
Chapter 4
Parabolic and Hyperbolic Packings

4.1 Infinite Planar Maps

In this chapter we discuss countably infinite connected simple graphs that are locally
finite, that is, the vertex degrees are finite. In a similar fashion to the previous
chapter, an infinite planar graph is a connected infinite graph such that there exists
a drawing of it in the plane. We recall that a drawing is a correspondence sending
vertices to points of R2 and edges to continuous curves between the corresponding
vertices such that no two edges cross. An infinite planar map is an infinite planar
graph equipped with a set of cyclic permutations {σv : v ∈ V } of the neighbors
of each vertex v, such that there exists a drawing of the graph which respects
these permutations, that is, the clockwise order of edges emanating from a vertex v

coincides with σv .
Unlike the finite case, one cannot define faces as the connected components of

the plane with the edges removed since the drawing may have a complicated set
of accumulation points. This is the reason that we have defined faces in Sect. 3.1
combinatorially, that is, based solely on the edge set and the cyclic permutation
structure. This definition makes sense in both the finite and infinite case. In the
latter case we may have infinite faces.

A (finite or infinite) planar map is a triangulation if each of its faces has exactly
3 edges. Given a drawing of a triangulation, the Jordan curve theorem implies that
the edges of each face bound a connected component of the plane minus the edges.
We will often refer to the faces as these connected components. A triangulation is
called a plane triangulation if there exists a drawing of it such that every point of
the plane is contained in either a face or an edge and any compact subset of the plane
intersects at most finitely many edges and vertices. The term disk triangulation is
also used in the literature and means the same with the unit disk taking the place of
the plane in the previous definition. Of course these two definitions are equivalent
since the plane and the open disk are homeomorphic. For example, take the product
of the complete graph K3 on 3 vertices with an infinite rayN and add a diagonal edge
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in each face that has 4 edges; this is a plane triangulation. However, the product of
K3 with a bi-infinite ray Z together with the same diagonals is a triangulation but not
a plane triangulation, since it cannot be drawn in the plane without an accumulation
point.

It turns out that there is a combinatorial criterion for a triangulation to be a
plane/disk triangulation. We say that an infinite graph is one-ended if the removal
of any finite set of its vertices leaves exactly one infinite connected component.

Lemma 4.1 An infinite triangulation is a plane triangulation if and only if it is
one-ended.

Proof Suppose G = (V ,E) is a plane triangulation and consider a drawing of the
graph with no accumulation points in the plane such that every point of the plane
belongs to either an edge or a face. Let A ⊆ V be a finite set of vertices and take
B ⊂ R

2 to be a ball around the origin which contains every vertex of A, every edge
touching a vertex of A and every face incident to such an edge. Let u �= v be two
vertices drawn outside of B and take a continuous curve γ between them in R

2 \ B.
By definition of B, this path only touches faces and edges that are not incident to the
vertices of A and hence one can trace a discrete path from u to v in the graph that
“follows” γ and avoids A. Since B intersects only finitely many edges and vertices,
we learn that G \ A has a unique infinite component.

Conversely, assume now that G is one-ended and consider a drawing of G in the
plane. By the stereographic projection we project the drawing to the unit sphere S

2

in R
3. Denote by I the complement in S

2 of the union of all faces and edges. Since
G is an infinite triangulation this union is an open set, hence I is a closed set and
its boundary ∂I is precisely the set of accumulation points of the drawing. Since I
is closed, each connected component of I must be closed as well and hence contain
at least one accumulation point. Since G is one-ended I cannot have more than
one connected component, since otherwise we would be able to separate the two
components by a finite set of edges and obtain two infinite connected components.
Now choose a point p ∈ I and rotate the sphere so that p is the north pole. Project
back the rotated sphere to the plane and consider the drawing in the plane. In this
drawing the union of all faces and edges must be a simply connected set. By the
Riemann mapping theorem this set is homeomorphic to the whole plane, and we
deduce that the triangulation is a plane triangulation. ��

4.2 The Ring Lemma and Infinite Circle Packings

The circle packing theorem Theorem 3.5 is stated for finite planar maps. However,
it is not hard to argue that any infinite map also has a circle packing. To this aim
we will prove what is known as Rodin and Sullivan’s Ring Lemma [70]; we will
use it many times throughout this book. Given circles C0, C1, . . . , CM with disjoint
interiors, we say that C1, . . . , CM completely surround C0 if they are all tangent to
C0 and Ci is tangent to Ci+1 for i = 1, . . . ,M (where CM+1 is set to be C1).
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Fig. 4.1 C2 is small, but both
C1 and C3 are large

C0

C2

C3C1

Lemma 4.2 (Ring Lemma, Rodin and Sullivan [70]) For every integer M > 0
there exists A > 0 such that if C0 is a circle completely surrounded by M circles
C1, . . . , CM , and ri is the radius of Ci for every i = 0, 1, . . . ,M , then r0/ri ≤ A

for every i = 1, . . . ,M .

Proof We may scale the picture so that r0 = 1. Assume that the radius of C2 is
small and consider the circles C1 and C3 to its left and right. It cannot be that both
C1 and C3 have large radii compared to C2 since in this case they will intersect;
see Fig. 4.1. Hence, one of them has to be small as well. Assume without loss of
generality that it is C3. By similar reasoning, one of C1 and C4 has to be small. We
continue this argument this way and get a path of circles of small radii; thus, for the
circles C1, . . . , CM to completely surround C0 we learn that M must be large. ��

For a circle packing P and a vertex v, denote by Cv the circle corresponding to v,
by cent(v) the center of that circle, and by rad(v) its radius. We write G(P) for the
tangency graph of the packing P , that is, the graph in which each vertex is a circle
of P and two such circles form an edge when they are tangent.

Claim 4.3 Let G be an infinite simple planar map. Then there exists a circle packing
P such that G(P) is isomorphic to G as planar maps.

Proof If G is not a triangulation, then it is always possible to add in each face new
vertices and edges touching them so the resulting graph is a planar triangulation (in
an infinite face we have to put infinitely many vertices). After circle packing this
new graph, we can remove all the circles corresponding to the added vertices and
remain with a circle packing of G. Thus, we may assume without loss of generality
that G is a triangulation.

Fix a vertex x, and let Gn be the graph distance ball of radius n around x. Apply
the circle packing theorem to Gn to obtain a packing Pn, and scale and translate it
so that rad(x) = 1 and cent(x) is the origin.

Consider a neighbor y of x. By the Ring Lemma (Lemma 4.2), there exists
a constant A = A(x, y) > 0 such that A−1 ≤ rad(y) ≤ A. By compactness
there exists a subsequence of packings Pnk for which radnk (y) and centnk (y) both
converge. By taking further subsequences for the rest of x’s neighbors, and then for
the rest of the graph’s vertices, it follows by a diagonalization argument that there
exists a subsequence such that the radii and centers of all vertices converge. The
limiting packing P∞ satisfies that G(P∞) is isomorphic to G. ��
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4.3 Statement of the He–Schramm Theorem

Given a circle packing P of a triangulation G, we define the carrier of P , denoted
Carrier(P ), to be the union of the closed discs bounded by the circles of P together
with the spaces bounded between any three circles that form a face (i.e., the
interstices). When P is a circle packing of an infinite one-ended triangulation, the
argument in Lemma 4.1 shows that Carrier(P ) is simply connected.

We say that G is circle packed in R
2 when Carrier(P ) = R

2. Denote by U the
disk {z ∈ R

2 : |z| < 1}; we say that G is circle packed in U when Carrier(P ) = U.
See Fig. 4.2.

Let G be a plane triangulation. Then G can be drawn in the plane R
2 or

alternatively in the disk U (since they are homeomorphic), but can it be circle
packed both in R

2 and in U? A celebrated theorem of He and Schramm [40] states
that this cannot be done: each plane triangulation can be circle packed in either
the plane or the disk, but not both. In fact, the combinatorial property of G that
determines on which side of the dichotomy we are is the recurrence or transience of
the simple random walk on G (assuming also that G has bounded degrees, that is,
supx∈V (G) deg(x) < ∞). This is the content of the He–Schramm theorem, which
we are now ready to state.

Theorem 4.4 (He and Schramm [40]) Let G be an infinite simple plane triangu-
lation with bounded degrees.

1. If G is recurrent, then there exists a circle packing P of G such that
Carrier(P ) = R

2.
2. If G is transient, then there exists a circle packing P of G such that

Carrier(P ) = U.

Fig. 4.2 Two circle packings with carriers R2 (left) and U (right)
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3. If P is a circle packing of G with Carrier(P ) = R
2, then G is recurrent.

4. If P is a circle packing of G with Carrier(P ) = U, then G is transient.

Remark 4.5 Schramm [73] proved that a circle packing P of a triangulation G(P)

with Carrier(P ) = R
2 is uniquely determined up to dilations, rotations and

translations. If Carrier(P ) = U the same holds up to Möbius transformations of U
onto itself (see also [37]). Hence the packings guaranteed to exist in Theorem 4.4 (1)
and Theorem 4.4 (2) are unique in this sense.

Corollary 4.6 Any bounded degree plane triangulation can be circle-packed in R
2

or U, but not both.

Remark 4.7 In fact, it is proved in [40] that the corollary above holds without
the assumption of bounded degree. Furthermore, in [40] Theorem 4.4 (1) and
Theorem 4.4 (4) are proved without the bounded degrees assumption, but the other
two statements require this assumption.

The following example demonstrates why the bounded degree condition is
necessary for Theorem 4.4 (2) and Theorem 4.4 (3).

Example 4.8 Let P be a triangular lattice circle packing (as in Fig. 4.3), and let
C0, C1, C2, . . . be an infinite horizontal path of circles in P going (say) to the right.
In the upper face shared by Cn and Cn+1, draw 2n circles which form a vertical path
and each of them tangent both to Cn and Cn+1; the last circle of these is also tangent
to the upper neighbor of Cn and Cn+1. See Fig. 4.3.

The resulting graph is a plane triangulation and the carrier of the packing is R2.
However, it is an easy exercise to verify that the tangency graph of this circle packing
is transient.

In the rest of this chapter we prove Theorem 4.4. We begin by proving parts
3 and 4, in which a circle packing is given and we use its geometry to estimate

C0 C1 C2 C3

Fig. 4.3 Unbounded degree transient triangulation circle packed in R
2
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certain effective resistances. Afterwards we prove parts 1 and 2, in which we use
the electrical estimates to deduce facts about the geometry of the circle packing.

4.4 Proof of the He–Schramm Theorem

Proof of Theorem 4.4 (3)

Denote the circle packing P = {Cv}v∈V where V is the vertex set of G and Cv

denotes the circle corresponding to the vertex v. Write Δ for the maximum degree
of G and fix a vertex v0. By scaling and translating we may assume that Cv0 is a
radius 1 circle around the origin. For a real number R > 0, let VR = VB(0,R) denote
set of vertices v for which cent(v) is in the Euclidean ball of radius R around the
origin.

Lemma 4.9 There exist C = C(Δ) > 1 and c = c(Δ) > 0 such that for every
R ≥ 1 we have

(i) There are no edges between VR and V \ VCR, and
(ii) Reff (VR ↔ V \ VCR) ≥ c.

Proof We begin with part (i). For every v ∈ VR it holds that rad(v) ≤ R since Cv0

is centered at the origin. By the Ring Lemma (Lemma 4.2), there exists A = A(Δ)

such that rad(u) ≤ AR for every u ∼ v , and therefore | cent(u)| ≤ (A + 2)R.
Hence (i) holds with C = A + 2.

To prove part (ii) we define

h(v) =

⎧
⎪⎪⎨

⎪⎪⎩

0 v ∈ VR,

1 v ∈ V \ VCR,
| cent(v)|−R

(C−1)R
otherwise.

Recall from Lemma 2.32 that Reff (VR ↔ V \ VCR) ≥ E(h)−1. By the triangle
inequality, for an edge {x, y} with both endpoints in VCR \ VR we have

|h(x) − h(y)| ≤ | cent(x) − cent(y)|
(C − 1)R

= rad(x) + rad(y)

(C − 1)R
,

and it is straightforward to check that the same bound holds also when one of the
edge’s endpoints is in VR or V \ VCR. Thus, using the Ring Lemma’s (Lemma 4.2)
constant A = A(Δ) from part (i),

E(h) ≤
∑

x∈VCR\VR

∑

y:y∼x

((A + 1) rad(x))2

(C − 1)2R2 ≤ Δ(A + 1)2

π(C − 1)2R2 ·
∑

x∈VCR\VR

area(Cx),
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where area(Cx) is the area that Cx encloses (that is, π rad(x)2). We have that∑
x area(Cx) ≤ area(B(0, 2CR)) = 4πC2R2, hence if C = A + 2, then

E(h) ≤ 4ΔC2,

and the result follows for c = (4ΔC2)−1. ��
Proof of Theorem 4.4 (3) Consider the unit current flow I from v0 to ∞ and fix any
R ≥ 1. Restricting this flow to the edges which have at least one endpoint in the
annulus VCR \ VR gives a unit flow from VR to V \ VCR, by part (i) of Lemma 4.9.
Hence, by part (ii) of that lemma and by Thomson’s principle (Theorem 2.28), the
energy contributed to E(I) from these edges is at least c. In the same manner, the
edges which have at least one endpoint in the annulus VC2k+1R \ VC2kR contribute
at least c to E(I). Part (i) of Lemma 4.9 implies that all these edge sets are disjoint,
hence E(I) = ∞ and we learn that G is recurrent (Corollary 2.39). ��

Proof of Theorem 4.4 (4)

We will use the given circle packing of G to create a random path to infinity with
finite energy. This gives transience by Claim 2.46. This proof strategy is similar to
that of Theorem 2.47.

Proof of Theorem 4.4 (4) Let v0 be a fixed vertex of the graph, and apply a Möbius
transformation to make the circle of P corresponding to v0 be centered at the origin
0. We now use Claim 2.46 to construct a flow θ from v0 to ∞ by choosing a uniform
random point p on ∂U, taking the straight line from 0 to p and considering the set of
all circles in the packing P that intersect this line in the order that they are visited;
this set forms an infinite simple path in the graph which starts at v0.

To bound the energy of the flow, we claim that there exists some constant C

(which may depend on the graph G and the packing P ) such that the probability
that the random path uses the vertex v is bounded above by C rad(v). Indeed, since
there are only finitely many vertices with centers at distance at most 1/2 from 0, we
may assume that the center of v is of distance at least 1/2 from 0. In this case, in
order for v to be included in the random path the circle of v must intersect the line
between 0 and p. By the Ring Lemma (Lemma 4.2) the neighbors of v have circles
of radii comparable to rad(v) and so the probability of the line touching them is at
most C rad(v). Since the vertex degree is bounded by Δ and

∑
v∈V π rad(v)2 is at

most the area of U, we find that

E(θ) ≤ CΔ
∑

v∈V

rad(v)2 ≤ CΔ .

Hence G is transient by Corollary 2.39 ��
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Proof of Theorem 4.4 (1)

We apply Claim 4.3 to obtain a circle packing P of G and prove that Carrier(P ) =
R

2. Fix some vertex v and rescale and translate so that P(v) is the unit circle ∂U.
Assume by contradiction that Carrier(P ) �= R

2 and let p ∈ R
2 \ Carrier(P ) be a

point not in the carrier. Rotate the packing so that p = R for some real number
R > 1. Let U ∈ [−1, 1] and consider the circle CU = {z : |z − p| = R − U}.
We traverse CU from the point U counterclockwise and consider all the circles of P

which intersect CU . These circles form a simple path in the graph G starting from v.
Since Carrier(P ) is simply connected by Lemma 4.1 and p �∈ Carrier(P ) it cannot
be that CU ⊂ Carrier(P ). Thus, as we traverse CU counterclockwise we must hit
the boundary of Carrier(P ). We conclude that the path in G we obtained in this
manner is an infinite simple path starting at v.

We now let U be a uniform random variable in [−1, 1] and let μ denote the
probability measure on random infinite paths starting at v we obtained as described
above. Let θ be the flow induced by μ as in Claim 2.46. We wish to bound the
energy E(θ). Consider a vertex w ∈ G and its corresponding circle Cw and let B be
the Euclidean ball of radius R + 1 around p. If Cw does not intersect B, it cannot be
included in the random path by our construction. If it does intersect this ball, then
the probability that the random path intersects it is bounded above by its radius.
Thus as in the proof of Theorem 4.4 (4),

E(θ) ≤ CΔ
∑

w:Cw∩B �=∅
rad(w)2 ,

where Δ is the maximal degree of G and we have used the Ring Lemma
(Lemma 4.2). We learn that E(θ) is bounded above by a constant multiple of the
area of all circles of P that intersect B. Since p �∈ Carrier(P ), by the Ring Lemma
(Lemma 4.2), any circle of P that intersects B cannot have radius more than AR

for some large A ≥ R (since otherwise, all the circles surrounding this vertex will
have radius more than R + 1, contradicting the fact that p �∈ Carrier(P )). We learn
that all the circles counted in the sum above are contained in the Euclidean ball of
radius (A + 1)R + 1 around p. Since these circles has disjoint interiors, the sum of
their area is bounded above by the area of the Euclidean ball above. We conclude
that E(θ) < ∞, hence G is transient by Corollary 2.39 and we have reached a
contradiction. ��

Proof of Theorem 4.4 (2)

We will use the following simple corollary of the circle packing theorem, Theo-
rem 3.5. A finite triangulation with boundary is a finite connected simple planar



4.4 Proof of the He–Schramm Theorem 55

map in which all faces are triangles except for a distinguished outer face whose
boundary is a simple cycle.

Claim 4.10 Let G be a finite triangulation with boundary. Then, there is a circle
packing P of G such that all circles of the outer face are internally tangent to ∂U

and all other circles of P are contained in U.

Proof Denote by v1, . . . , vm the vertices of the outer face ordered according to the
cycle they form. Add a new vertex v∗ to the graph and connect it to v1, . . . , vm

according to their order. We obtain a finite triangulation G∗. Apply Theorem 3.5
to obtain a circle packing P = {Cv}v∈V (G∗). By translating and dilating we
may assume that Cv∗ is centered at the origin and has radius 1. Apply the map
z �→ 1

z
on this packing. Since this map preserves circles, the image of the circles

{Cv}v∈V (G∗)\{v∗} under this map is precisely the desired circle packing. ��
Furthermore, we will require an auxiliary general estimate. Given a circle

packing P and a set of vertices A, we write diamP (A) for the Euclidean diameter
of the union of all circles in P corresponding to the vertices of A.

Lemma 4.11 Let P be a circle packing contained in U of a finite triangulation with
boundary with maximum degree Δ, such that the circle of a chosen non-boundary
vertex v0 is centered at the origin and has radius r0. Assume that r0 ≥ rmin for some
constant rmin > 0. Then there exists a constant c = c(rmin,Δ) > 0 such that for
any connected set A of vertices,

Reff(v0 ↔ A) ≥ c log
1

diamP (A)
. (4.1)

If in addition all circles of the outer face are tangent to ∂U and A contains a vertex
of the outer face, then

Reff(v0 ↔ A) ≤ c−1 log
1

diamP (A) ∧ 1
2

. (4.2)

Proof Write ε = diamP (A) and let z(A) denote the union of all circles correspond-
ing to the vertices of A. We begin with the proof of (4.1), which goes along similar
lines to the proof of Lemma 4.9. Let z0 ∈ R

2 be such that z(A) ⊂ {|z − z0| ≤ ε}.
For any r > 0 denote by Vr the set of vertices whose corresponding circles have
centers inside {|z − z0| ≤ r}, so that A ⊂ Vε. Repeating the proof of Lemma 4.9
shows that there exists a constant C = C(Δ) > 0 such that

(i) There are no edges between Vr and V \ VCr , and
(ii) Reff(Vr ↔ V \ VCr) ≥ C−1, as long as Vr and V \ VCr are non-empty.

Regarding this proof, we note that it is possible that the set {|z − z0| ≤ r} is not
contained in U (unlike the proof of Lemma 4.9 when the carrier is all of R

2),
however, this only works in our favor. The proof of (4.1) now proceeds similarly
to the proof of Theorem 4.4 (3). When ε is small enough (depending only on rmin
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and Δ), by the Ring Lemma (Lemma 4.2), the Euclidean distance between the
circle corresponding to v0 and A is at least some constant (which again depends
only on rmin and Δ) so that v0 �∈ VCKε for some K = Ω(log(1/ε)). For each
k = 0, 2, 4, . . . ,K the sets of edges which have at least one endpoint in the annulus
VCk+1ε \ VCkε are disjoint by (i). By (ii), each of these sets of edges contribute at
least C−1 to the energy of the unit current flow from A to v0, concluding the proof
of (4.1) using Thomson’s principle (Theorem 2.28).

For the proof of (4.2) we construct a unit flow from v0 to A that has energy
O(log(1/ε)). The construction is in the same spirit as the proof of Theorem 4.4 (4),
but there are some technical difficulties to overcome. Since A contains a vertex that
is tangent to ∂U, we choose z0 ∈ ∂U that belongs to a circle of A. By rotating the
packing we may assume that z0 = eiε/4.

We now treat two cases separately. In the first case we assume that there exists z1
in z(A) such that arg(z1) ∈ [0, ε/2] and |z1| ≤ 1 − ε/2 such that the path in z(A)

from z0 to z1 remains in the sector arg(z) ∈ [0, ε/2]. Consider the points

x0 = −r0 x1 = r0 y1 = 1 − ε/3 y0 = 1 ,

and note that x0, x1 are the leftmost and rightmost points on the circle of v0. Let C0
and C1 be the upper half plane semi-circles in which x0, y0 and x1, y1 are antipodal
points, respectively. The choice of y0, y1 is made so that the path between z0 to z1
in z(A) must cross the region bounded by C0, C1 and the intervals [x0, x1], [y1, y0],
by our assumption on z1 as long as ε is small enough. See Fig. 4.4, left.

For each t ∈ [0, 1] write Ct for the upper half plane semi-circle in which ty1 +
(1−t)y0 and tx1+(1−t)x0 are antipodal points, so that Ct continuously interpolates
between C0 and C1. See Fig. 4.4, left. Choose t ∈ [0, 1] uniformly at random and
consider the random path γ which traces Ct from left to right. This random path

Fig. 4.4 Left: for any t ∈ [0, 1] the semi-circle Ct must intersect the path in A between z0 and z1.
Right: the quadrilateral Qi is bounded between 
θi

, 
θi+1 , C0 and C1
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starts at the circle of v0 and must hit the path between z0 and z1 by our previous
discussion. Hence, the circles of P that intersect γ must contain a path in the graph
from v0 to A. By Claim 2.46 we obtain a flow I from v0 to A whose energy E(I)

we now bound.
For an angle θ ∈ [0, π] we denote by wθ(t) the point at angle θ , seen from the

center of Ct , on the semi-circle Ct . It is an exercise to see that the set of points
{wθ(t) : t ∈ [0, 1]} form a straight line interval 
θ . Furthermore, when t is chosen
uniform in [0, 1], the intersection of Ct and 
θ is a uniformly chosen point on 
θ .
Set θ0 = 0 and θi = 2i−1ε for i = 1, . . . ,K − 1 where K = O(log(1/ε)) such that
θK−1 ∈ [π/4, π/2] and set θK = π . We will obtain the bound E(I) = O(K)

by bounding from above by a constant the contribution to E(I) coming from
edges which intersect the quadrilateral Qi of R2 bounded by 
θi , 
θi+1, C0, C1; see
Fig. 4.4, right. The random path γ restricted to Qi can be sampled by choosing a
uniform random point on 
θi , setting t ∈ [0, 1] to be the unique number such that
Ct intersects 
θi at the chosen point, and tracing the part of Ct from 
θi to 
θi+1 . The
lengths of the four curves bounding Qi are all of order 2iε and so we deduce that if
v corresponds to a circle of radius O(2iε) which intersects Qi , then the probability
that it is visited by γ is O(rad(v)/2i ε). Since the sum of rad(v)2 over such v’s is at
most the area of Qi up to a multiplicative constant (note that some of these circles
need not be contained in Qi) it is at most O(22iε2). Since the degrees are bounded
we deduce that the contribution to the energy from edges touching such v’s is O(1).
Lastly, if v corresponds to a larger circle, then we bound its probability of being
visited by γ by 1 and note that there can only be O(1) many such v’s whose circles
intersects Qi . Thus the contribution from these is another O(1). Since there are
O(log(1/ε)) such i’s we learn that E(I) = O(log(1/ε)) finishing our proof in this
case using Thomson’s principle (Theorem 2.28).

In the second case, we assume that there exists z1 ∈ z(A) such that arg(z1) �∈
[0, ε/2] and |z1| ≥ 1 − ε. It is clear that since diamP (A) = ε either the first or the
second case must occur. Denote z′

0 = |z1|eiε/4 and let x0, x1 be antipodal points
on the circle of v0 such that the straight line between x0 and x1 is parallel to the
straight line between z′

0 and z1. The vertices z′
0, z1, x0, x1 form a trapezoid, see

Fig. 4.5. We choose a uniform random point t ∈ [0, 1] and stretch a straight line
from tx0 + (1 − t)x1 to tz0 + (1 − t)z′

1. We then continue it by a straight line from
tz0 +(1− t)z′

1 to w ∈ ∂U where arg(w) = arg(tz0 +(1− t)z′
1). Denote the resulting

path by γt and note that it starts inside the circle of v0 and must hit the path between
z0 and z1 in z(A). Thus, the set of all circles which intersect γt form a path in the
graph that starts at v0 and ends at A; this random choice of γt gives us as usual a unit
flow from v0 to A by Claim 2.46. By repeating the same argument as in the previous
case (that is, splitting the trapezoid into O(log(1/ε)) many trapezoids of constant
aspect ratio), we see that the contribution to the energy of the flow induced by the
random path γt of the edges in the trapezoid is O(log(1/ε)). Furthermore, the same
argument gives that the edges in the quadrilateral formed by the vertices z0, z

′
0, z1

and ei arg(z1) also contribute at most a constant to the energy, concluding our proof
for the second case by Thomson’s principle again (Theorem 2.28). ��
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Fig. 4.5 The resistance
across the trapezoid on
vertices x0, x1, z

′
0, z1 is

O(log(1/ε)) when
|z′

0 − z1| = Θ(ε)

Proof of Theorem 4.4 (2) Denote by dG(u, v) the graph distance between the ver-
tices u, v of G. Fix some v0 ∈ V and let

Bj = {v : dG(v0, v) ≤ j },
Vj = Bj ∪ {finite components of V \ Bj },
Ej = {edges induced by Vj }.

The graph Gj = (Vj ,Ej ) with the map structure inherited from G is a finite
triangulation with boundary. Indeed, it is straightforward to check that it is 2-
connected (i.e., the removal of a single vertex does not disconnect the graph)
which implies that the outer face forms a simple cycle, see [20, Proposition 4.2.5].
Furthermore, since G is one-ended and we have added all the finite components in
V \Bj there cannot be a face with more than 3 edges except for the outer face which
we denote by ∂Gj .

Thus Gj is an increasing sequence of finite triangulations with boundary such
that ∪jGj = G. We apply Claim 4.10 to pack Gj inside the unit disk U such that
the circles of ∂Gj are tangent to ∂U. By applying a Möbius transformation from U

onto U, we may assume that the circle corresponding to v0 is centered at the origin.
We denote this packing by Pj and let r

j
0 be the radius of v0 in Pj .

Since G is transient it follows that there exists some c = c(Δ) > 0 such that
r
j

0 ≥ c for all j by Corollary 2.39. Indeed, if r
j

0 ≤ ε, we learn by Lemma 4.9
and the proof of Theorem 4.4 (3) that Reff(v0 ↔ ∞) ≥ c′ log(ε−1) for some
c′ = c′(Δ) > 0.

As we did in Claim 4.3, we now take a subsequence in which the centers and
radii of all vertices converge. Denote the resulting limiting packing by P∞. This
packing has all circles inside U and we therefore deduce that Carrier(P∞) ⊆ U. It is
a priori possible that Carrier(P∞) is some strict subset of U, i.e., that all the circles
stabilize inside some strict subset of U. We now argue that this is not possible.

Let Z be the set of accumulation points of Carrier(P∞); it suffices to show that
Z ⊂ ∂U since any simply connected domain Ω ⊂ U for which ∂Ω ⊂ ∂U must
equal U. Since Z is a compact set, let z ∈ Z minimize |z| among all z ∈ Z; it
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suffices to show that z ∈ ∂U. Fix ε > 0 and put

Uε(z) = {
v ∈ G : | centP∞(v) − z| ≤ ε

}
.

The graph spanned on the vertices Uε(z) may be disconnected, yet by our choice
of z it is clear that Uε(z) contains an infinite connected component. Indeed, one
can draw a straight line from the origin to z without intersecting Z and consider
the set of all circles intersecting this line; from some point onwards the vertices
corresponding to these circles will reside in Uε(z).

Therefore, let Wε(z) be an infinite connected component of the graph spanned
on Uε(z). Let J = J (z, ε) be the first integer such that VJ ∩ Wε(z) �= ∅. Since the
Gj ’s are increasing finite sets and Wε(z) is an infinite connected set, we have that
∂Gj ∩ Wε(z) �= ∅ for all j ≥ J . Consider now any connected component Aj of the
graph spanned on the vertices Vj ∩ Wε(z).

Denote by P
j∞ the finite circle packing obtained from P∞ by taking only the

circles of Vj . It has the same adjacenty graph as Pj but it is a different packing. Since
Aj ⊂ Wε(z), it follows that diam

P
j∞
(Aj) ≤ 4ε. By Lemma 4.11, Eq. (4.1), applied

to the set Aj in the packing P
j∞, we deduce that Reff(v0 ↔ Aj ; Gj) ≥ c log(1/ε).

Since Aj is a connected component of Vj ∩ Wε(z) and since Wε(z) is an infinite
connected set of vertices in G, it follows that Aj must contain a vertex of ∂Vj .
Thus, we may apply Lemma 4.11, Eq. 4.2, to the set Aj , this time in the packing Pj ,
to get that there exists some c > 0 such that

diamPj (Aj ) ≤ εc . (4.3)

Choose some vJ ∈ ∂GJ ∩ Wε(z) so that | centP∞(vJ ) − z| ≤ ε. For each j ≥ J

choose vj ∈ ∂Gj ∩ Wε(z) so that vj and vJ are in the same connected component
Aj of the graph spanned on Vj ∩ Wε(z). Since the circle of vj in Pj touches ∂U

we learn by (4.3) that the distance of the circle of vJ in Pj from ∂U is at most εc

for all j ≥ J . Since the circle corresponding to vJ in P∞ is the limit of its circles
in Pj we deduce that the distance of centP∞(vJ ) from ∂U is at most εc. Hence the
distance of z from ∂U is at most ε+εc. Since ε was arbitrary we obtain that z ∈ ∂U,
as required. ��

4.5 Exercises

1. Let G be a triangulation of the plane with maximal degree at most 6. Prove
that the simple random walk on G is recurrent.

2. Let G be a plane triangulation that can be circle packed in the unit disc {z :
|z| < 1}. Show that the simple random walk on G is transient. (Note that G

may have unbounded degrees)
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3.(*) Let P be a circle packing of a finite simple planar map with degree bounded
by D such that all of its faces are triangles except for the outerface. Assume
that the carrier of P is contained in [−11, 11]2, contains [−10, 10]2 and that
all circles have radius at most 1. Let h be the harmonic function taking the
value 1 on all vertices with centers left of the line {−10} × R, taking the
value 0 on all vertices with centers right of the line {10}×R, and is harmonic
anywhere else. Assume x and y are two vertices such that their centers are
contained in [−1, 1]2 and that the Euclidean distance between these centers
is at most ε > 0. Show that

|h(x) − h(y)| ≤ C

log(1/ε)
,

for some constant C = C(D) > 0 independent of ε. [Hint: assume h(x) <

h(y) and consider the sets A = {v : h(v) ≤ h(x)} and B = {v : h(v) ≥
h(y)}].
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