
Chapter 5
Planar Local Graph Limits

5.1 Local Convergence of Graphs and Maps

In order to study large random graphs it is mathematically natural and appealing to
introduce an infinite limiting object and study its properties. In their seminal paper,
Benjamini and Schramm [11] introduced the notion of locally convergent graph
sequences, which we now describe.

We will consider random variables taking values in the space G• of locally finite
connected rooted graphs viewed up to root preserving graph isomorphisms. That is,
G• is the space of pairs (G, ρ) where G is a locally finite graph (which may be finite
or infinite) and ρ ∈ V (G) is a vertex of G and two elements (G1, ρ1), (G2, ρ2)

are considered equivalent if there is a graph isomorphism between them (that is, a
bijection ϕ : V (G1) → V (G2) such that ϕ(ρ1) = ϕ(ρ2) and {v1, v2} ∈ E(G1)

if and only if {ϕ(v1), ϕ(v2)} ∈ E(G2)). We remark that throughout this book
our graphs will almost entirely be connected. In the rare case when G is not
connected, we impose the convention that (G, ρ) refers to (G[ρ], ρ) where G[ρ]
is the connected component of ρ in G. This way (G, ρ) ∈ G• even when G is
disconnected (this will only be relevant in Chap. 6, and in particular in Lemma 6.11
and its usage).

In a similar fashion we define M• to be the set of equivalence classes of
rooted maps; in this case we require the graph isomorphism to preserve additionally
the cyclic permutations of the neighbors of each vertex, that is, it is a map
isomorphism. Let us describe the topology on G• and M•. For convenience we
discuss G• but every statement in the following holds for M• as well.

Given an element (G, ρ) of G•, the finite graph BG(ρ,R) is the subgraph of
(G, ρ) rooted at ρ spanned by the vertices of distance at most R from ρ. We provide
G• with a metric dloc

dloc((G1, ρ1), (G2, ρ2)) = 2−R,
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where R is the largest integer for which BG1(ρ1, R) and BG2(ρ2, R) are isomorphic
as graphs. This is a separable topological space (the finite graphs form a countable
base for the topology) and is easily seen to be complete, thus it is a Polish space.
The distances are bounded by 1 but the space is not compact. Indeed, the sequence
Gn of stars with n leaves emanating from the root ρ has no converging subsequence.

Since G• is a Polish space, we can discuss convergence in distribution of
a sequence of random variables {Xn}∞n=1 taking values in G•. We say that Xn

converges in distribution to a random variable X, and denote it by Xn
d−→ X, if

for every bounded continuous function f : G• → R we have that E(f (Xn)) →
E(f (X)). We will be focused here on the particular situation in which Xn is a
finite rooted random graph (Gn, ρn) such that given Gn, the root ρn is uniformly
distributed among the vertices of Gn. It is a very common setting and justifies the
following definition.

Definition 5.1 Let {Gn} be a sequence of (possibly random) finite graphs. We say
that Gn converges locally to a (possibly infinite) random rooted graph (U, ρ) ∈ G•,

and denote it by Gn
loc−→ (U, ρ), if for every integer r ≥ 1,

BGn(ρn, r)
d−→ BU(ρ, r),

where ρn is a uniformly chosen vertex from Gn.

It is straightforward to see that this definition is equivalent to saying that the random
variables (Gn, ρn) converge in distribution to (U, ρ). Note that this definition is
consistent whether Gn is a deterministic finite graph or is a random variable drawn
from some probability measure. In both cases BGn(ρn, r) is a random variable
taking values in G• and we clarify that ρn is drawn uniformly conditioned on Gn.

Examples

• The sequence {Gn} of paths of length n converges locally to the graph (Z, 0)

(note that the root vertex can be chosen to be any vertex of Z since (Z, i) and
(Z, j) are equivalent for all i, j ∈ Z).

• The sequence {Gn} of the n×n square grid converges locally to the graph (Z2, 0)

(again the root can be chosen to be any vertex of Z2).
• Let λ > 0 be fixed and let {G(n, λ

n
)} be the sequence of random graphs obtained

from the complete graph Kn by retaining each edge with probability λ
n

and
erasing it otherwise, independently for all edges. This is known as the Erdös-
Rényi random graph. One can verify that this sequences converges locally to a
branching process with progeny distribution Poisson(λ). See exercise 1 of this
chapter.
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Fig. 5.1 A part of the
canopy tree

• Let Gn be the binary tree of height n. Perhaps surprisingly, its local limit is not the
infinite binary tree. Instead, it is the following so-called canopy tree depicted in
Fig. 5.1 and the root is at distance k ≥ 0 from the leaves with probability 2−k−1.
Note that the distance of the root from the leaves determines the isomorphism
class of the rooted graph. It is easy to see that the canopy tree is not isomorphic to
the infinite binary tree, for example, it has leaves; furthermore, unlike the infinite
binary tree it is recurrent.

• Consider Gn to be a path of length n, glued via one of its leaves into a
√

n × √
n

grid. The local limit of Gn is (U, ρ), where (U, ρ) is (Z, 0) with probability 1/2,
and (Z2, 0) otherwise.

Our goal in this chapter is to prove the following pioneering result.

Theorem 5.2 (Benjamini–Schramm [11]) Let M < ∞ and let Gn be finite planar

maps (possibly random) with degrees almost surely bounded by M such that Gn
loc−→

(U, ρ). Then (U, ρ) is almost surely recurrent.

For instance, a local limit of planar maps cannot be the 3-regular infinite tree
(however, the 3-regular infinite tree can be obtained as a local limit of uniformly
random 3-regular graphs). The bounded degree assumption in Theorem 5.2 is
necessary. Indeed, suppose we start with a binary tree of height n and replace each
edge (u, v) that is at distance k ≥ 0 from the leaves by 2k parallel edges. By the same
reasoning of the local convergence of binary trees to the canopy tree, the modified
graph sequence converges locally to a modified canopy tree in which an edge at
distance k from the leaves is replaced with 2k parallel edges. Using the parallel law
it is immediate to see that this graph is transient, and that the effective resistance
from a leaf to ∞ is at most 2 (in fact it equals 2). See Fig. 5.2.
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Fig. 5.2 A part of a
transient canopy tree.
Numbers on edges are
conductances of those edges
after applying the parallel law
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5.2 The Magic Lemma

Suppose C ⊆ R
2 is finite. For each w ∈ C, define

ρw = min{|v − w| : v ∈ C \ {w}}.

We call ρw the isolation radius of w. Given δ ∈ (0, 1), s ≥ 2 and w ∈ C, we
say that w is (δ, s)-supported if in the disk of radius δ−1ρw around w there are
at least s points of C outside any given disk of radius δρw. In other words, w is
(δ, s)-supported if

inf
p∈R2

∣
∣
∣C ∩ B

(

w, δ−1ρw

)

\ B(p, δρw)

∣
∣
∣ ≥ s.

The proof of Theorem 5.2 is based on the following lemma, which has been
dubbed “the Magic Lemma”.

Lemma 5.3 ([11]) There exists A > 0 such that for every δ ∈ (0, 1/2), every finite
C ⊆ R

2 and every s ≥ 2, the number of (δ, s)-supported points in C is at most

A|C|δ−2 ln(δ−1)

s
.

Remark 5.4 We prove the lemma for R2, but it holds for Rd or any other doubling
metric space. In fact, a metric space for which the lemma holds must be doubling;
see [29].
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Proof of Lemma 5.3

Let k ≥ 3 be an integer (later we will take k = k(δ)). Let G0 be a tiling of R2 by
1 × 1 squares, rooted at some point p, and for every n ∈ Z, let Gn be a tiling of R2

by kn × kn such that each square of Gn is tiled by k × k squares of Gn−1. We may
choose p so that none of the points of C lies on the edge of a square.

We say that a square S ∈ Gn is s-supported if for every smaller square S′ ∈
Gn−1 we have that |C ∩ (S \ S′)| ≥ s.

Claim 5.5 For any s ≥ 2 the total number of s-supported squares, in G =
⋃

n∈Z Gn, is at most 2|C|/s.

Proof Define a “flow” f : G × G → R as follows:

f (S′, S) =

⎧

⎪⎪⎨

⎪⎪⎩

min(s/2, |S′ ∩ C|) S′ ⊆ S, S′ ∈ Gn, S ∈ Gn+1,

−f (S, S′) S ⊆ S′, S ∈ Gn, S
′ ∈ Gn+1,

0 otherwise.

Let us make two initial observations. First we have that

∑

S ′∈G

f (S′, S) ≥ 0 , (5.1)

by splitting into the two cases depending on whether there exists a square S′ ⊆ S

such that f (S′, S) = s/2 or not. Secondly, if S is a s-supported square

∑

S ′∈G

f (S′, S) ≥ s

2
, (5.2)

by splitting into cases depending on whether the number of squares S′ ⊆ S such
that f (S′, S) = s/2 is at most one or at least two.

Let a ∈ Z be such that each square in Ga contains at most 1 point of C so there
are no s-supported squares in

⋃

n≤a Gn. It easily follows from the definition of f

that

∑

S ′∈Ga

∑

S∈Ga+1

f (S′, S) = |C|, (5.3)

and that for every b ∈ Z

∑

S ′∈Gb

∑

S∈Gb+1

f (S′, S) ≥ 0. (5.4)
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Now, using (5.3) and (5.4),

b
∑

n=a+1

∑

S∈Gn

∑

S ′∈G

f (S′, S) =
b

∑

n=a+1

∑

S∈Gn

⎛

⎝
∑

S ′∈Gn−1

f (S′, S) +
∑

S ′∈Gn+1

f (S′, S)

⎞

⎠

=
∑

S∈Ga+1

∑

S ′∈Ga

f (S′, S) +
∑

S∈Gb

∑

S ′∈Gb+1

f (S′, S) ≤ |C|.

Therefore, using (5.1) and (5.2), we deduce that there are at most 2|C|/s squares in
⋃

b≥n>a Gn that are s-supported. Sending b → ∞ finishes the proof. ��
The above claim is very close to the statement of Lemma 5.3 which we are

pursuing. However, we need to move from squares to circles. We choose k =

20δ−2� and let β ∼ Unif([0, ln k]). Let G0 be a tiling with side length eβ , based at
the origin. Suppose we have defined Gn as a tiling of squares of side length eβkn;
then Gn+1 is a tiling of squares of side length eβkn+1 that is based uniformly at one
of the k2 possible points of Gn. Because the desired statement is invariant under
translation and dilation of C, we may assume that C does not intersect the edges of
Gn (for every n) and that ρw ≥ k for every w ∈ C. We call a point w ∈ C a city in
a square S ∈ G if:

• the side length of S is in the interval [4δ−1ρw, 5δ−1ρw], and
• the distance from w to the center of S is at most δ−1ρw .

Claim 5.6 The probability that any given w ∈ C is a city is Ω(ln−1(δ−1)).

Proof For the first item to hold, β needs to satisfy that there exists n ∈ Z such
that eβkn ∈ [4δ−1ρw, 5δ−1ρw], or β + n ln k ∈ ln(δ−1ρw) + [ln 4, ln 5]. Since
β ∈ Unif([0, ln k]), the probability for that is (ln(5/4))/ ln k, which is Ω(ln−1(δ−1))

when δ ∈ (0, 1/2).
As for the second item, it holds with positive probability (independent of δ) over

the k2 choices for basing Gn on top of Gn−1, given that β satisfies the requirement
posed by the first item. ��
Claim 5.7 If w is a city in S and is (δ, s)-supported, then S is s-supported.

Proof If S ∈ Gn is as above, then any little square S′ ∈ Gn−1 has side length at
most

δ2

20
· 5ρw

δ
= δρw

4
.

Hence, it is contained in a disk of radius δρw. Thus, for every S′ ∈ Gn−1 with
S′ ⊆ S there exists a point p such that

|C ∩ (S \ S′)| ≥
∣
∣
∣C ∩

(

B
(

w, δ−1ρw

)

\ B(p, δρw)
)∣
∣
∣ ≥ s ,
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where we have used the fact that B
(

w, δ−1ρw

) ⊂ S. ��
Now note that the expected number of pairs (w, S) such that S is s-supported, w

is (δ, s)-supported, and w is a city, is at least c ln−1(δ−1)N , where N is the number
of (δ, s)-supported points. Also, no more than cδ−2 points of C can be cities in a
single square S. It follows from Claim 5.5 that

N ≤ A|C|δ−2 ln(δ−1)

s
,

concluding the proof of Lemma 5.3. ��

5.3 Recurrence of Bounded Degree Planar Graph Limits

Theorem 5.2 follows immediately from the following theorem which gives a
quantitative estimate on the growth of the resistance in local limits of bounded
degree planar maps. In particular, it states that the resistance grows logarithmically
in the Euclidean distance of the corresponding circle packing.

Theorem 5.8 Let (U, ρ) be a local limit of (possibly random) finite planar maps
with maximum degree at most D. Then, almost surely, there exist a constant c > 0
and a sequence {Bk}k≥1 of subsets of U such that for each k we have

1. |Bk | ≤ c−1k, and
2. Reff(ρ ↔ U \ Bk) ≥ c log k.

In particular, (U, ρ) is almost surely recurrent.

We write Beuc(p, r) for the Euclidean ball of radius r around a point p ∈ R
2. As

before, for a subset O ⊂ R
2 and a given circle packing we write VO for the set of

vertices in which the centers of the corresponding circles are in O . In order to prove
Theorem 5.8, we will need the following immediate corollary of the Magic Lemma
(Lemma 5.3):

Corollary 5.9 Let G be a finite simple planar triangulation, and P a circle packing
of G. Let ρ be a uniform random vertex and P ′ a dilation and translation of P such
that the circle of ρ is a unit circle centered at the origin 0. Then, there exists a
universal constant A > 0 such that in the packing P ′, for every real r ≥ 2 and
integer s ≥ 2

P

(

∀p ∈ R
2

∣
∣
∣VBeuc(0,r)\Beuc(p, 1

r
)

∣
∣
∣ ≥ s

)

≤ Ar2 log r

s
.

Proof Apply the Magic Lemma with δ = 1
r

and s = s, with the centers of circles
of P ′ as the point set C. Note that there exists a constant C > 0 such that for all
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w ∈ V the isolation radius of w, ρw , satisfies rad(Cw) ≤ ρw ≤ C rad(Cw) (without
appealing to the Ring Lemma). ��

The following lemma provides the main estimate needed to prove Theorem 5.8.
Once it has been shown, Theorem 5.8 will follow by a Borel-Cantelli argument.

Lemma 5.10 Let G be a finite simple planar map with maximum degree at most
D and let ρ be a uniform random vertex of G. Then, there exists a constant C =
C(D) < ∞ such that for all k ≥ 1,

P

(

∃B ⊆ V, |B| ≤ Ck, Reff(ρ ↔ V \ B) ≥ C−1 log k
)

≥ 1 − Ck− 1
3 log k ,

where we interpret Reff(ρ ↔ V \ B) = ∞ when B = V .

Proof We first assume that G is a triangulation and consider a circle packing of it
where the circle of ρ is a unit circle centered at the origin 0. Applying Corollary 5.9

with r = k
1
3 , s = k, we have that with probability at least 1 − Ak− 1

3 log(k)/3, there
exists p ∈ R

2 with

∣
∣
∣VBeuc(0,r)\Beuc(p, 1

r
)

∣
∣
∣ < k.

Now, if |V
Beuc(p, 1

r )
| ≤ 1, we set B = VBeuc(0,r). We then have |B| ≤ k and by

applying Ω(log k) times Lemma 4.9 together with the series law (Claim 2.24) we
get that Reff(ρ ↔ V \B) ≥ c log k for some c = c(D) > 0. Else, if |V

Beuc(p, 1
r )

| ≥ 2

then we take B = VBeuc(0,r) \ V
Beuc(p, 1

r )
. By the Ring Lemma, there exists a c′ =

c′(D) > 0 such that |p| ≥ 1+ c′. Since |V
Beuc(p, 1

r )
| ≥ 2, we have a vertex in that set

with radius at most r−1. Therefore, Beuc(p, 2
r
) contains at least one full circle Cv .

Hence, by scaling and translating such that Cv = U, we get (again, by Lemma 4.9)
that

Reff

(

V
Beuc(p, 2

r )
↔ V \ VBeuc(p,c′/2)

)

≥ c2 log k ,

for some other constant c2 = c2(D) > 0. Since ρ ∈ V \ VBeuc(p,c′/2) we obtain

Reff

(

ρ ↔ VBeuc(p, 2
r
)

)

≥ c2 log k .

By Lemma 4.9 we also have that

Reff
(

ρ ↔ V \ VBeuc(0,r)

) ≥ c3 log k ,
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for some c3 = c3(D) > 0. By Claim 2.22 this means that

Pρ

(

τV \VBeuc(0,r)
< τ+

ρ

) ≤ 1

c2 log(k)
and Pρ

(

τV
Beuc(p, 2

r )
< τ+

ρ

)

≤ 1

c3 log(k)
.

By the union bound

Pρ

(

τV \B < τ+
ρ

) ≤ 2

min(c2, c3) log(k)
,

hence by Claim 2.22 again

Reff (ρ ↔ V \ B) ≥ min(c2, c3)D
−1 log(k)/2 ,

concluding the proof when G is a triangulation.
If G is not a triangulation, we would like to add edges to make it a triangulation

while making sure that the maximal degree does not increase too much. We also
have to ensure that the graph remains simple which may require us to add some
additional vertices as well. Let f be a face of G with vertices v1, . . . , vk . Suppose
first that there are no edges between non-consecutive vertices of the face. In this
case, we draw the edges in a zig-zag fashion, as in Fig. 5.3.

In the case where there are edges between non-consecutive vertices of the face
exist, we draw a cycle u1, . . . , uk inside f . Then, we connect ui to vi and vi+1 for
each i < k and uk to vk and v1. Finally, we triangulate the inner face created by the
new cycle by zig-zagging as in the previous case (see Fig. 5.4).

Fig. 5.3 Adding diagonals to
a face in a zigzag fashion

v1v2

v3

v4

v5 v6

v7

v8
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Fig. 5.4 Drawing an inner
cycle and triangulating the
new inner face

v1

u1

v2

u2v3

u3

v4 u4

v5

u5

v6

u6 v7

u7

v8u8

Since each vertex of the original graph is a member of at most D faces and for
each face at most 2 edges are added, the maximal degree of the resulting graph is
at most 3D. Similarly, the number of vertices in the resulting graph is at most D

times the number of vertices in the original graph hence the probability of a random
vertex being a vertex of the original graph is at least D−1. If this occurs then it is
straightforward to see that the existence of a subset of vertices B in the new graph
which satisfies the required conditions implies the existence of such a set in the old
graph, concluding our reduction to the triangulation case and finishing our proof. ��

We are ready to deduce Theorem 5.8.

Proof of Theorem 5.8 Assume that Gn are finite planar maps with maximum degree

at most D such that Gn
loc−→ (U, ρ). If {Gn} are not simple graphs we erase self-

loops and merge parallel edges into a single edge to obtain the sequence {G′
n}. It

is immediate that G′
n

loc−→ (U ′, ρ′) where (U ′, ρ′) is distributed as (U, ρ) after
removing from U all loops and merging parallel edges into a single edge. Since the
maximum degree is bounded, U ′ is recurrent if and only if U is recurrent. Thus we
may assume that Gn are simple graphs so the previous estimates may be used.

Denote by Ak the event

Ak = {∃B ⊆ U, |B| ≤ Ck, Reff (ρ ↔ V \ B) ≥ c log k} ,

where C = C(D) < ∞ is the constant from Lemma 5.10. Therefore P(Ac
k) ≤

c−1k− 1
3 log(k). Looking at the sequence {A2j }j≥1, by Borel-Cantelli, almost surely

there exists j0 such that for all j ≥ j0 the event A2j holds. Thus we have proved
the required assertion for k which is a power of 2. To prove this for all k sufficiently
large, let B2j be the set guaranteed to exist in the definition of A2j , and take Bk =
B2j for the unique j for which 2j ≤ k < 2j+1. It is immediate that these sets satisfy
the assertion of the theorem, concluding our proof. ��
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5.4 Exercises

1. Let G(n, p) be the random graph on n vertices drawn such that each of the
(
n
2

)

possible edges appears with probability p independently of all other edges. Let
λ > 0 be a constant, show that G(n, λ/n) converges locally to a branching
process with progeny distribution Poisson(λ).

2. For a graph G, let G2 be the graph on the same vertex set as G so that vertices
u, v form an edge if and only if the graph distance in G between u and v is at
most 2. Show that if G has uniformly bounded degrees, then G is recurrent if and
only if G2 is recurrent.

3. Construct an example of a local limit (U, ρ) of finite planar graphs such that U

is almost surely recurrent, but U2 is almost surely transient.
4. Fix an integer k ≥ 1. Construct an example of a sequence of finite simple

planar maps Gn such that Gn converge locally to (U, ρ) with the property that
E[degk(ρ)] < ∞ and U is almost surely transient.

5. (*) Suppose that Gn is a sequence of finite trees converging locally to (U, ρ).
Show that U is almost surely recurrent. (Note that the degrees may be
unbounded).
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