
Chapter 7
Uniform Spanning Trees of Planar
Graphs

7.1 Introduction

Let G be a finite connected graph. A spanning tree T of G is a connected subgraph
of G that contains no cycles and such that every vertex of G is incident to at least one
edge of T . The set of spanning trees of a given finite connected graph is obviously
finite and hence we may draw one uniformly at random. This random tree is called
the uniform spanning tree (UST) of G. This model was first studied by Kirchhoff
[49] who gave a formula for the number of spanning trees of a given graph and
provided a beautiful connection with the theory of electric networks. In particular,
he showed that the probability that a given edge {x, y} of G is contained in the
UST equals Reff(x ↔ y; G); we prove this fundamental formula in Sect. 7.2 (see
Theorem 7.2).

Is there a natural way of defining a UST probability measure on an infinite
connected graph? It will soon become clear that we have set the framework already
in Sect. 2.3 to answer this question positively. Let G = (V ,E) be an infinite
connected graph and assume that {Gn} is a finite exhaustion of G as defined in
Sect. 2.5. That is, {Gn} is a sequence of finite graphs, Gn ⊂ Gn+1 for all n, and
∪Gn = G. Russell Lyons conjectured that the UST probability measure on Gn

converges weakly to some probability measure on subsets of E and in his pioneering
work Pemantle [68] showed that it is indeed the case.

More precisely, denote by Tn a UST of Gn, then it is shown in [68] that for any
two finite subset of edges A,B of G the limit

lim
n→∞ P(A ⊂ Tn , B ∩ Tn = ∅) , (7.1)

exists and does not depend on the exhaustion {Gn}. The proof is a consequence of
Rayleigh’s monotonicity (Corollary 2.29) and will be presented in Sect. 7.3. This
together with Kolmogorov’s extension theorem [24, Theorem A.3.1] implies that
there exists a unique probability measure on infinite subsets of E for which a sample
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of F satisfies

P(A ⊂ F , B ∩ F = ∅) = lim
n→∞ P(A ⊂ Tn , B ∩ Tn = ∅) ,

for any two finite subsets of edges A and B of G. Thus, the law of F is determined
and we denote it by μF . The superscript F stands for free and will be explained
momentarily. Let us explore some properties of μF that are immediate from its
definition.

Since every vertex of G is touched by at least one edge of Tn with probability
1 when n is large enough (so that Gn contains the vertex), we learn that the edges
of F almost surely touch every vertex of G, that is, F is almost surely spanning.
Similarly, the probability that the edges of a given cycle in G are contained in Tn

(once n is large enough so that Gn contains the cycle) is 0. Since G has countably
many cycles we deduce that almost surely there are no cycles in F. By a similar
reasoning we deduce that almost surely any connected component of F is infinite.
However, a moment’s reflection shows that this kind of reasoning cannot be used to
determine that F is almost surely connected.

It turns out, perhaps surprisingly, that F need not be connected almost surely.
A remarkable result of Pemantle [68] shows that a sample of μF on Z

d is almost
surely connected when d = 1, 2, 3, 4 and almost surely disconnected when d ≥
5. Since it may be the case that a sample of μF is disconnected with positive
probability, we call μF the free uniform spanning forest (rather than tree) of G,
denoted henceforth FUSFG. The term free corresponds to the fact that we have
not imposed any boundary conditions when taking a limit. It will be very useful to
take other boundary conditions, such as the wired boundary condition, see Sect. 7.3.
The seminal paper of Benjamini et al. [12] explores many properties of these
infinite random trees (properties such as number of components and connectivity in
particular, size of the trees, recurrence or transience of the trees and many others) on
various underlying graphs with an emphasis on Cayley graphs. We refer the reader
to [12] and to [61, Chapters 4 and 10] for a comprehensive treatment.

The question of connectivity of the FUSF is therefore fundamental and unfortu-
nately it is not even known that connectivity is an event of probability 0 or 1 on any
graph G, see [12, Question 15.7]. In [44] the circle packing theorem (Theorem 3.5)
is used to prove that FUSFG is almost surely connected when G is a bounded
degree proper planar map, answering a question of [12, Question 15.2]. Our goal
in this chapter is to present a proof for a specific case where G is a bounded degree,
transient, one-ended planar triangulations. Even though this is a particular case of a
general theorem, the argument we present here contains most of the key ideas. We
refer the interested reader to [44] for the general statement.

Theorem 7.1 ([44]) Let G be a simple, bounded degree, transient, one-ended
planar triangulation. Then FUSFG is almost surely connected.

The rest of this chapter is organized as follows. In Sect. 7.2 we discuss two
basic properties of USTs on finite graphs. Namely, Kirchhoff’s effective resistance
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formula mentioned earlier and the spatial Markov property for the UST. In Sect. 7.3
we prove Pemantle’s [68] result (7.1) showing that FUSFG exists. We will also
define there the wired uniform spanning forest which is obtained by taking a limit
of the UST probability measures over exhaustions with wired boundary. We will
also need some fairly basic notions of electric networks on infinite graphs that we
have not discussed in Sect. 2.5. Next, in Sect. 7.4 we will restrict to the setting of
planar graph and employ planar duality to obtain an extremely useful connection
between the free and wired spanning forests which will be useful later. Using these
tools we have collected we will prove Theorem 7.1 in Sect. 7.5.

7.2 Basic Properties of the UST

Kirchhoff’s Effective Resistance Formula

Theorem 7.2 (Kirchoff [49]) Let G be a finite connected graph and denote by T
a uniformly drawn spanning tree of G. Then for any edge e = (x, y) we have

P(e ∈ T ) = Reff(x ↔ y) .

Proof Let a �= z be two distinct vertices of G (later we will take a = x and z = y)
and note that any spanning tree of G contains precisely one path connecting a and
z. Thus, a uniformly drawn spanning tree induces a random path from a to z. By
Claim 2.46 we obtain a unit flow θ from a to z. To be concrete, for each edge e we
have that θ(�e) is the probability that the random path from a to z traverses �e minus
the probability that it traverses �e. We will now show that θ satisfies the cycle law
(see Claim 2.14), so it is in fact the unit current flow (see Definition 2.19).

Let �e1, . . . , �em be a directed cycle in G. Our goal is to show that

m∑

i=1

θ( �ei) = 0 . (7.2)

Denote by T (G) the set of spanning trees of G. Expanding the sum on the left hand
side with the definition of θ we get that it equals

|T (G)|−1
∑

t∈T (G)

m∑

i=1

f +
i (t) − |T (G)|−1

∑

t∈T (G)

m∑

j=1

f −
j (t) ,

where f +
i (t) equals 1 if the unique path from a to z in t traverses �ei and 0 otherwise,

and similarly, f −
j (t) equals 1 if this path traverses �ej and 0 otherwise.

For 1 ≤ i ≤ m we denote by T +
i the set of pairs (t, i) for which f +

i (t) = 1.
Similarly define T −

j as the set of pairs (t, j) for which f −
j (t) = 1. To prove (7.2) it
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suffices to show that

| �i∈{1,...m} T +
i | = | �j∈{1,...m} T −

j | .

Let (t, i) ∈ T +
i . The graph t \ {ei} has two connected components. Let �ej be the

first edge after �ei , in the order of the cycle �e1, . . . , �em, that is incident to both
connected components and consider the spanning tree t ′ = t ∪ {ej } \ {ei}. Note
that the unique path in t ′ from a to z traverses �ej , so (t ′, j) ∈ T −

j . This procedure

defines a bijection from �iT
+
i to �j T

−
j . Indeed, given (t ′, j) from before, we can

erase ej and go on the cycle in the opposite order until we reach ei which has to be
the first edge incident to the two connected components of t ′ \{ej }. This shows (7.2)
and concludes the proof. ��

Spatial Markov Property of the UST

We would like to study the UST probability measure conditioned on the event that
some edges are present in the UST and others not. It turns out that sampling from
this conditional distribution amounts to drawing a UST on a modified graph.

Let G = (V ,E) be a finite connected graph and let A and B be two disjoint
subsets of edges. We write (G − B)/A for the graph obtained from G by erasing
the edges of B and contracting the edges of A. We identify the edges of (G − B)/A

with the edges E \ B. Denote by TG and T(G−B)/A a UST on G and (G − B)/A,
respectively, and assume that

P(A ⊂ TG , B ∩ TG = ∅) > 0 .

This assumption is equivalent to G − B being connected and that A contains no
cycles.

Then, conditioned on the event that TG contains the edges A and does not contain
any edge of B the distribution of TG is equal to the union of A with T(G−B)/A. In
other words, for a set A of spanning trees of G we have that

P(TG ∈ A | A ⊂ TG , B ∩ TG = ∅) = P(A ∪ T(G−B)/A ∈ A ) . (7.3)

The proof of (7.3) follows immediately from the observation that the set of spanning
trees of G not containing any edge of B is simply the set of spanning trees of G−B.
Similarly, the set of spanning trees of G containing all the edges of A is simply the
union of A to each spanning tree of G/A, and (7.3) follows.
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7.3 Limits over Exhaustions: The Free and Wired USF

Let G be an infinite connected graph and let {Gn} be a finite exhaustion of it. In
this section we will show that (7.1) holds and that the UST measures with wired
boundary conditions also converge. Let us first explain the latter. Denote by G∗

n the
graph obtained from G by identifying the infinite set of vertices G \ Gn to a single
vertex zn and erasing the loops at zn formed by this identification. We say that {G∗

n}
is a wired finite exhaustion of G.

Theorem 7.3 (Pemantle [68]) Let G be an infinite connected graph, {Gn} a finite
exhaustion and {G∗

n} the corresponding wired finite exhaustion. Denote by Tn and
T ∗

n USTs on Gn and G∗
n, respectively. Then for any two finite disjoint subsets

A,B ⊂ E(G) of edges of G we have that the limits

lim
n→∞ P(A ⊂ Tn , B ∩ Tn = ∅) ,

and

lim
n→∞ P(A ⊂ T ∗

n , B ∩ T ∗
n = ∅) ,

exist and do not depend on the exhaustion {Gn}.
We postpone the proof for a little longer and first discuss some of its implications.

As mentioned earlier, Theorem 7.3 together with Kolmogorov’s extension theorem
[24, Theorem A.3.1] implies that there exists two probability measures μF and μW

on infinite subsets of the edges of E arising as the unique limits of the laws Tn and
T ∗

n . That is, the samples Ff and Fw of μF and μW satisfy

P(A ⊂ Ff , B ∩ Ff = ∅) = lim
n→∞ P(A ⊂ Tn , B ∩ Tn = ∅) ,

and

P(A ⊂ Fw , B ∩ Fw = ∅) = lim
n→∞ P(A ⊂ T ∗

n , B ∩ T ∗
n = ∅) .

We call μF and μW the free uniform spanning forest and the wired uniform
spanning forest and denote them by FUSFG and WUSFG respectively. We have
seen earlier (one paragraph below (7.1)) that both Ff and Fw are almost surely
spanning forests, that is, spanning graphs of G with no cycles and that every
connected component of them is infinite. Thus μF and μW are supported on what
are known as essential spanning forests of G, that is, spanning forests of G in
which every component is infinite.

Are the probability measures FUSFG and WUSFG equal? Not necessarily. It is
easy to see that on the infinite path Z the WUSFZ and the FUSFZ are equal and are
the entire graph Z with probability 1. Conversely, it is not very difficult to see that



94 7 Uniform Spanning Trees of Planar Graphs

they are different on a 3-regular tree, see exercise 1 of this chapter. Pemantle [68]
has shown that FUSFZd = WUSFZd for any d ≥ 1 and a very useful criterion for
determining whether there is equality was developed in [12]. We refer the reader to
[61, Chapter 10] for further reading.

Before presenting the proof of Theorem 7.3 let us make a few short observations
regarding the effective resistance between two vertices in an infinite graph, extend-
ing what we proved in Sect. 2.5.

Effective Resistance in Infinite Networks
Let G be an infinite connected graph. We have seen in Sect. 2.5 that for any vertex
v the electric resistance Reff(v ↔ ∞) from v to ∞ is well defined as the limit
of Reff(a ↔ zn; G∗

n) where {G∗
n} is a wired finite exhaustion and zn is the vertex

resulting in the identification of the vertices G \ Gn.
To define the electric resistance between two vertices v, u of an infinite graph,

one has to take exhaustions and specify boundary conditions since the limits may
differ depending on them.

Claim 7.4 Let G be an infinite connected graph, {Gn} a finite exhaustion and {G∗
n}

a wired finite exhaustion. Then for any two vertices u, v of G we have that the limits

RF
eff(u ↔ v; G) := lim

n
Reff(u ↔ v; Gn) ,

and

RW
eff(u ↔ v; G) := lim

n
Reff(u ↔ v; G∗

n) ,

exist and do not depend on the exhaustion {Gn}.
Proof For the first limit we note that by Rayleigh’s monotonicity (Corollary 2.29),
the sequence Reff(u ↔ v; Gn) is non-increasing and non-negative since Gn ⊂
Gn+1, hence it converges. A sandwiching argument as in the proof of Claim 7.4
shows that the limit does not depend on the exhaustion {Gn}.

For the second limit, since Gn can be obtained by gluing vertices of Gn+1 we
deduce by Corollary 2.30 that the sequence Reff(u ↔ v; G∗

n) is non-decreasing
and bounded (by the graph distance in G between u and v for instance), hence it
converges. The limit does not depend on the exhaustion by an identical sandwiching
argument. ��

We call RF
eff(u ↔ v; G) and RW

eff(u ↔ v; G) the free effective resistance and
wired effective resistance between u and v respectively.
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Proof of Theorem 7.3

We will prove the assertion regarding the first limit; the second is almost identical.
Write A = {e1, . . . , ek} and ei = (xi, yi) for each 1 ≤ i ≤ k. Assume without loss
of generality that Gn contains A for all n. As before, denote by Tn a UST of Gn.
By (7.3) and Theorem 7.2 we have that

P(A ⊂ Tn) =
k∏

i=1

P(ei ∈ Tn | ej ∈ Tn ∀ j < i) =
k∏

i=1

Reff(xi ↔ yi;Gn/{e1, . . . , ei−1}) .

Note that
{
Gn/{e1, . . . , ei−1}

}
is a finite exhaustion of the infinite graph

G/{e1, . . . , ei−1} and so by Claim 7.4 we obtain that the limit

lim
n

P(A ⊂ Tn) =
k∏

i=1

Reff(xi ↔ yi; G/{e1, . . . , ei−1}) ,

exists and does not depend on the exhaustion.
Since we know this limit exists for all finite edge sets A, it follows by the

inclusion-exclusion formula that P(A ⊂ Tn, B ∩ Tn = ∅) converges for any finite
sets A,B, concluding our proof. ��

It is now quite pleasant to see that the symbiotic relationship between electric
network and UST theories continues to flourish in the infinite setting. Indeed, by
combining Theorems 7.3 and Claim 7.4 we obtain the extension of Kirchhoff’s
formula for infinite connected graphs.

Theorem 7.5 Let G be an infinite connected graph and denote by FF and FW a
sample from FUSFG and WUSFG respectively. Then for any edge e = (x, y) of G

we have that

P(e ∈ FF ) = RF
eff(x ↔ y; G) ,

and

P(e ∈ FW) = RW
eff(x ↔ y; G) .

7.4 Planar Duality

When G is planar there is a very useful relationship between FUSFG and WUSFG.
Recall that given a planar map G, the dual graph of G is the graph G† whose vertex
set is the set of faces of G and two faces are adjacent in G† if they share an edge in
G. Thus, G† is locally-finite if and only if every face of G has finitely many edges.
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To each edge e ∈ E(G) corresponds a dual edge e† ∈ E(G†) which is the pair of
faces of G incident to e; this is clearly a one-to-one correspondence.

When G is a finite planar graph, this correspondence induces a one-to-one
correspondence between the set of spanning trees of G and the set of spanning trees
of G†. Given a spanning tree of t of G we slightly abuse the notation and write t†

for the set of edges {e† : e ∈ G \ t}, that is

e ∈ t ⇐⇒ e† �∈ t† .

If t† has a cycle, then t is disconnected. Furthermore, if there is a vertex G† not
incident to any edge of t†, then all the edges of the corresponding face in G are
present in t hence t contains a cycle. We deduce that if t is a spanning tree of
G, then t† is a spanning tree of G†. The converse also holds since (t†)† = t and
(G†)† = G.

Now assume that G is an infinite planar maps such that G† is locally finite.
Given an essential spanning forest F of G we similarly define F† as the set of edges
{e† : e ∈ G \ F}. A similar argument shows that F† is an essential spanning forest
of G†. This raises the natural question: when F is a sample of FUSFG, what is the
law of F†? The answer in general is an object known as the transboundary uniform
spanning forest [44, Proposition 5.1]. However, when G is additionally assumed to
be one-ended (in particular, in the setting of Theorem 7.1) it turns out that F† is
distributed as WUSFG† :

Proposition 7.6 Let G be an infinite, one-ended planar map with a locally finite
dual G† and let F be a sample of FUSFG. Then the law of F† is WUSFG† .

Proof Let Gn be a finite exhaustion of G. Let Fn be a finite exhaustion G† defined
by letting f ∈ Fn if and only if every vertex of f in G belongs to Gn. Then G

†
n

is obtained from G† by contracting G† \ Fn into a single vertex which corresponds
to the outer face of Gn. Thus, G

†
n is a wired exhaustion of G† and the statement

follows. ��
We use to obtain an important criterion of connectivity of FUSFG in the planar

case.

Proposition 7.7 Let G be an infinite, one-ended planar map with a locally finite
dual G†. Then a sample of FUSFG is connected almost surely if and only if each
component of a sample of WUSFG is one-ended almost surely.

Proof By Proposition 7.6 it suffices to show that if F is an essential spanning forest
of G, then F is connected if and only if every component of F† is one-ended. Indeed,
if F is disconnected, then the boundary of a connected component of F induces an
bi-infinite path in F†. Conversely, if F† contains a bi-infinite path, then by the Jordan
curve theorem F is disconnected. ��
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7.5 Connectivity of the Free Forest

Last Note on Infinite Networks

We make two more useful and natural definitions. Given two disjoint finite sets
A and B in an infinite connected graph G we define the free and wired effective
resistance between them RW

eff(A ↔ B; G) and RF
eff(A ↔ B; G) as the free

and wired effective resistance between a and b in the graph obtained from G by
identifying A and B to the vertices a and b.

Lastly, given a graph G, a wired finite exhaustion {G∗
n} of G and two disjoint

finite sets A and B we define

Reff(A ↔ B ∪ {∞}; G) := lim
n→∞Reff(A ↔ B ∪ {zn}; G∗

n) , (7.4)

where the last limit exists since the sequence is non-increasing from n that is large
enough so that Gn contains A and B. In the proof of Theorem 7.1 we will require
the following estimate.

Lemma 7.8 Let A and B be two finite sets of vertices in an infinite connected graph
G. Then

RW
eff(A ↔ B; G) ≤ 3 max

[
Reff (A ↔ B ∪ {∞}; G) , Reff (B ↔ A ∪ {∞}; G)

]
.

Proof For any three distinct vertices u, v,w in a finite network we have by the union
bound that Pu(τ{v,w} < τ+

u ) ≤ Pu(τv < τ+
u ) + Pu(τw < τ+

u ). Hence by Claim 2.22
we get that

Reff(u ↔ {v,w})−1 ≤ Reff(u ↔ v)−1 + Reff(u ↔ w)−1 .

Let {G∗
n} be a wired finite exhaustion of G and assume without loss of generality

that A and B are contained in G∗
n for all n. Then by the previous estimate

Reff(A ↔ B ∪ {zn}; G∗
n)

−1 ≤ Reff(A ↔ B; G∗
n)

−1 + Reff(A ↔ zn; G∗
n)

−1 .

Denote by M the maximum in the statement of the lemma and take n → ∞ in the
last inequality. We obtain that

M−1 ≤ Reff(A ↔ B ∪ {∞}; G)−1 ≤ RW
eff(A ↔ B; G)−1 + Reff(A ↔ ∞; G)−1 .

Rearranging gives that

Reff(A ↔ ∞; G) ≤ MRW
eff(A ↔ B; G)

RW
eff(A ↔ B; G) − M

.
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By symmetry, the same inequality holds when we replace the roles of A and B. We
put this together with the triangle inequality for effective resistances (2.9) and get
that

RW
eff(A ↔ B; G) ≤ Reff(A ↔ ∞;G) + Reff(B ↔ ∞;G) ≤ 2MRW

eff(A ↔ B;G)

RW
eff(A ↔ B;G) − M

,

which by rearranging gives the desired inequality. ��

Method of Random Sets

We present the following weakening of the method of random paths as in Sect. 2.6.
Let μ be the law of a random subset W of vertices of G. Define the energy of μ as

E(μ) =
∑

v∈V

μ(v ∈ W)2.

Lemma 7.9 (Method of Random Sets) Let A,B be two disjoint finite sets of
vertices in an infinite graph G. Let W be a random subset of vertices of G and
denote by μ its law. Assume that the subgraph of G induced by W almost surely
contains a simple path starting at A that is either infinite or finite and ends at B.
Then

Reff(A ↔ B ∪ {∞}; G) ≤ E(μ). (7.5)

Proof Given W let γ be a simple path, contained in W , connecting A to B

or an infinite path starting at A. We choose γ according to some prescribed
lexicographical ordering. Then, letting ν be the law of γ ,

E(ν) ≤
∑

�e∈E

ν(�e ∈ γ )2,

where by �e ∈ γ we mean that the directed edge �e is traversed (in its direction) by γ ,
and by E(ν) we mean the energy of the flow induced by γ , as in Claim 2.46.

Let γ ′ be an independent random path having the same law as γ . Then the sum
above is precisely the expected number of directed edges traversed both by γ and γ ′.
Since these are simple paths, they each contain at most one directed edge emanating
from each vertex v ∈ W . Thus, the expected number of directed edges used by both
paths is at most the number of vertices used by both paths. Hence,

E(ν) ≤
∑

v∈V (G)

ν(v ∈ γ )2 ≤
∑

v∈V (G)

μ(v ∈ W)2 = E(μ) ,

and the proof is concluded by Thomson’s principle (Theorem 2.28). ��
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Proof of Theorem 7.1

In Theorem 7.1 we assume that G = (V ,E) is a bounded-degree, one-ended
triangulation. Hence G† is a bounded degree (in fact, 3-regular), one-ended and
transient planar map with faces of uniformly bounded size. We leave this verification
as an exercise for the reader. To avoid carrying the † symbol around, and with a
slight abuse of notation, let G = (V ,E) be a graph satisfying these assumptions
on G†, that is, we assume that G is a one-ended, transient, infinite planar map with
bounded degrees and face sizes. We will prove under these assumptions that every
component of WUSFG is one ended almost surely which implies Theorem 7.1 by
Proposition 7.7.

Let T be the bounded-degree one-ended triangulation obtained from G by adding
a vertex inside each face of G and connecting it by edges to the vertices of that face
according to their cyclic ordering. By Theorem 4.4 there exists a circle packing of
T in the unit disc U. We identify the vertices of T as the vertices V (G) and faces
F(G) of G, and denote this circle packing as P = {P(v) : v ∈ V (G)} ∪ {P(f ) :
f ∈ F(G)}.

Given z ∈ U and r ′ ≥ r > 0 denote by Az(r, r
′) the annulus {w ∈ C : r ≤

|w − z| ≤ r ′}.
Definition 7.10 Write Vz(r, r

′) for the set of vertices v of G such that either

• P(v) ∩ Az(r, r
′) �= ∅, or

• P(v) ⊂ {w ∈ C : |w| ≤ r} and there is a face f of G with v ∈ f and
P(f ) ∩ Az(r, r

′) �= ∅.

We emphasize that Vz(r, r
′) contains only vertices of G; no vertices of T that

correspond to faces of G belong to it.

Lemma 7.11 There exists a constant C < ∞ depending only on the maximal
degree such that for any z ∈ U and any positive integer n satisfying |z| ≥ 1 − C−n

the sets

Vz(C
−i , 2C−i ) 1 ≤ i ≤ n ,

are disjoint.

Proof By the Ring Lemma (Lemma 4.2) there exists a constant B < ∞ such that
for any C > 1, any z satisfying z ≥ 1 − C−n and any 1 ≤ i ≤ n, if a circle of
P intersects Az(C

−i , 2C−i ) or is tangent to a circle that intersects Az(C
−i , 2C−i ),

then its radius is at most BC−i . Hence, this set of circles is contained in the disc
of radius (2 + 4B)C−i around z. Furthermore, since |z| ≥ 1 − C−n, by the Ring
Lemma again there exists b > 0 such that any such circle must be of distance at
least bC−i from z. Hence, any fixed C > 4+4B

b
satisfies the assertion of the lemma.

��
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Lemma 7.12 Let z ∈ U and r > 0. Let U be a uniform random variable in
[1, 2] and denote by μr the law of the random set Vz(Ur,Ur) (as defined in
Definition 7.10). Then there exists a constant C < ∞ depending only on the
maximal degree such that

E(μr) ≤ C .

Proof For each vertex v, the event v ∈ Vz(Ur,Ur) implies that the circle {w ∈
C : |w − z| = Ur} intersects the circle P(v) or intersects P(f ) for some face f

incident to v. The union of P(v) and P(f ) over all such faces f is contained in the
Euclidean ball around the center of P(v) of radius r(v) + 2 maxf :v∈f r(f ). Since
T has finite maximal degree we have that r(f ) ≤ Cr(v) for all f with v ∈ f where
C < ∞ depends only on the maximal degree by the Ring Lemma (Lemma 4.2).
Hence,

μr(v ∈ Vz(Ur,Ur)) ≤ 1

r
min

(
2r(v) + 4 max

f :f �v
r(f ), r

)
≤ C

r
min{r(v), r}.

(7.6)

We claim that

∑

v∈Vz(r,2r)

min{r(v), r}2 ≤ 16r2. (7.7)

Indeed, consider a vertex v ∈ Vz(r, 2r) for which the corresponding circle P(v) has
radius larger than r . By Definition 7.10 this circle must intersect {w ∈ C : |w−z| ≤
2r}. We replace each such P(v) with a circle of radius r that is contained in the
original circle and intersects {w ∈ C : |w − z| ≤ 2r}. The circles in this new set still
have disjoint interiors and are contained in {w ∈ C : |w − z| ≤ 4r}. Therefore their
area is at most π16r2 and (7.7) follows. The proof of lemma is now concluded by
combining (7.6) and (7.7). ��
Proof of Theorem 7.1 Let F be a sample of WUSFG and given an edge e = (x, y)

we define A e to be the event that x and y are in two distinct infinite connected
components of F \ {e}. It is clear that every component of F is one-ended almost
surely if and only if

P(e ∈ F , A e) = 0 (7.8)

for every edge e of G. Consider the triangulation T described above Definition 7.10
and its circle packing P in U. By choosing the proper Möbius transformation we
may assume that the tangency point between P(x) and P(y) is the origin, and that
the centers of P(x) and P(y) lie on the negative and positive real axis, respectively.

Fix now an arbitrary ε > 0 and let Vε be all the vertices of G such that the center
z(v) of P(v) satisfies |z(v)| ≤ 1 − ε. Denote by Be

ε the event that every connected
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x y

L

R

x y

Fig. 7.1 Illustration of the proof. Left: On the event A e
ε , the paths ηx and ηy split Vε into two

pieces, L and R. Right: We define a random set containing a path (solid blue) from ηx to ηy ∪{∞}
in G \ Kc using a random circle (dashed blue). Here we see two examples, one in which the path
ends at ηy , and the other in which the path ends at the boundary (i.e., at infinity)

component of F\{e} intersects V \Vε. Note that Ae ⊂ ∩ε>0B
e
ε but this containment

is strict since it is possible that e �∈ F and x is connected to y in F inside Vε.
Assume that Be

ε holds. Let ηx be the rightmost path in F \ {e} from x to V \ Vε

when looking at x from y, and let ηy be the leftmost path in F \ {e} from y to
V \ Vε when looking at y from x. As mentioned above, the paths ηx and ηy are
not necessarily disjoint. Nonetheless, concatenating the reversal of ηx with e and
ηy separates Vε into two sets of vertices, L and R, which are to the left and right
of e (when viewed from x to y) respectively. See Fig. 7.1 for an illustration of the
case when ηx and ηy are disjoint (when they are not, R is a “bubble” separated from
V \ Vε).

On the event Be
ε , let K be the set of edges that are either incident to a vertex in

L or belong to the path ηx ∪ηy , and set K = E off of this event. Note that the edges
of K do not touch the vertices of R. The condition that ηx and ηy are the rightmost
and leftmost paths to V \Vε from x and y is equivalent to the condition that K does
not contain any open path from x to V \ Vε other than ηx , and does not contain
any open path from y to V \ Vε other than ηy . We note that K can be explored
algorithmically, without querying the status of any edge in E \ K , by performing a
right-directed depth-first search of x’s component in F and a left-directed depth-first
search of y’s component in F, stopping each search when it first leaves Vε.

Denote by A e
ε the event that ηx and ηy are disjoint, or equivalently, that K does

not contain an open path from x to y (and in particular, no path starting at ηx and
ending at ηy ). The event A e

ε is measurable with respect to the random set K and
A e = ∩ε>0A e

ε . Hence

P(e ∈ F , A e) ≤ P(e ∈ F | A e
ε ) = E[P(e ∈ F | A e

ε ,K)] . (7.9)



102 7 Uniform Spanning Trees of Planar Graphs

Denote by Ko the open edge of K (that is, the edge of K in F) and by Kc the closed
edges of K (that is, the edges of K not belonging to F). In particular, ηx and ηy are
contained in Ko. Then by the UST Markov property (7.3), conditioned on K and
the event A e

ε , the law of F is equal to the union of Ko with a sample of the WUSF
on (G − Kc)/Ko. In particular, by Kirchhoff’s formula Theorem 7.5 we have that

P(e ∈ F | A e
ε ,K) ≤ RW

eff(ηx ↔ ηy; G − Kc) , (7.10)

where in the last inequality we used the fact that gluing cannot increase the
resistance (Corollary 2.30).

We will show that the last quantity tends to 0 as ε → 0 which gives (7.8). To
that aim, let vx be the endpoint of the path ηx and let z0 be the center of the P(vx).
On the event A e

ε , for each 1 − |z0| ≤ r ≤ 1/4, we claim that the set Vz0(r, r), as
defined in Definition 7.10, contains a path in G from ηx to ηy that is contained in
R ∪ ηx ∪ ηy or an infinite simple path starting at ηx that is contained in R ∪ ηx .
Either of these paths are therefore a path in G − Kc.

To see this, consider the arc A′(z0, r) = {z ∈ U : |z − z0| = r} viewed
in the clockwise direction and let A(z0, r) be the subarc beginning at the last
intersection of A′(z0, r) with a circle corresponding to a vertex in the trace of ηx ,
and ending at the first intersection after this time of A′(z0, r) with either ∂U or a
circle corresponding to a vertex in the trace of ηy (see Fig. 7.1). Hence, if A e

ε holds,
then the set of vertices of T whose circles in P intersect A(z0, r) contains a path in
T starting at ηx and ending ηy or does not end at all, for every 1 − |z0| ≤ r ≤ 1/4.
To obtain a path in G rather than T we divert the path counterclockwise around
each face of G. That is, whenever the path passes from a vertex u of G to a face f

of G and then to a vertex v of G, we replace this section of the path with the list of
vertices of G incident to f that are between u and v in the counterclockwise order.
By Definition 7.10 this diverted path is in Vz0(r, r) and so this construction shows
that the subgraph of G − Kc induced by the set Vz0(r, r) contains a path from ηx to
ηy or an infinite path from ηx , as claimed.

Let ri = C−i for i = 1, . . . , N where C < ∞ the constant from Lemma 7.11 and
N = �logC(ε)�. Assume without loss of generality that C ≥ 4 so that ε ≤ ri ≤ 1/4
for all i = 1, . . . , N . By Lemma 7.11 the measures μri defined in Lemma 7.12
are supported on sets that are contained in the disjoint sets Vz(ri , 2ri). Thus, by
Lemma 7.9 and Lemma 7.12 we have

RW
eff

(
ηx ↔ ηy ∪ {∞}; G \ Kc

)
≤ E

(
1

N

N∑

i=1

μri

)
= 1

N2

N∑

i=1

E(μri ) ≤ B

log(1/ε)
,

where B < ∞ is a constant depending only on the maximum degree. By symmetry
we also have

RW
eff(η

y ↔ ηx ∪ {∞}; G − Kc) ≤ B

log(1/ε)
.
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Applying Lemma 7.8 and (7.10) gives

P(e ∈ F |FK, A e
ε ) ≤ 3B

log(1/ε)
.

We plug this estimate into (7.10) and take ε → 0, which together with (7.9) shows
that (7.8) holds, concluding our proof. ��

7.6 Exercises

1. Use Theorem 7.5 to show that on the 3-regular infinite tree T3 the probability
measures FUSFT3 and the WUSFT3 are distinct.

2. Let (G; {re}) be a tree with edge resistances {re} such that
∑

n≥1 r(en) = ∞
for any simple infinite path {en}n≥1 in G. Show that the free and wired uniform
spanning forests coincide if and only if (G; {re}) is recurrent.

3. Let Ln be the ladder graph, that is, the vertex set is {1, . . . , n} × {a, b} and the
edges set is {[(i, a), (i, b)] : 1 ≤ i ≤ n} ∪ {[(i, a), (i + 1, a)] : 1 ≤ i ≤
n − 1} ∪ {[(i, b), (i + 1, b)] : 1 ≤ i ≤ n − 1}. Compute the limiting probability,
as n → ∞, that the edge [(1, a), (1, b)] is in the UST of Ln.

4. Show that Z3 contains a transient subtree.
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