics
in two dimensions has been one of the hottest areas of probability theory in
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recent years. The introduction of Schramm’s SLE [75] and further breakthrough
developments by Lawler, Schramm and Werner (see [53, 54] and the references
within) on the one hand, and the application of discrete complex analysis,
pioneered by Smirnov [79], on the other, have led to several breakthroughs
and to the resolution of a number of long-standing conjectures. These include
the conformally invariant scaling limits of critical percolation [77] and Ising
models [78], and the determination of critical exponents and dimensions of sets
associated with planar Brownian motion [53] (such as the frontier and the set of
cut points). It is manifest that much progress will follow, possibly including the
treatment of self-avoiding walk (the connective constant of the hexagonal lattice
was calculated in the breakthrough work [22]), the O(n) loop model and the Potts
model. While the bulk of this body of work applies to specific lattices, there are
many fascinating problems in extending results to arbitrary planar graphs.

The next natural step is to study the classical models of statistical physics
in the context of random planar maps (see Le Gall’s 2014 ICM proceedings
[57]). There are deep conjectured connections between the behaviour of the
models in the random setting versus the Euclidean setting, most significantly the
KPZ formula of Knizhnik et al. [50] from conformal field theory. This formula
relates the dimensions of certain sets in Euclidean geometry to the dimensions of
corresponding sets in the random geometry. It may provide a systematic way to
analyze models on the two dimensional Euclidean lattice: first study the model in
the random geometry setting, where the Markovian properties of the underlying
space make the model tractable; then use the KPZ formula to translate the critical
exponents from the random setting to the Euclidean one.

Much of this picture is conjectural but a definite step towards this goal was
taken in the influential paper of Duplantier and Sheffield [23]. Let us describe
their formulation. Let Gn be a random triangulation on n vertices and consider
its circle packing (or any other “natural” embedding) in the unit sphere. The
embedding induces a random measure μn on the sphere by putting μn(A) to be
the proportion of circle centers that are in A. The Duplantier-Sheffield conjecture
asserts that the measures μn converge in distribution to a random measure μ on
the sphere that has density given by an exponential of the Gaussian free field—
the latter is carefully defined and constructed in [23]. This measure is what is
known as Liouville quantum gravity (LQG).

Next, given a deterministic or random set K on the sphere, one can calculate
its expected dimension using the random measure given by LQG, and using
the usual Lebesgue measure—one gets two different numbers. Duplantier and
Sheffield [23] obtain a quadratic formula allowing to compute one number
from the other in the spirit of [50]; this is the first rigorous instance of the
KPZ correspondence. It allows one to compute the dimension of random sets
in the Z2 lattice (corresponding to Lebesgue measure) by first calculating the
corresponding dimension in the random geometry setting and then appealing to
the KPZ formula.

Many difficult models of statistical physics are tractable on a random planar
map due to the inherent randomness of the space. For instance, it can be shown
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that the self avoiding walk on the UIPT behaves diffusively, that is, the endpoint
of a self avoiding walk of length n is typically of distance n1/2+o(1) from the
origin [19, 34]. A straightforward calculation with the KPZ formula allows one
to predict that the typical displacement of the self-avoiding walk of length n

on the lattice Z2 is n3/4+o(1)—a notoriously hard open problem with endless
simulations supporting it.

LQG and the KPZ correspondence thus pose a path to solving many difficult
problems in classical two-dimensional statistical physics. We refer the interested
reader to Garban’s excellent survey [27] of the topic.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	8 Related Topics

