
Chapter 6
Recurrence of Random Planar Maps

Our main goal in this chapter is to remove the bounded degrees assumption in
Theorem 5.2 and replace it with the assumption that the degree of the root has an
exponential tail.

Theorem 6.1 ([31]) Let Gn be a sequence of (possibly random) planar graphs such

that Gn
loc−→ (U, ρ) and there exist C, c > 0 such that P(deg(ρ) ≥ k) ≤ Ce−ck for

every k. Then U is almost surely recurrent.

As discussed in Sect. 1.2, the last theorem is immediately applicable in the setting
of random planar maps. It is well known that the degree of the root in the UIPT and
the UIPQ has an exponential tail. See [5, Lemma 4.1 and 4.2] or [26] for the UIPT
and [8, Proposition 9] for the UIPQ.

Corollary 6.2 ([31]) The UIPT/UIPQ are almost surely recurrent.

6.1 Star-Tree Transform

We present here a transformation which transforms any planar map G to a planar
map G∗ with maximal degree of 4. We call this transformation G �→ G∗ the star-
tree transform. Recall that a balanced rooted tree is a finite rooted tree in which
every non-leaf vertex has precisely two children and the distance of the leaves from
the root differs by at most 1. The transformation is performed as follows.

1. Subdivide each edge e by adding a new vertex we of degree two in the “middle”.
See Fig. 6.1b. Denote the resulting graph by G′.

2. For every vertex v ∈ V (G), replace all edges incident to v in G′ by a balanced
binary tree rooted at v, whose leaves are the neighbors of v in G′. We perform
this in a fashion which preserves the cyclic order of these neighbors and thus
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Fig. 6.1 The star-tree transform. (a) An original edge of G. (b) Subdividing an edge. (c) The
“star” of a vertex in G′. (d) Transforming the star of v into a tree Tv

preserves planarity. Furthermore, add two extra vertices and attach them to the
root. Denote this tree by Tv . See Fig. 6.1d.

Remark 6.3 The careful reader will notice that we have not specified precisely what
is Tv (if degG(v) is not a power of 2 there may several balanced binary trees with
deg(v) leaves) and in which way precisely we identify the leaves of Tv with the
neighbors of v in G′ (we may rotate the tree and get a different identification while
still preserving planarity). This is a subtle yet important issue1 and our convention
is that the choice of tree and identification are performed uniformly at random from
all the possible choices. This will be crucially used in Claim 6.13.

Lemma 6.4 Let G be a planar map and G∗ its star-tree transform. We set edge
resistances on G∗ by putting Re = 1/dG(v), where v is the vertex of G for which
e ∈ Tv and dG(v) is the degree of v in G. If the network (G∗, Re) is recurrent, then
G is recurrent as well.

Proof It is clear that from the point of view of recurrence versus transience, the
two edges leading to the two “extra” neighbors of each root do not matter and can
be removed. Hence for the rest of the proof we write Tv for the previously defined
tree with these two edges removed. The purpose of these extra edges will become
apparent later in the proof of Theorem 6.1.

Assume G is transient and let a ∈ V (G) be some vertex. There is a flow θ from
a to ∞ such that E(θ) < ∞. We will construct a flow θ∗ on (G∗, Re) from a to

1We thank Daniel Jerison for pointing this out to us.
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∞ with finite energy, showing that (G∗, Re) is transient, giving the theorem. First
we define a flow θ ′ from a to infinity in G′ in the natural manner: for each edge
e = (x, y) of G we set θ ′(x,we) = θ ′(we, y) = θ(x, y). Obviously E(θ ′) = 2E(θ).

Next we provide some notation. We denote by A the set of vertices that were
added to form G′ in the first step of the star-tree transform, that is, the white vertices
in Fig. 6.1. Each vertex w ∈ A is a leaf of precisely two trees Tu and Tv , where
{u, v} was the edge of G that w divided. We call u and v the tree roots of w. We
denote by B the set of vertices that were added to G∗ in the second step of the star-
tree transform, that is, the gray vertices in Fig. 6.1d. The vertices of V (G) are the
black discs in Fig. 6.1. Each vertex of x ∈ V (G) ∪ B is a member of a single tree
Tv; we call v the tree root of x. Lastly, for any x ∈ V (G)∪B we denote by Cx ⊂ A

the set of leaves of Tv , where v is the tree root of x, for which the path from the leaf
to the root of Tv goes through x; in other words, Cx is the set of leaves of Tv which
are the “descendants” of x. If x ∈ A, then we set Cx = {x}.

To define θ∗, let e = (x, y) be an edge of Tv . Assume that x is closer to the root
of Tv than y in graph distance. We set

θ∗(e) =
∑

w∈Cy

θ ′(v,w) .

The construction of θ∗ is depicted in Fig. 6.2.
We will now show that E(θ∗) ≤ 2E(θ ′) where the energy of θ∗ is taken in the

network (G∗, Re). Let v ∈ V (G) and write h for the height of Tv , that is, h is
the maximal graph distance from a leaf of Tv to its root. Note that since the tree
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Fig. 6.2 The construction of the flow θ∗ from θ . (a) An original edge of G which has flow θ1. (b)
The flow passes through the divided edge. (c) The flow going out from a vertex of G in G′. (d) The
division of the flow in Tv
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is balanced, the distances from the leaves to the root vary by at most 1. Let e =
(x, y) be an edge of Tv and assume that x is closer than y to the root of Tv . By the
construction of θ∗, the contribution of e to E(θ∗) is

Reθ
∗(e)2 = 1

dG(v)

⎛

⎝
∑

w∈Cy

θ ′(v,w)

⎞

⎠
2

.

If the graph distance of y from the root is � ∈ {1, . . . , h}, then |Cy | ≤ 2h−�. Hence
by Cauchy-Schwarz

Reθ
∗(e)2 ≤ 2h−�

dG(v)

∑

w∈Cy

θ ′(v,w)2 .

Summing over all edges in Tv at distance � from the root, we go over each leaf of
Tv precisely once. Thus,

∑

e=(x,y)∈Tv

dG∗ (y,v)=�

Reθ
∗(e)2 ≤ 2h−�

dG(v)

∑

w∈Cv

θ ′(v,w)2 .

We now sum over all edges in Tv by summing over � ∈ {1, . . . , h}. We get

∑

e∈Tv

Reθ
∗(e)2 ≤ 2h

dG(v)

∑

w∈Cv

θ ′(v,w)2 ≤ 2
∑

w∈Cv

θ ′(v,w)2 ,

since h ≤ log2(dG(v)) + 1. Lastly, we sum this over all v ∈ V (G) to obtain that

E(θ∗) ≤ 2E(θ ′) = 4E(θ) ,

concluding our proof. �


6.2 Stationary Random Graphs and Markings

Stationary Random Graphs

Recall that Theorem 6.1 and the entire setup of Chap. 5 is adapted to the case when
Gn is itself random. The reason is that in Definition 5.1 we consider the graph
distance ball BGn(ρn, r) as a random variable in the probability space (G•, dloc),
where ρn conditioned on Gn is a uniformly chosen random vertex.
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Let us emphasize that this is not the same as drawing a sample of {Gn} and

claiming that almost surely Gn
loc−→ (U, ρ). For example, let Gn be a path of length

n with probability 1/2 and an n×n square grid with probability 1/2, independently

for all n. In this case Gn
loc−→ (U, ρ) where U = Z with probability 1/2 and U = Z

2

with probability 1/2, however, almost surely on the sequence {Gn}, the local limit
of Gn does not exist.

In many cases it is useful to take a random root drawn from the stationary
distribution on Gn, that is, the probability distribution on vertices giving each vertex
v probability degGn

(v)/2|E(Gn)|. In a similar fashion to Definition 5.1, we define
this type of local convergence.

Definition 6.5 Let {Gn} be a sequence of (possibly random) finite graphs with non-

empty sets of edges. We say that Gn
loc−→
π

(U, ρ) where (U, ρ) is a random rooted

graph, if for every integer r ≥ 1,

BGn(ρn, r)
d−→ BU(ρ, r),

where ρn is a randomly chosen vertex from Gn with distribution proportional to the
vertex degrees. We call such a limit a stationary local limit.

Let us remark that Gn
loc−→ (U, ρ) does not imply that Gn

loc−→
π

(U ′, ρ′) for some

(U ′, ρ′). Indeed, let Gn be a path of length n attached to a complete graph on
√

n

vertices. Then the local limit of Gn is Z, however the limit according to a stationary
random root does not exist.

The reason for taking the
loc−→
π

limit rather than the uniform limit as before is that

the random walk on the limit (U, ρ) starting from ρ is then stationary.

Claim 6.6 Assume that Gn
loc−→
π

(U, ρ). Conditioned on (U, ρ), let X1 be a

uniformly chosen neighbor of ρ. Then (U,X1) is equal in law to (U, ρ). Similarly,
if {Xn}n≥0 is the simple random walk on (U, ρ), then for each n ≥ 0 the law of
(U,Xn) coincides with the law of (U, ρ).

Proof If H is a finite graph and v is a vertex chosen with probability proportional
to its degree, then it is immediate that a uniformly chosen random neighbor of v

is distributed according to the stationary distribution. Thus for any fixed r > 0 the
ball BGn(ρn, r) has the same distribution as BGn(X1, r) where ρn is drawn from the
stationary distribution on Gn and X1 is a uniform neighbor of ρn. The claim follows
now by definition. �

Definition 6.7 A random rooted graph (G, ρ) is called a stationary random graph
if (G,X1) has the same distribution as (G, ρ), where the vertex X1 is a uniform
neighbor of ρ conditioned on (G, ρ).
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We would like to develop a simple abstract framework that will allow us to

comfortably move from
loc−→ convergence to

loc−→
π

convergence and vice versa. This

is straightforward when {Gn} are a sequence of deterministic graphs with uniformly
bounded average degree but is less obvious when Gn themselves are random. For
this we need to degree bias our random graphs.

Definition 6.8 Denote by P the law of a random rooted graph (G, ρ) and assume
that E deg(ρ) ∈ (0,∞). The probability measure μ on (G•, dloc) defined by

μ(A) := 1

E deg(ρ)

∑

k≥1

k P(A ∩ {deg(ρ) = k}) ,

for any event A ⊂ (G•, dloc) is called the degree biasing of P. Similarly, if we
assume that almost surely ρ is not an isolated vertex, then the probability measure
ν defined by

ν(A) = 1

E[deg(ρ)−1]
∑

k≥1

P(A ∩ {deg(ρ) = k})
k

,

is called the degree unbiasing of P.

Lemma 6.9 Assume that (G, ρ) is a random rooted graph such that G is almost
surely finite, that the distribution of ρ given G is uniform and that E deg(ρ) ∈
(0,∞). Then the degree biasing of (G, ρ) is a stationary random graph.

Conversely, assume that (Gπ, ρπ ) is a stationary random graph such that Gπ is
almost surely finite and has no isolated vertices. Then its degree unbiasing (G, ρ) is
such that G is almost surely finite and ρ conditioned on G is uniformly distributed.

Proof We will prove only the first statement and the second is similar. Denote by
(Gπ, ρπ ) a random variable drawn according to the degree biasing of (G, ρ). Let
H be a fixed finite graph and denote by degH (v) the degree of a vertex v in H . By
definition we have that

P((Gπ, ρπ ) = (H, v)) = degH(v) · P((G, ρ) = (H, v))

E deg(ρ)
. (6.1)

Let X1 be a uniformly chosen neighbor of ρπ . Then by (6.1)

P((Gπ , X1) = (H, u)) =
∑

v : {u,v}∈E(H)

P((Gπ , ρπ ) = (H, v))

degH (v)
=

∑
v : {u,v}∈E(H) P((G, ρ) = (H, v))

E deg(ρ)
.

Since ρ is uniformly distributed given G, the quantity P((G, ρ) = (H, v)) is the
same for all v. So

P((Gπ,X1) = (H, u)) = degH (u)P((G, ρ) = (H, u))

E deg(ρ)
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so by (6.1) the required assertion follows. �

Corollary 6.10 Assume that {Gn} is a sequence of random graphs that are almost
surely finite and that E deg(ρn) ∈ (0,∞) where ρn is a uniformly chosen vertex of

Gn. Let (Gπ
n , ρπ

n ) be the degree biasing of (Gn, ρn). Assume that Gn
loc−→ (U, ρ)

and that E deg(ρ) < ∞ and that E deg(ρn) → E deg(ρ). Then Gπ
n

loc−→
π

(Uπ , ρπ )

where (Uπ , ρπ ) is the degree biasing of (U, ρ). Furthermore, (U, ρ) and (Uπ , ρπ )

are absolutely continuous with respect to each other.
Conversely, assume that {Gπ

n } is a sequence of random graphs that are almost
surely finite and have no isolated vertices. Denote by ρπ

n a random vertex of Gπ
n

drawn with probability proportional to the vertex degrees and by (Gn, ρn) the

degree unbiasing of (Gπ
n , ρπ

n ). If Gπ
n

loc−→
π

(Uπ, ρπ ), then Gn
loc−→ (U, ρ) where

(U, ρ) is the degree unbiasing of (Uπ, ρπ ). Furthermore, (U, ρ) and (Uπ , ρπ) are
absolutely continuous with respect to each other.

Proof We start by proving the first assertion. Let (H, v) be a finite rooted graph and
r > 0 a fixed integer. Then by Definition 6.8

P(BGπ
n
(ρπ

n , r) = (H, v)) = degH(v)P(BGn(ρn, r) = (H, v))

E deg(ρn)
.

Since Gn
loc−→ (U, ρ) and E deg(ρn) → E deg(ρ) we obtain that

lim
n→∞P(BGπ

n
(ρπ

n , r) = (H, v)) = degH (v)P(BU (ρ, r) = (H, v))

E deg(ρ)
= P(BUπ (ρπ , r) = (H, v)),

where the last equality is also by Definition 6.8. The absolute continuity of (U, ρ)

and (Uπ , ρπ ) follows immediately from the definition.
The second statement follows by the same proof. Note that E[deg(ρπ

n )−1] →
E[deg(ρπ )−1] by definition since BGπ

n
(ρπ

n , 1) converges in distribution to
BUπ (ρπ , 1) and the function f ((G, ρ)) = deg(ρ)−1 is a bounded continuous
function on G•. �


We end this subsection by addressing the somewhat technical issue of verifying
the condition E deg(ρn) → E deg(ρ) in Corollary 6.10. It is not guaranteed just by
requiring supn E deg(ρn) < ∞ as can be seen in the example of a path of length
n where we choose

√
n arbitrary vertices and add

√
n loops to each one; in this

example deg(ρ) = 2 almost surely, and E deg(ρn) = 4 + o(1). However, we now
show that it is always possible to “truncate” the finite graphs Gn by removing edges
touching vertices of large degrees so that the limit is unchanged and the average
degrees converge to the expected degree of the limit. Given a finite graph G and an
integer k ≥ 1 we denote by G∧k the graph obtained from G by erasing all the edges
touching vertices of degree at least k. We note that even when G is connected, G∧k

may be disconnected and may have isolated vertices. As we defined in Sect. 5.1, by
(G ∧ k, ρ) we mean (G ∧ k[ρ], ρ) where G ∧ k[ρ] is the connected component of
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ρ in G ∧ k, hence it is a member of G• even when it is disconnected. All statements
in this chapter, most importantly Corollary 6.10, do not assume the graphs involved
are connected.

Lemma 6.11 Let {Gn} be a sequence of random finite graphs such that Gn
loc−→

(U, ρ) and E deg(ρ) < ∞. Then there exists a sequence k(n) → ∞ such that

Gn ∧ k(n)
loc−→ (U, ρ) .

Furthermore, if we set G′
n = Gn ∧ k(n), then

E degG′
n
(ρn) → E deg(ρ) ,

where ρn is a uniformly chosen vertex of G′
n.

Proof We first show that for any sequence k(n) → ∞ we have that Gn ∧ k(n)
loc−→

(U, ρ). Indeed, since Gn
loc−→ (U, ρ) we have that for any fixed integer r ≥ 1

P

(
max

{
deg(v) : v ∈ BGn(ρn, r)

} ≥ k(n)
)

→ 0 .

If max{deg(v) : v ∈ BGn(ρn, r + 1)} < k(n), then BGn(ρn, r) = BGn∧k(n)(ρn, r).
Since Gn and Gn ∧ k(n) have the same set of vertices we deduce that for any fixed
r ≥ 1 and any rooted graph (H, v)

P
(
BGn∧k(n)(ρn, r) = (H, v)) → P(BU(ρ, r) = (H, v)) .

Secondly, since deg(ρn) converges in distribution to deg(ρ) we have that there
exists a sequence k(n) → ∞ such that E[deg(ρn) ∧ k(n)] → E deg(ρ). Indeed, by
dominated convergence we have that E[deg(ρ)∧k] →k→∞ E deg(ρ). Furthermore,
for any fixed k the function f ((G, ρ)) = deg(ρ) ∧ k is a bounded and continuous
on G•, thus E[deg(ρn) ∧ k] →n→∞ E[deg(ρ) ∧ k]. Hence for any ε > 0 there exist
k and N such that for all n ≥ N we have that |E[deg(ρn) ∧ k] − E deg(ρ)| ≤ ε. It
is an exercise that this implies the existence of k(n).

Lastly, lim supE degG′
n
(ρn) ≤ E deg(ρ) since degG′

n
(ρn) ≤ degGn

(ρn) ∧
k(n). We also have that degG′

n
(ρn)

d−→ deg(ρ), hence by Fatou’s lemma
lim infE degG′

n
(ρn) ≥ E deg(ρ), and hence the second assertions follows. �


Markings

Given a locally convergent sequence of (possibly random) graphs Gn, we wish to
apply the star-tree transform on them to create a sequence G∗

n and take its local limit
of that while “remembering”, in light of Lemma 6.4, the original degrees of Gn. The
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approach is a rather straightforward extension of the abstract setting of Sect. 5.1,
see also [2]. We consider the space of triples (G, ρ,M) where G = (V ,E) is a
graph, ρ ∈ V is a vertex and M : E → R is a function assigning real values
to the edges. We endow the space with a metric by setting the distance between
(G1, ρ1,M1) and (G2, ρ2,M2) to be 2−R where R is the maximal value such that
there exists a rooted graph isomorphism ϕ between BG1(ρ1, R) and BG2(ρ2, R)

such that |M1(e) − M2(ϕ(e))| ≤ R−1 for all edges e ∈ E(G) both of whose end
points are in BG1(ρ1, R). It is easy to check that this space is again a Polish space, so
again we may define convergence in distribution of random variables taking values
in this space.

We say that such a random triplet (U, ρ,M) is stationary if conditioned on
(U, ρ,M) a uniformly chosen random neighbor X1 of ρ satisfies that (U, ρ,M)

has the same law as (U,X1,M) in the space of isomorphism classes of rooted
graphs with markings (that is, rooted isomorphisms that preserve the markings).
Given a marking M we extend it to M : E(U) ∪ V (U) → R by setting M(v) =
maxe:v∈e M(e) for any v ∈ V (U). We say that (U, ρ,M) has an exponential tail if
for some A < ∞ and β > 0 we have that P(M(ρ) ≥ s) ≤ Ae−βs for all s ≥ 0.

In the following lemma we consider a stationary triplet (U, ρ,M) that has an
exponential tail and compare the hitting probabilities of certain sets when we endow
the graphs with two sets of edge resistances: the first are the usual unit resistances,
and in the second we may change the edge resistances arbitrarily but only on edges
with high M values. We tailored the lemma this way in order to show that (G∗, Re)

from Lemma 6.4 is recurrent.

Lemma 6.12 Let (U, ρ,M) be a stationary, bounded degree rooted random graph
with markings which has an exponential tail. Conditioned on (U, ρ,M) and given
some finite set B ⊂ U , let Pρ denote the unit-resistance random walk on U starting
from ρ and let P′

ρ denote the random walk on U with edge resistances R′
e satisfying

that R′
e = 1 whenever M(e) ≤ 21β−1 log |B|. Then almost surely on (U, ρ,M)

there exists K < ∞ such that for any finite subset B ⊂ U with |B| ≥ K we have

∣∣Pρ(τU\B < τ+
ρ ) − P′

ρ(τU\B < τ+
ρ )

∣∣ ≤ 1

|B| .

Proof For every pair of integers T , s ≥ 1 we set

AT ,s =
{

Pρ(∃t < T : M(Xt) ≥ s) ≤ T 3e−βs/2
}

.

Since (U, ρ,M) is stationary and has an exponential tail for any t ≥ 0 we have

E
[
Pρ(M(Xt ) ≥ s)

] ≤ Ae−βs ,

hence by the union bound

E
[
Pρ(∃t < T : M(Xt ) ≥ s)

] ≤ AT e−βs .
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Thus by Markov’s inequality

P
(Ac

T ,s

) ≤ AT −2e−βs/2 .

By Borel-Cantelli we deduce that almost surely AT ,s occurs for all but finitely many
pairs T , s. Conditioned on (U, ρ,M), we may consider only finite subsets B ⊂ U

which contain ρ, since otherwise both probabilities in the statement of the lemma
are 1. Let B be such a subset. By the commute time identity Lemma 2.26, and since
the maximum degree of U is bounded,

Eρ(τU\B) ≤ CReff(ρ ↔ U \ B)|B| ≤ C|B|2 ,

for some constant C > 0. The last inequality is since the resistance is bounded
by |B| since there is a path of length at most |B| from ρ to U \ B. By Markov’s
inequality,

Pρ(τU\B ≥ T ) ≤ C|B|2
T

.

Write S = {v ∈ U : M(v) ≥ s}. For every T , s for which AT ,s occurs we have

Pρ

(
τS < τ+

{ρ}∪U\B
)

≤ Pρ(τU\B ≥ T ) + Pρ(∃t < T : M(Xt) ≥ s) ≤ C|B|2
T

+ T 3e−βs/2.

We now choose T = 2C|B|3 and s = 21β−1 log |B| so that the right hand side of the
last inequality is at most |B|−1 when |B| is sufficiently large. It is clear that we can
couple two random walks starting from ρ, one walking on U with unit resistances
and the other on (U,Re), so that they remain together until they visit a vertex of S.
Hence, when |B| is large enough so that the chosen T , s are such that AT ,s holds we
deduce from the last inequality that with probability at least 1 − |B|−1 the simple
random walk on U visits {ρ} ∪ U \ B before visiting S, concluding our proof. �


6.3 Proof of Theorem 6.1

We now proceed to wrapping up the proof of Theorem 6.1. Recall that we have a

sequence of finite planar graphs {Gn} such that Gn
loc−→ (U, ρ) and with P(deg(ρ) ≥

k) ≤ Ce−ck . Our goal is to prove that (U, ρ) is almost surely recurrent.
Let us explain how we use Lemma 6.11 and Corollary 6.10 to truncate and degree

bias Gn and (U, ρ) so that we may assume without loss of generality that Gn
loc−→
π

(U, ρ). Indeed, if it does not hold that E deg(ρn) → E deg(ρ) we consider Gn∧k(n)

of Lemma 6.11 which has the same limit (U, ρ). Since k(n) → ∞ the graphs
Gn ∧ k(n) have non-empty set of edges (we assume that Gn have non-empty sets of
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edges otherwise (U, ρ) is an isolated vertex), and thus we may apply Corollary 6.10
and deduce that the degree biasing (Gn ∧ k(n), ρn) converges to the degree biasing
of (U, ρ) which is absolutely continuous with respect to (U, ρ), and in particular, it
is recurrent almost surely if and only if (U, ρ) is. We also erase from Gn ∧ k(n) all
isolated vertices that may have been created in the truncation, since these are drawn
with probability 0 after the degree bias. This will be important for us later when
we unbias the graphs. Lastly, it is an easy computation using Definition 6.8 that
we still have P(deg(ρ) ≥ k) ≤ Ce−ck (possibly for some other positive constants

C, c). Thus, from now on we assume without loss of generality that Gn
loc−→
π

(U, ρ)

and that deg(ρ) has an exponential tail and that Gn have no isolated vertices almost
surely.

Recall now the definitions and notations of Sect. 6.1. Consider the star-tree
transform G∗

n of Gn and let ρ∗
n be a random vertex of Tρn drawn according to

the stationary distribution of Tρn . Similarly, conditioned on (U, ρ), let U∗ be the
star-tree transform of U and ρ∗ be a random vertex of Tρ drawn according to
the stationary distribution of Tρ . Furthermore, we put markings on G∗

n and U∗ by
marking each edge e of G∗

n or U∗ with deg(v) whenever e is in the tree Tv and
deg(v) is the degree of v in Gn or U , respectively. Denote these markings by Mn

and M , respectively.

Claim 6.13 We have that (G∗
n, ρ

∗
n,Mn) for each n and (U∗, ρ∗,M) are stationary,

and,

(G∗
n, ρ

∗
n,Mn)

d−→ (U∗, ρ∗,M) .

Proof Since for any fixed integer r > 0, the laws of BG∗
n
(ρ∗

n, r) and BU∗(ρ∗, r) are
determined by BGn(ρn, r) and BU (ρ, r), respectively, see Remark 6.3. We obtain
that

(G∗
n, ρ

∗
n,Mn)

d−→ (U∗, ρ∗,M) .

Secondly, it is immediate to check that for each v ∈ Gn we have that the number
of edges in Tv is precisely 2 degGn

(v). This is the reason why we added the two
“extra” neighbors to the root of Tv in the star tree transform described in Sect. 6.1.
Thus, conditioned on Gn, for any x ∈ G∗

n such that x ∈ Tv for some v ∈ Gn we
have that

P(ρ∗
n = x | Gn) = degGn

(v)

2|E(Gn)| · degTv
(x)

2|E(Tv)| = degTv
(x)

2|E(G∗
n)|

,

or in other words, (G∗
n, ρ

∗
n,Mn) is a stationary random graph and since it converges

to (U∗, ρ∗,M), the latter is also stationary. �
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Lemma 6.14 The triplet (U∗, ρ∗,M) has an exponential tail.

Proof We observe that M(ρ∗) = deg(v) where v is either ρ or one of its neighbors.
Hence it suffices to show that if (U, ρ) is a stationary local limit such that deg(ρ)

has an exponential tail, then the random variable D(ρ) = maxv:{ρ,v}∈E(U) deg(v)

has an exponential tail. We have

P(D(ρ) ≥ k) ≤ P(deg(ρ) ≥ k) + P(deg(ρ) ≤ k and D(ρ) ≥ k) . (6.2)

The probability of the first term on the right hand side decays exponentially in k due
to our assumption on (U, ρ). Conditioned on (U, ρ), let X1 be a uniformly chosen
random neighbor of ρ. Then clearly

P(deg(X1) ≥ k | deg(ρ) ≤ k and D(ρ) ≥ k) ≥ k−1 .

However, by stationarity P(deg(X1) ≥ k) = P(deg(ρ) ≥ k), which decays
exponentially. We conclude that the second term on the right hand side of (6.2)
decays exponentially as well. �


Consider the stationary random graph (U∗, ρ∗,M). By Lemma 6.14 it has an
exponential tail. Consider the edge resistances

Runit
e ≡ 1 , Rmark

e = 1

M(e)
.

In view of Lemma 6.4, it suffices to show that the network (U∗, Rmark) is almost
surely recurrent, for then it will follow that U is almost surely recurrent. To prove the
former, we apply the second assertion of Corollary 6.10 which allows us to assume
without loss of generality that (U∗, ρ∗) is a local limit of finite planar maps (rather
than a stationary local limit). In the beginning of the proof we assumed that almost
surely Gn have no isolated vertices (they were erased after the degree biasing), hence
the same holds for G∗

n and we may use Corollary 6.10. Since (U∗, ρ∗) is now a local
limit of finite planar maps with degrees bounded by 4 we may apply Theorem 5.8 to
obtain an almost sure constant c > 0 and a sequence of sets Bk ⊂ U∗ such that

1. ck ≤ |Bk| ≤ c−1k, and
2. Reff(ρ

∗ ↔ U∗ \ Bk ; {Runit
e }) ≥ c log k,

where we added to the conclusion of Theorem 5.8 that Bk ≥ ck since adding vertices
to Bk makes the lower bound on the resistance even better.

We now define one extra set of edge resistances on U∗ which will allow us to
interpolate between the edge resistances Runit and Rmark. For each integer k ≥ 1 we
define

Rmid
e =

{
1 M(e) ≤ C log k,

M−1(e) otherwise ,
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where C > 0 is some large constant that will be chosen later. We will use P,
Pmark and Pmid to denote the probability measures, conditioned on (U∗, ρ∗,M), of
random walks on U∗ with edge resistances {Runit

e }, {Rmark
e } and {Rmid

e }, respectively.

Lemma 6.15 For some other constant c > 0 we have

Reff(ρ
∗ ↔ U∗ \ Bk ; {Rmid

e }) ≥ c log k .

Proof We may assume k is large enough so that M(e) ≤ C log k for every edge e

incident to ρ∗. By Claim 2.22 we have

Reff(ρ
∗ ↔ U∗ \ Bk ; {Runit

e }) ≤ 1

Pρ∗(τU∗\Bk < τ+
ρ∗)

,

hence

Pρ∗(τU∗\Bk < τ+
ρ∗) ≤ 1

c log k
,

by our assumption on Bk above. By Lemma 6.12 it follows that

Pmid
ρ∗ (τU∗\Bk < τ+

ρ∗) ≤ 2

c log k
,

when k is large enough and the constant C > 0 in the definition of {Rmid
e } is chosen

large enough with respect to β. Using Claim 2.22 again and the fact that U∗ has
degrees bounded by 4 concludes the proof. �


We need yet another easy general fact about electric networks.

Claim 6.16 Consider a finite network G in which all resistances are bounded above
by 1. Then for any integer m ≥ 1 and any two vertices a �= z we have

Reff(BG(a,m) ↔ z) ≥ Reff(a ↔ z) − m .

Proof Let θm be the unit current flow from B(a,m) to z. For a vertex v ∈ B(a,m)

denote

αv =
∑

u �∈B(a,m):u∼v

θm(vu)

so that αv ≥ 0 for all v ∈ B(a,m) and
∑

v∈B(a,m) αv = 1. For a vertex v ∈ B(a,m)

let θa,v be a unit flow putting flow 1 on some shortest path from a to v in B(a,m).
Set

θ =
∑

v∈B(a,m)

αv(θ
m + θa,v) .
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By Thomson’s principle (Theorem 2.28), Jensen’s inequality and since∑
v αv = 1 we have

Reff(a ↔ z) ≤ E(θ) = E(θm) +
∑

e

re
[ ∑

v∈B(a,m)

αvθ
a,v(e)

]2 ≤ E(θm) +
∑

v∈B(a,m)

αv

∑

e

re
(
θa,v(e)

)2

≤ E(θm) +
∑

v∈B(a,m)

αv · m = Reff(B(a,m) ↔ z) + m . �


We are finally ready to conclude the proof of the main theorem of this chapter.

Proof of Theorem 6.1 By Lemma 6.15 and Claim 6.16 we have that the sets Bk

obtained earlier satisfy that for any m ≥ 0

Reff(BU∗(ρ∗,m) ↔ U∗ \ Bk ; {Rmid
e }) ≥ c log k − m .

Moreover, for every edge e,

Rmark
e ≥ Rmid

e

C log k
,

hence

Reff(BU∗(ρ∗,m) ↔ U∗ \ Bk ; {Rmark
e }) ≥ c/C − m/C log k .

By taking k → ∞ we deduce that there exists c > 0 such that for any m ≥ 1

Reff(BU∗(ρ∗,m) ↔ ∞; {Rmark
e }) ≥ c .

Consider the current unit flow from ρ∗ to ∞ in (U∗, {Rmark
e }). If this flow had finite

energy, then for any ε > 0 there would exists m ≥ 1 such that Reff(BU∗(ρ∗,m) ↔
∞; {Rmark

e }) ≤ ε, which is a contradiction to the above. Hence

Reff(ρ
∗ ↔ ∞; {Rmark

e }) = ∞ ,

that is, (U∗, {Rmark
e }) is almost surely recurrent. The theorem now follows by

Lemma 6.4. �
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