
Chapter 14
MRI Technology for Behavioral
and Cognitive Studies in Macaques In Vivo

Yong Zhu and Paul A. Garber

14.1 Introduction

Primate behavior, especially social behavior, might seem a strange place to begin in
trying to advance our understanding of the brain or human mind (Opstal 1996;
Critchley and Harrion 2013). Primate brains differ in structural details, proportion
among functional areas, as well as in overall size, implying specific adaptations to
the challenges posed by particular ecological and social environments across that
species’ evolutionary history. Given that brains require a disproportionate amount of
nutrients and energy relative to other body organs (Aiello and Wheeler 1995), an
understanding of the functional implications of evolutionary changes in brain orga-
nization is critical for evaluating relationships between cognition, decision-making,
and behavior (Rilling 2006) (Fig. 14.1).

The recent decade has seen an explosion of interest and information about brain
connectivity and functions over a wide range of spatial scales, including macro-
scopic, microscopic, and mesoscopic levels (Essen et al. 2016). Noninvasive imag-
ing studies with magnetic resonance imaging (MRI) technologies have been used for
over 30 years (Vanduffel 2018) and have made fundamental contributions to our
understanding of animal behavior and cognition, especially in our understanding of
the relationships between brain structures and brain function. For example, the
brain’s default mode network (DMN) consists of discrete, bilateral, and symmetrical
cortical areas in the medial and lateral parietal, medial prefrontal, and medial and
lateral temporal cortices of the human, nonhuman primate, cat, and rodent brains
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Fig. 14.1 Analyzing the relationship between brains and behavior (Mars et al. 2014). (a) In a
multivariate comparative approach, each brain is viewed as a unique combination of variables,
including whether the animal is active during night or day; whether it uses tools regularly,
occasionally, or not at all; what its diet is; or how complex its social life is. By using a whole-
brain and multivariate approach, it is possible for us to investigate how differences in specific
aspects of brain organization are related to different ecological and social variables. (b) MRI of
whole-brain (postmortem) samples allows a number of measures to be collected, for which
comparative analysis techniques have now been developed and validated
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(Raichle 2015). The DMN consistently decreases its activity when compared with
the activity of other brain areas during relaxed states. Using fMRI in macaques,
researchers have detected that a cortical network, activated during shifts in cognitive
activity, largely overlapped with the DMN and therefore have proposed that cogni-
tive shifting in primates generally recruits activity in DMN regions (Arsenault et al.
2018). Prior to 1991, it was virtually impossible to map brain activation rapidly and
noninvasively with full brain coverage and relatively high spatial and temporal
resolution (Bandettini 2009). The use of fMRI along with positron emission tomog-
raphy (PET), has revolutionized cognitive neuroscience (Logothetis 2008). Using
these noninvasive techniques, we can ask research questions such as the relationship
between brain and behavior in primates, which could not have been studied
otherwise.

Nonhuman primates (NHPs), especially macaques, have been used traditionally
as a model for studying many aspects of human behavior, health, and biology. This
includes social structure, social behavior, and social cognition. In this chapter, we
describe recent advances in MRI technology (including the state-of-the-art high field
MRI), review several fMRI and PET studies on macaques, and indicate how these
studies have contributed new insights into an understanding of nonhuman and
human primate cognition and behavior.

14.2 Magnetic Resonance Imaging (MRI)

14.2.1 Background of MRI

MRI is a painless, noninvasive tool commonly used to diagnose disease progression,
injury, or other ailments. Since its discovery in 1945, nuclear magnetic resonance
(NMRI) has been used extensively as an analytic tool in chemistry and physics. In
the early 1970s, interest in localized tissue measurements and the realization that
highly accurate internal images could be obtained expanded the potential applica-
tions of NMRI in medical research. By the 1980s, the quality of NMRI in humans
had been improved to the point that the radiological community considered MRI as
the next high technology imaging modality.

Today, we refer to “NMRI” as MRI. The use of word “nuclear” in the acronym was
dropped to avoid a negative association with the potential exposure to nuclear
radiation. Its working principle is based on the fact that certain atomic nuclei are
able to absorb and emit radio-frequency energy when placed in an external magnetic
field. In both its clinical application and in MRI research, hydrogen atoms are most
often used to generate a detectable radio-frequency signal that is received by antennas
in close proximity to the anatomical structure being examined. Hydrogen atoms are
naturally abundant, particularly in water and fat. For this reason, most MRI scans
essentially map the location of water and fat in the body. Pulses of radio waves excite
the nuclear spin energy transition, and magnetic field gradients localize the signal in
space. By varying the parameters of the pulse sequence, different contrasts may be
generated between tissues based on the relaxation properties of the hydrogen atoms.
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14.2.2 The Advantages of MRI

Compared with other medical imaging techniques such as X-ray imaging, ultrasonic
imaging, and computed tomography (CT), MRI is a painless and noninvasive
method to view human or animal tissue and obtain anatomical and functional
diagnostic information. While the hazards of X-rays are now well-controlled in
most medical contexts, MRI may still be seen as a better choice than CT. MRI
scanners are designed to visualize non-bony parts or “soft tissue” areas such as
muscles, ligaments, and tendons. In particular, the brain, spinal cord, and nerves are
seen much more clearly with MRI than with regular X-rays and CT scans.

What are the advantages of an MRI scan? To summarize, there are several as
follows:

1. High accuracy
In clinical diagnostics and studies, MRI is used as the preferred medical

examination tool owing to its high accuracy in the detection of serious ailments
such as tumors and cancers. In research, it can be used in structural and functional
connectivity studies. In addition, the MRI scan parameters can be adjusted for a
more comprehensive view of the area of interest.

2. Less confining
An MRI scanner has a design that makes it less confining for the patient or

research subject. It is possible to assign tasks to the subject in the scanner, for
example, evaluate light or sound stimulation, and this facilitates directly linking
behavior and functional anatomy.

3. Noninvasive
MRI does not involve X-rays or the use of ionizing radiation, distinguishing it

from CT or CAT scans. This removes all ethical concerns regarding harm that
could be done to patients or study subject. This permits the ethical use of fMRI
research studies because normal subjects face no risk of harm or injury.

With these four main advantages, MRI represents a powerful tool well suited
for studying in vivo behavioral responses, especially functional studies that link
neuroanatomy and cognitive behavior in primates.

14.2.3 State of the Art at High Field MRI

As far as MRI is concerned, the need to achieve the highest possible magnetic field in
clinical settings has been a major motivation for scientists and engineers to improve
the imaging technology. As a result, MRI scanners have evolved from the first
generation (0.5 Tesla or 0.5 T) to the conventional (1.0–1.5 T) scanner and then to
the high field (3 T) scanners in clinical applications. Most recently, ultra-high field
MRI scanners ranging from 7 to 11.7 T have been designed. Generally speaking, the
higher the magnetic field, the better the resolution of the images.

Using MRI, a higher magnetic field intensity leads to a higher signal-to-noise
ratio (SNR), resulting in a higher image resolution. However, higher magnetic field
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intensity can lead to a smaller caliber machine (the diameter of the machine that
allows the animal to be scanned) meaning that animals larger than macaques (e.g.,
gorilla) could not be examined. For example, the 3 T MRI scanner in clinical
applications usually has a 70 cm caliber, suited for human or gorilla body scans.
The 9.4 T MRI scanner with a caliber ranging from 30 to 40 cm is suitable for NHPs
ranging in size from a mouse lemur to a macaque. The 9.4 T MRI scanner obtains
enhanced image resolution compared to the 3 TMRI scanner. Therefore, considering
the image resolution, a 9.4 TMRI scanner is the most suitable for studying mammals
ranging from rodents to most species of NHPs.

There are many 9.4 T MRI scanners currently in use. For example, a 9.4 T MRI
scanner with a 40 cm diameter bore (Agilent, US) is operated at the High Magnetic
Field Laboratory (HMFL), Chinese Academy of Sciences, Hefei. This scanner is
dedicated to the study of larger mammals (e.g., dog, sheep, and macaque). Another
9.4 T/30 cm MRI scanner (Bruker, Germany) is operated at the Shanghai Institute of
Biological Sciences of the Chinese Academy of Sciences. This scanner focuses on
scientific research requiring a high magnetic field. At the University of Chicago,
Chicago, Illinois, a 9.4 T/30 cmMRI facility is used for basic science research within
the Department of Radiology. The goal is to advance state-of-the-art animal imaging
technology at the anatomical and functional level (https://mris.uchicago.edu/). Many
experimental studies of NHPs that focus on research questions including brain
development, brain structural changes, and functional studies of different brain
regions have been conducted using other types of 9.4 T MRI scanners such as the
9.4 T/35 cm scanner in Germany (Goebel et al. 2009) and France (Même et al. 2015)
and the 9.4 T/39 cm scanner at University College London Centre for Advanced
Biomedical Imaging, London (Ramasawmy et al. 2016).

Some primate studies have been carried out on 1.5 T or 3 T scanners (Nelissen
and Vanduffel 2017), with a sub-optimal resolution in the range of 2–3 mm. In vivo
studies of structural brain imaging at 7 T have been reported in the rhesus macaque
(Macaca mulatta), with resolution from 0.3 to 0.5 mm (Zitella et al. 2015). A much
finer image resolution (under 100 μm) is needed to pick up minor changes, such as in
brain aging that would be required to examine questions of ontogenetic changes in
social behavior related to aging. However, only a limited number of primate studies
have used 9.4 T MRI scanners, which would generate in vivo data with a resolution
on the order of 0.1 mm. This level of resolution is needed to examine questions
related to the substructure of the hippocampus. Because dynamic brain alterations
can be detected on a much finer scale, high field MRI greatly facilitates studies
integrating primate brain structure and behavioral change.

14.3 In Vivo MRI Study in Macaques

Investigations into the structure and function of the NHP brain have significantly
contributed to our overall understanding of cognition.
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14.3.1 Structural MRI in Brain Imaging Study

To understand the anatomical localization and functional activity in different cortical
areas, it is necessary to obtain an accurate map of neural architectonic areas. In most
MRI studies, primates are anesthetized when scanned. The latest research, published
in the journal NeuroImage, has created an anatomical MRI brain template derived
from 31 rhesus macaques (the macaques were juveniles and adults between 3.2 and
13.2 years old). The template also includes tissue maps, surfaces, and transformation
scripts to assist in data analysis (Seidlitz et al. 2018). These data can be used to
determine the variance of cortical topographies in the same individual over time and
also compare cortical differences between infants, juveniles, and adults. This can be
used as a framework for examining correlational relationships between changes in
behavior and behavioral and brain development.

Unlike morphological studies using postmortem tissue samples, MRI allows the
noninvasive, in vivo assessment of many different brain parameters including the
topography and volume of gray and white matter in brain structures. At the level of
the cerebral hemisphere, gray matter is mainly distributed in the periphery (cortex)
while the white matter is located deep within the cortex.

Phillips and Sherwood (2008) described growth patterns in total brain volume,
cortical gray and white matter volume, frontal lobe gray and white matter volume,
and corpus callosum area in 29 brown capuchin monkeys (Sapajus nigritus, for-
merly Cebus apella) ranging in age from 4 days to 20 years. Of the total subjects,
12 were adults (�5 years) and 17 were juveniles (between 4 days to 5 years). The
results revealed that nonlinear age-related changes in total brain volume, cortical
white matter volume, and frontal white matter volume occur from birth to 5 years of
age (subadult period of development). The implications of these results is the rapid
increase of frontal lobe white matter during the first few years of life corresponds
with opportunities for social learning and acquiring technical skills related to object
manipulation, prey search, possibly tool use, and other complex foraging behaviors
(Phillips and Sherwood 2008). Similarly, Wisco et al. (2008) studied the age-related
white and gray matter volume changes in eight young adult (5–12 years), six middle-
aged adult (16–19 years) and eight old adult (24–30 years) rhesus macaques. The
results found an overall decrease in the total forebrain (5.01%), forebrain paren-
chyma (5.24%), forebrain white matter (11.53%), forebrain gray matter (2.08%),
caudate nucleus (11.79%), and globus pallidus (18.26%) with increasing age.
Corresponding behavioral data for five of the younger, five of the middle-aged,
and seven of the old adults on the delayed non-matching to sample (DNMS) task, the
delayed recognition span task (DRST), and the cognitive impairment index (CII)
found no correlation between these cognitive measures and ROI volume changes.

In a recent study, Scott et al. (2016) longitudinally assessed normative brain
growth patterns using MRI in rhesus macaques. Cohort A consisted of 24 individuals
(12 males, 12 females) and cohort B of 21 individuals (11 male, 10 female). They
scanned the macaques at 1, 4, 8, 13, 26, 39, and 52 weeks of age. Cohort A had
additional scans at 156 weeks (3 years) and 260 weeks (5 years) (Fig. 14.2). The
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results showed that total brain volume at 1 week was approximately 64% of that of
the adult. Brain volume was larger in male rhesus macaques compared to females.
While brain volume generally increased between any two imaging time points, there
was a transient plateau of brain growth between 26 and 39 weeks in both males and
females (Scott et al. 2016). This study serves as a starting point for more extensive
analyses into the relationship between structural development of the brain and
behavioral development of the rhesus macaques. The image database is available
to behavioral scientists for addressing additional questions examining the relation-
ship between changes in behavior and changes in neural development, including the
emergence of sex and species typical behavior.

To evaluate hippocampal development in rhesus macaques, Hunsaker et al.
(2014) obtained longitudinal structural MRI scans at 9 time points between
1 week and 260 weeks (5 years) of age in 24 rhesus macaques (12 males, 12 females)
(Fig. 14.3). The results showed that the hippocampus reached 50% of its adult
volume by 13 weeks of age and full adult volume by 52 weeks in both males and
females. The hippocampus appears to be slightly larger at 3 years than at 5 years of
age, and damage to the hippocampus deficit can result in permanent changes in
behavior such as learning and memory, as well as neurocognitive function. Male
rhesus macaques have a 5% larger hippocampi than females from 8 weeks of age
onward. Neuroimaging studies in rhesus macaques can provide critical information
about the relationships between MRI volumetric changes and behavior during
individual development.

Fig. 14.2 Brain MRI at each study time point (Scott et al. 2016). Age-specific, horizontally
oriented templates are shown for each study time point. Each template represents an average
brain image constructed from individual subject scans. Images display enhanced signal-to-noise
and optimal shape characteristics relative to individual scans (scale bar represents 1 cm)
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Fig. 14.3 MRI for hippocampal tracings at different ages (Hunsaker et al. 2014). Sample hippo-
campal tracings from a single male rhesus macaque. Shown are scans at 1 week, 4 week, 26 weeks,
39 weeks, and 260 weeks of age. Note the difference in white matter at the different ages. All scans
are shown at the same scale for direct visual comparison. Note the general shape of the traced
hippocampus and size relative to the rest of brain at different ages (scale bar ¼ 1 cm)
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Liu et al. (2015) examined brain development in 14 male rhesus macaques from
6 to 16 months of age. The results showed rapid growth (6.21%) in brain volume
during early development between 6 and 10 months of age compared to a 2.81%
growth rate between 10 and 16 months of age. Early expansion is mainly the result of
a significant increase in white matter volume, while the later decline can be partly
explained by a significant decrease of gray matter volume after 10 months of age.
Compared with macaque brain development, human brain volume increases by
100% during the first year of life and then maintains cubic growth into adolescence.
The pattern of human brain growth differs from the rhesus macaque in that humans
have a less mature brain at birth (approximately 25% of adult size) and a longer
period of early rapid brain growth during the first year of life (Phillips and Sherwood
2008).

14.3.2 Functional MRI in Brain Imaging Study

Functional magnetic resonance imaging (fMRI) has been used extensively in com-
parative sensory and cognitive experiments associated with brain activation mapping
in NHPs and humans (Logothetis et al. 1999; Nakahara et al. 2002; Mantini et al.
2012). Moreover given that the subject is alert, one can study relationships between
behavior, decision-making, and neural activity in real time. What exactly does fMRI
tell us? We know that its signals arise from changes in local brain hemodynamics
that, in turn, result in alterations in neuronal activity. However, exactly how neuronal
activity, hemodynamics, fMRI signals, and decision-making are related is still
unclear. It has been assumed that the fMRI signal is proportional to the local average
neuronal activity, but many factors can influence this relationship (Heeger and Ress
2002).

For comparative studies of human and nonhuman primates, subjects are exposed
to the same set of images as their brains are scanned using fMRI. The time course of
fMRI activity during viewing is extracted from “seed” regions in human participants
and correlated with the fMRI signal in NHP, or vice versa, with an adjustment made
for interspecific differences in vascular hemodynamics. After statistical
thresholding, which is a method of image processing, the resulting maps for each
species show areas that are stimulated and potentially homologous with the targeted
seed region in the other species (Wager and Yarkoni 2012) (Fig. 14.4). fMRI has
been used to study the primate visual system (Logothetis et al. 1999; Nakahara et al.
2002; Russ and Leopold 2015), the auditory system (Mantini et al. 2012; Ortiz-Rios
et al. 2015), and the motor system (Bauman et al. 2013), again principally in
macaques. We present the results of some of these studies below.

Ortiz-Rios et al. (2015) investigated how species-specific vocalizations are
represented in auditory and auditory-related regions of the brain using fMRI in
rhesus macaques. The results indicated that these vocalizations preferentially acti-
vated the auditory ventral stream and in particular areas of the anterolateral belt and
parabelt.
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A major limitation of fMRI studies of nonhuman primates is the difficulty of
training monkeys and apes to remain calm when placed in the restraining devices
required to limit movement during scanning. Srihasam et al. (2010) developed a
technique for holding subjects’ heads motionless during scanning using a custom-
fitted plastic helmet, chin strap, and mild suction supplied by a vacuum blower. This
vacuum helmet method appeared to have few adverse effects on subject physical
health (although the monkeys were stressed) even after repeated use for several
months.

14.4 Conclusion

Studies of the brain of nonhuman primates are vital for understanding aggressive and
cooperative interactions (Rilling 2014). Noninvasive imaging technologies, such as
fMRI, are an important research tool that provide data that field primatologists can
use to better understand how age, sex, and species differences in neural develop-
ment, social experience, and neurohormones affect behavior and cognitive pro-
cesses. For example, differences in patterns and rates of brain growth may help
explain taxonomic differences in maternal pre- and postnatal offspring investment;
differences in the manner in which species encode, store, and integrate temporal,
spatial, and quantitative information in deciding where to feed; and species-specific
differences in cooperative behavior. For example, oxytocin, a neurohormone syn-
thesized in the hypothalamus, can increase cooperative behavior and reduce fear of
cheaters in humans by stimulating brain regions that associate cooperative interac-
tions with feelings of pleasure or reward (Rilling 2014). In the case of wild

Fig. 14.4 Humans and monkeys watch the same film as their brains are scanned with fMRI (Wager
and Yarjoni 2012). The time course of fMRI activity during viewing is extracted from “seed”
regions in human participants and correlated with the fMRI signal in monkeys, and vice versa, with
an adjustment made for interspecific differences in vascular hemodynamics

296 Y. Zhu and P. A. Garber



chimpanzees, Wittig et al. (2014) found that during periods of food sharing, levels of
urinary oxytocin concentration increased significantly compared to periods when
chimpanzees fed alone. Moreover this effect was evident in chimpanzees who shared
food with close partners and in chimpanzees who shared food with nonpartners
(Wittig et al. 2014). Similarly, Crockford et al. (2013) found that oxytocin levels in
wild chimpanzees increased equally when individuals groomed kin or nonkin. Thus,
there exists an important neurohormonal mechanism for promoting social coopera-
tion between both related and nonrelated group members. In the case of common
marmosets (Callithrix jacchus), a small-bodied New World monkey, Finkenwirth
et al. (2016) examined relationships between nonmaternal infant caregiving and
urinary oxytocin levels. In this species, both male and female helpers were found to
exhibit significantly higher levels of urinary oxytocin when caring for offspring than
during periods when not providing infant care. Finally, different species of macaques
vary in dominance style from highly aggressive to highly affiliative. Although early
experience may contribute to the ways in which individuals interact with others, a
study by Rosenblum et al. (2002) reported that bonnet macaques (M. radiata), which
are highly affiliative, were characterized by higher levels of oxytocin than pig-tailed
macaques (M. nemistrina) which are highly aggressive. Combined, these studies
highlight the integrated role of neurohormones, neuroreceptors, and social experi-
ence in understanding primate social interactions and behavior.

Neurodevelopmental research is expected to expand in the future, offering new
insights and understanding into links between neural anatomy and behavior, both
within and between species. For example, neurodevelopmental studies may allow us
to understand how the brain neuronal functions organize and mature during different
stages of development. This will allow researchers to address questions linking
behavior, ontogeny, and social cognition in primates.
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statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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