Chapter 8 ®)
Improved CNN-Segmentation-Based e
Finger Vein Recognition Using

Automatically Generated and Fused

Training Labels

Ehsaneddin Jalilian and Andreas Uhl

Abstract We utilise segmentation-oriented CNNSs to extract vein patterns from near-
infrared finger imagery and use them as the actual vein features in biometric finger
vein recognition. As the process to manually generate ground-truth labels required to
train the networks is extremely time-consuming and error prone, we propose several
models to automatically generate training data, eliminating the needs for manually
annotated labels. Furthermore, we investigate label fusion between such labels and
manually generated labels. Based on our experiments, the proposed methods are
also able to improve the recognition performance of CNN-network-based feature
extraction up to different extents.

Keywords Finger-Vein recognition - Finger-Vein segmentation + Convolutional
neutral networks -+ Fused label training - Automated label training

8.1 Introduction

Finger vein recognition is a biometric method in which a person’s finger vein patterns,
captured under tissue-penetrating near-infrared (NIR) illumination, are used as a basis
for biometric recognition. This process is considered to offer significant advantages
compared to classical biometric modalities (e.g. fingerprint, iris and face recognition).
For example, finger vein patterns can be captured in a touchless and non-invasive
manner, are not influenced by finger surface conditions, can only be captured when
the subject is alive and cannot easily get forged.

While many finger vein recognition techniques have been proposed in recent years
and commercial products are readily available (and are even used to authenticate
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financial transactions in ATMs or home banking), yet extracting accurate vein pat-
terns from NIR finger vein images remains far from being trivial. This is mainly due
to the often poor quality of the acquired imagery. Poorly designed scanner devices,
close distance between finger and the camera (causing optical blurring), poor NIR
lighting, varying thickness of fingers, ambient external illumination [34], varying
environmental temperature [25] and light scattering [16] represent different aspects
which can degrade the finger vein images’ quality and cause the images to contain
low contrast areas and thus ambiguous regions between vein and non-vein areas.
The intensity distributions in these areas can hardly be described by a mathemat-
ical model. Therefore, proposing a comprehensive algorithmic solution to extract
the actual vein patterns from the NIR finger images is not easy. Nevertheless, even
the manual annotation of actual vein patterns in such ambiguous areas (required
as ground truth for learning-based methods (i.e. segmentation CNN networks) is
extremely difficult and time-consuming and therefore an error-prone process.

In this chapter, we employ three different CNN architectures designed for segmen-
tation to extract finger vein patterns from NIR finger imagery and use the extracted
features for the recognition process. Furthermore, with the aim of eliminating the
need for manually annotated labels and eventually also improving the networks’
feature-extraction capability, we investigate several automatic label generating tech-
niques, as well as label fusion methods, to generate more precise labels to train the
networks. After training the networks with these labels and the generation of corre-
sponding vein patterns, we evaluate the recognition performance in terms of receiver
operating characteristics and relate the results to those obtained by classical finger
vein feature-extraction techniques.

The chapter is structured as follows: Sect.8.2 describes related works and the
state of the art in finger vein recognition and Sect. 8.3 describes vein pattern extrac-
tion using three different segmentation CNN architectures as used in this work. In
Sect. 8.4, we explain different training label generation, and also fusion techniques
used in this work. In Sect. 8.5, we describe the experimental framework used in exper-
imentation. Section 8.6 presents the results, while Sect. 8.7 discusses the obtained
results, and finally Sect. 8.8 concludes the chapter.

8.2 Related Works

For a general overview of finger vein recognition techniques, please refer to, e.g.
[23] and also the book’s introduction chapter. In the first subsection of this section,
we briefly describe three state-of-the-art schemes also used in experimentation as
reference recognition techniques and used to automatically generate labels required
for CNN training. The second subsection reviews the previous employment of CNNs
in finger vein recognition, while the third subsection discusses works done in other
fields to automatically generate data for CNN training.
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8.2.1 Classical Finger Vein Recognition Techniques

Classical finger vein recognition techniques generally fall into two main categories:
Profile-based methods and feature-based methods. Feature-based methods assume
that in the clear contour of finger vein images, the pixels located in the vein regions
have lower values than those in the background. “Repeated Line Tracking” (RLT [24],
being of feature-based type) tracks the veins as dark lines in the finger vein image.
A tracking point is repeatedly initialized at random positions, and then moved along
the dark lines pixel by pixel, where the depth of valley at each position indicates the
tracking direction. If no line is detected, a new tracking trail is started. The number
of times a pixel is traversed is recorded in a matrix. Pixels that are tracked multiple
times have a high likelihood of belonging to a vein. The matrix is then binarised
using a threshold.

Profile-based approaches consider the cross-sectional contour of a vein pattern
which shows a valley shape. “Maximum Curvature” (MC [25], being of profile-
based type) traces only the centre lines of the veins and is insensitive to varying vein
width. To extract the centre positions, first the local maximum curvature in the cross-
sectional profiles of vein images is determined, using the first and second derivatives.
Next, each profile is segmented as being concave or convex, where only local maxima
in concave profiles are specified as valid centre positions. Then according to width and
curvature of the vein region, a score is assigned to each centre position, and recorded
in a matrix called locus space. The centre positions of the veins are connected using a
filtering operation subsequently. Eventually, the matrix is binarised using the median
of the locus space.

Another profile-based method, exploiting the line-like shape of veins in a pre-
defined neighbourhood region is termed “Gabor Filter” (GF [19]). A filter bank
consisting of several 2D even symmetric Gabor filters with different orientations is
created. Several feature images are extracted using different filters from the filter
bank. The final feature image is constructed by fusing all the single images obtained
in the previous step, and then morphological operations are used to clear the noise
from the image.

Of course, there are many other techniques which often apply classical feature-
extraction techniques to the finger vein pattern generation task such as Local binary
pattern (LBP [8]), Region Growth [12] and Principal Component Analysis (PCA
[15]). However, also other techniques specifically tailored to the problem have been
suggested like using vessel-crossings in a minutiae-type manner [3] or the Principal
Curvature [17] approach.

8.2.2 CNN-Based Finger Vein Recognition

Recent techniques in deep learning, and especially CNNs, are gaining increasing
interest within the biometric community. However, in finger vein recognition prior
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art is relatively sparse and the extent of sophistication is quite different. The simplest
approach is to extract features from certain layers of pre-trained classification net-
works and feed those features into a classifier to determine similarity to result in a
recognition scheme. This approach is suggested by Li et al. [39] who apply VGG-16
and AlexNet feature-extraction and KNN classification for recognition. Extracting
vein features as such rather than the binary masks, hinders the application of more
advanced training techniques such as label fusion, as used in this work.

Another approach to apply classical classification networks is to train the net-
work with the available enrollment data of certain classes (i.e. subjects). Radzi et
al. used a model of reduced-complexity (a four-layered CNN) classifier, with fused
convolutional-subsampling architecture for finger vein recognition [35]. Itgan et al.
performed finger vein recognition using a CNN classifier of similar structure [29],
and Das et al. [5] correspondingly proposed a CNN classifier for finger vein identi-
fication. This approach, however, has significant drawbacks in case new users have
to be enrolled as the networks have to be retrained, which is not practical.

Hong et al. [13] used a more sensible approach, employing fine-tuned pre-trained
models of VGG-16, VGG-19 and VGG-face classifiers, which are based on deter-
mining whether a pair of input finger vein images belongs to the same class (i.e.
subject) or not. Likewise, Xie and Kumar [40] used several known CCN models
(namely, light CNN (LCNN) [38], LCNN with triplet similarity loss function [33],
and a modified version of VGG-16) to learn useful feature representations and com-
pare the similarity between finger vein images. Doing so, they eliminated the need
for training in case of new enrolled users. However, utilising raw images, the system
possesses a potential security threat.

Qin and El-Yacoubi [11] applied a two-step procedure to extract the finger vein
patterns from NIR finger images. As the first step, they used a CNN classifier to
compute the probability of patch centre pixels to belong to vein patterns, one by one,
and labelled them according to the winning class (based on a probability threshold
of 0.5). In the next step, in order to reduce finger vein mismatches (as they had the
problem of missing vein pixels), they further used a very shallow Fully Convolutional
Neural Network (FCN) to recover those missing vein pixels. The approach used in
the first network is rather simplistic and computationally demanding compared to the
state-of-the-art segmentation networks as used in this work. Moreover, using a further
network (the FCN network) to recover the missing pixels, additional processing time
is added to the feature-extraction process.

8.2.3 Automated Generation of CNN Training Data

Large amounts of high-quality annotated samples, or ground-truth data, are typi-
cally required for CNN training. However, data labelling is an expensive and time-
consuming task, especially due to the significant human effort involved. The problem
even gets more tedious in case the annotators have to deal with ambiguous images,
where clear separation between target regions and the background data is very dif-
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ficult, as it is the case in many biomedical applications. Given these facts together
with the difficulty to persuade medical experts to annotate the required data volumes,
it is not surprising that generating ground-truth labels automatically to train CNNs
has been suggested for some CNN-based segmentation tasks in medical imaging. In
[32], classical techniques were used to segment cells stained with fluorescent mark-
ers. The resulting segmentation masks were used as ground-truth labels together with
the corresponding bright-field image data to train a CNN. In [14], Canny edge detec-
tion was applied to ultrasound images to generate the ground-truth labels required
to train a CNN for segmentation of musculo-skeletal ultrasound images. In [9], a
part of the ground-truth labels required to train a CNN for brain tumour segmen-
tation was generated by a voted average of segmentation results of top performing
classical segmentation algorithms in this field. In [31], a fully convolutional neural
network is pre-trained on a large dataset containing ground-truth labels created by
existing segmentation tools for brain segmentation, and subsequently fine-tuned with
a small dataset containing human expert annotations. In [11], authors used several
algorithms to generate a set of finger vein masks and then applied a probabilistic
algorithm to each pixel (within the masks) to assign it as being vein or not. However,
to the best of the authors’ knowledge, this approach (i) has not yet been investigated
systematically, and (ii) has not been used jointly or in fusion with manual labels in
network training process.

8.3 Finger Vein Pattern Extraction Using CNNs

The first computer vision tasks for which initial CNN architectures were developed
include classification [18], bounding box object detection [20] and key point predic-
tion [2]. More recently, CNN architectures have been developed enabling semantic
segmentation, in which each pixel is labelled separately with the class of its enclosing
object or region. The first techniques, classifying the centre pixel of an entire image
patch required immense time and computation resources, especially when used for
large-scale (whole image) segmentation. Fully convolutional neural networks are a
rich class of architectures, which extend simple CNN classifiers to efficient semantic
segmentation engines. Improving the classical CNN design with multi-resolution
layer combinations, the resulting architectures are proven to be much better per-
forming than their counterparts consisting of fully connected (FC) layers [22]. As
the key distinction, typically the FC layer is replaced in FCN with a decoding mech-
anism, which uses the down-sampling information to up-sample the low-resolution
output maps to the full resolution of the input volumes in a single step, reducing
computational cost and improving segmentation accuracy.

There have been already attempts to use FCNs to extract vessel patterns from dif-
ferent human organs. For example, in [6], an FCN is used for segmentation of retinal
blood vessels in fundus imagery, or in [26] an FCN is used for vessel segmentation in
cerebral DSA series. However, there are significant differences as compared to this
work. First, the networks have been trained with manually annotated labels provided
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by human experts only, second the quality of images is by far better than the NIR
finger vein images, and third evaluation has been done with respect to segmentation
accuracy relative to the ground-truth labels while in our context segmentation results
are indirectly evaluated by assessing recognition performance using the generated
vein patterns.

In this work, we use three different FCN architectures to extract the finger vein
patterns from NIR finger images. We selected the networks based on diffrent archi-
tectural functionalities built in each network, so that we can evaluate endurance of
such functionalties in case of finger vein segmentation. The first network architecture
used is the U-net by Ronneberger et al. [30]. The network consists of an encoding
part, and a corresponding decoding part. The encoding architecture consists of units
of two convolution layers, each followed by a rectification layer (ReLU) anda2 x 2
down-sampling (Pooling) layer with stride 2. At each down-sampling step, feature
channels are doubled. The corresponding decoding architecture consists of units of
2 x 2 up-convolution layers (up-sampling), which halve the number of feature chan-
nels, a concatenation operator with the cropped feature map from the corresponding
encoding unit, and two 3 x 3 convolutions, each followed by a ReLU. At the final
layer,a 1 x 1 convolution is used to map the component feature vectors to the desired
number of segmentations. The energy function is computed by a soft-max over the
final feature map, combined with the cross-entropy loss function. The cross-entropy
then penalises, at each position, the deviation of soft-max (M ) (x)) from one (1.00)
as follows:

e = log(M;(x). (8.1)
k=1
where A : 2 — {1, ..., K} is the true label of each pixel, at the position x € §2, with

2 C Z*. The networks soft-max layer generates the final segmentation as a proba-
bility map, whose pixel values reflect the probability of a particular pixel to belong
to a vein or not. The network has a large number of feature channels, which allow it
to propagate context information to higher resolution layers, and offers end-to-end
training with limited number of training samples. The network implementation' was
realised in the TensorFlow framework using the Keras library.

The second network architecture we used to extract the finger vein patterns is
RefineNet [21]. RefineNet is a multi-path refinement network, which employs a four-
cascaded architecture with four RefineNet units, each of which directly connects to
the output of one Residual net [10] block, as well as to the preceding RefineNet
block in the cascade. Each RefineNet unit consists of two residual convolution units
(RCU), whose outputs are fused into a high-resolution feature map, and then fed into
a chained residual Pooling block. The network has multi-path refinement architec-
ture that explicitly exploits all the information available along the down-sampling
process to enable high-resolution prediction using long-range residual connections.
In this way, the deeper layers that capture high-level semantic features can be directly
refined using fine-grained features from earlier convolutions. The network also uses

Uhttps://github.com/orobix/retina-unet.
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Table 8.1 Networks’ training parameters

Network U-net RefineNet SegNet

Optimizer Stochastic gradient Adam Stochastic gradient
descent descent

Learning rate 0.08 0.0001 0.003

Momentum 0.9 - 0.01

Weight decay 0.0005 0.1 0.000001

Iteration 300 40,000 30,000

a chained residual pooling mechanism to capture rich background context in an
efficient manner. The implementation® of this network was also realised in the Ten-
sorFlow framework using the Keras library.

The third network architecture we used in our work is identical to the “Basic”
fully convolutional encoder—decoder network proposed by Kendall et al. [1], named
SegNet. However, we redesigned the softmax layer to segment only the vein pat-
tern. The whole network architecture is formed by an encoder network, and the
corresponding decoder network. The network’s encoder architecture is organised in
four stocks, containing a set of blocks. Each block comprises a convolutional layer, a
batch normalisation layer, a ReLU layer and a Pooling layer with kernel size of 2 x 2
and stride 2. The corresponding decoder architecture, likewise, is organised in four
stocks of blocks, whose layers are similar to those of the encoder blocks, except that
here each block includes an up-sampling layer. In order to provide a wide context
for smooth labelling, in this network, the convolutional kernel size is set to 7 x 7.
A key functionality used in this network is “indices pooling”. While several layers
of max-pooling and sub-sampling can achieve more translation invariance for robust
classification correspondingly there is a loss of spatial resolution of the feature maps.
Therefore, it is necessary to capture and store boundary information in the encoder
feature maps before sub-sampling is performed. The network utilises a memory-
efficient technique for this purpose, storing only the max-pooling indices, i.e. the
locations of the maximum feature value in each pooling window is memorised for
each encoder feature map. The decoder network up-samples the input feature map(s)
using the memorised max-pooling indices from the corresponding encoder feature
map(s). The decoder network ends up to a softmax layer which generates the final
segmentation map. The network implementation® was realised in the Caffe deep
learning framework.

Table 8.1 summarises the training parameters (which turned out to deliver best
results) we used to train each network in our experiments.

Zhttps://github.com/eragonruan/refinenet-image-segmentation.
3http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html.
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Fig. 8.1 A sample finger vein image (a), and its corresponding manual (b), MC (c¢), GF (d), RLT
(e), and fused (MC-GF-RLT) (f) labels respectively

8.4 Training Label Generation and Setups

From the total samples available in our database (check Sect. 8.5 for database details),
we have 388 NIR finger images (covering all subjects in the database) manually
annotated (i.e. vein versus non-vein pixels, see Fig.8.1b for an example) available
for training the CNNs. To enable a fair comparison, we generated the same number
of corresponding automated labels (also using the identical images), utilising each
of the following classical binary vein-pattern extraction algorithms: Maximum Cur-
vature (MC), Gabor Filter (GF) and Repeated Line Tracking (RLT). The technical
details of these algorithms are already discussed in Sect. 8.2. For MC and RLT, we
utilised the MATLAB implementation of B. T. Ton,* and for GF we used a custom
implementation as used in [28]° (see Fig.8.1c, d and e for corresponding example
using each algorithm).

As one of the main objectives of this work, we investigated several training label
scenarios, aiming to improve the networks’ feature-extraction capabilities, and also
eventually eliminating the need for the manually annotated labels. In this way, first
we used automatically generated labels adding only 40 pcs of corresponding manual
labels to train the networks in each training session. We termed this approach as
“automated” training. Next we considered to train the network using automatically
generated labels jointly with equivalent number of (i) corresponding manual labels,
and also (ii) other (corresponding) automatically generated labels to train the net-
works. We termed this approach as “joint” training. In particular, in this approach, in
each training session, instead of using just one type of label (i.e. manual, MC, GF or

4 Available on MATLAB Central.
3 Available at: http://www.wavelab.at/sources/Kaubal 6e.
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Table 8.2 Runtime per input volume for each network

Network U-net RefineNet SegNet
Input volume size 584 x 565 584 x 565 360 x 480
Processing time (s) 3.164 0.138 0.0398

RLT) we used combinations of two or more types of the labels to train the networks.
We kept the input data shuffling on during the training process to preserve uniform
distribution of training samples.

In an alternative approach, we considered to fuse in between different types of the
labels available, to generate single training labels. For this purpose, we utilised the
“STAPLE” (Simultaneous Truth And Performance Level Estimation [37]) algorithm
to fuse between the binary labels. STAPLE is an algorithm developed for perfor-
mance analysis of image segmentation approaches in medical imaging based on
expectation—maximisation. It takes in a collection of labels and computes a proba-
bilistic estimate of the true labels and a measure of the performance level represented
by each label. In our work, we applied STAPLE to fuse between (i) automatically
generated labels, (corresponding) manual labels and also (ii) different types of auto-
matically generated labels (see Fig.8.1f for an example). We termed this approach
as “fusion” training.

8.5 Experimental Framework

Database: We used the UTFVP database [36],° acquired by the University of Twente
with a custom sensor, in our experiments. The UTFVP database contains 1440 finger
vein images (with resolution of 672 x 380 pixels), collected from 60 volunteers. The
images were captured in two identical sessions with an average time lapse of 15 days.
For each volunteer, the vein pattern of the index, ring and middle finger of both hands
has been collected twice at each session (each individual finger has been captured
four times in total). The percentage of male volunteers was 73% and the percentage
of right-handed volunteers was 87%. The width of the visible veins ranges from 4 to
20 pixels which corresponds to vein widths of approximately 0.3—1.6 mm. These vein
widths are approximate numbers because the pixel density was determined assuming
a flat surface. We resized the images to the corresponding networks’ input volume,
using bicubic interpolation method, as specified in Table 8.2 (see Fig. 8.1a for a sam-
ple of finger vein images in the database).

Network training and finger vein recognition evaluations: We trained each net-
work with different label groups (manual, automated, fused and joint) using a cross-
fold training method with disjoint training and testing sets. For this purpose, first we

6 Available at:https://scs.ewi.utwente.nl/downloads/.
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partitioned the whole training set (388 labels) for each label group into two parts
(194 labels each). Next, we trained the networks with the first training part, and
tested the networks on the remaining samples in the database (1246 samples). Then
we did the training with the second part this time, and tested the networks on the
remaining samples in the database. Doing so, we tested the networks on all samples
in the database without overlapping training and testing sets.

As we wanted the comparison to concentrate on the quality of the pure training
labels, we deliberately did not apply any data augmentation technique. Also, while
a different number of training samples were used by the network developers (e.g.
35, 376, 1449 samples for U-Net, SegNet and RefineNet, respectively), we selected
this number of training samples (194 samples) based on our experimental trials and
also the availability of labels. Moreover, as the NIR finger images are acquired under
standardised conditions in the sensor, no additional normalisation techniques have
been applied. The RefineNet and the SegNet already generate their final outputs as
binarized maps, but as the final output of the U-net is in form of probability maps,
we binarised these maps using a grey-level threshold function based on the Otsu’s
algorithm [27]. The algorithm chooses the best threshold to minimise the intra-class
variance of the black and white pixels while maximising inter-class scatter. Table 8.2
shows the segmentation runtime per input volume for each network, using TITAN-X
(Pascal) GPUs. It is interesting to note that U-net is relatively much slower than the
other two networks, which is primarily due to the overlapping-tile strategy, and also
the large number of feature channels used in this network.

Finger vein Recognition Evaluations: To quantify the recognition performance of
the networks (using their vein pattern outputs), as well as the classically generated
vein patterns in comparison, receiver operator characteristic behaviour is evaluated.
In particular, the equal error rate EER as well as the FMR1000 (FMR) and the
ZeroFMR (ZFMR) are used. For their respective calculation, we followed the test
protocol of the FVC2004 [4]. All possible genuine comparisons are performed, i.e.
each sample is compared against all remaining samples of the same finger/hand while
no symmetric comparisons are performed. So, in total 2160 genuine comparisons are
carried out. For the impostor comparisons, only the first sample of each finger/hand
is compared against the first sample of all remaining fingers/hands, while no sym-
metric comparison is performed, resulting in total 64520 impostor comparisons. For
matching the binary output features, we adopted the approach by Miura et al. [25],
which is essentially the calculation of the correlation between an input and reference
image. As the input maps are not registered to each other and only coarsely aligned,
using LeeRegion [7] background removal, the correlation between the input image
I(x,y) and the reference one is calculated several times while shifting the refer-
ence image R(x, y), whose upper-left position is R(c,,, c¢;) and lower-right position
is R(w — ¢y, h — ¢y), in x- and y-direction.

h—2cp—1w—2c¢,,—1

Na(s.)= Y Y Is+x.t+ )R, +x e+, (8.2)

y=0 x=0
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where N,,(s, t) is the correlation. The maximum value of the correlation is then
normalised and used as matching score:

Nmmwc
score = , (8.3)
to+h—2cp—1so+w—2¢,,—1 h—2cp—1w—2¢,,—1
E I(x,y) + E E R(x,y)
y=ty X=s y=cp, X=Cy

where s¢ and ¢, are the indexes of N, in the correlation matrix N, (s, t). The score

values are in the range 0 < score < 0.5.

8.6 Results

Table 8.3 and Fig. 8.2 display the results for training the networks using the manual,
automated and joint training methods, providing EER, FMR and ZFMR as well
as DET (Detection Error Trade-off) plots, respectively. The baseline result for each
network is given using only manually annotated labels (“CNN-Manual ). We observe
that the baseline is already quite different for the three networks, i.e. U-Net is superior
to RefineNet, while SegNet clearly is worst among the three.

Next we look into results for training networks with the automatically generated
labels adding just 40 pcs of corresponding manual labels (automated training). The
overall impression is that (i) this approach can improve the results significantly in
many cases and (ii) results again differ depending on the network considered. As
it can be seen in the table, recognition performance gets considerably improved

Table 8.3 Networks performance, trained with manual, automated and joint labels

Network U-net RefineNet SegNet

Measures EER |FMR |ZFMR |EER |FMR |ZFMR |EER |FMR |ZFMR
(%) (%) (%) (%) (%) (%) (%) (%) (%)
CNN-Manual| 0.877 1.851 | 5.185 (2735 |5.833 |11.851 |2917 |6.759 |12.638
CNN-MC 0.322 0.601 | 0.925 | 0.280 |0.370 1.574 | 1.433 |2.453 5.648
CNN-GF 0.793 2.731 | 3.796 |2.133 |5.046 8.750 | 1.204 |2.685 5.555
CNN-RLT |2.091 |11.620 |24.861 |1.101 |2.824 3.750 | 1.279 | 3.009 7.592

CNN- 0.924 3.055 | 3.379 {0933 |2361 |17.870 |1.531 |2.500 3.240
Manual-MC
CNN- 0.648 0.925 | 2916 |2.039 |3.564 5416 [2.595 |4.675 8.750
Manual-GF
CNN- 1.433 8.518 [ 17.500 |1.703 |4.027 5.878 | 1.433 |2.361 3.194
Manual-RLT

CNN-MC- 1.713 | 15.046 |23.750 |0.877 |2.037 3.055 10929 |1.805 4.027
GF-RLT
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Table 8.4 Classical algorithms performance

Method Maximum curvature Gabor filter Repeated line tracking
Measures | EER FMR ZFMR | EER FMR ZFMR | EER FMR ZFMR
(%) (%) (%) (%) (%) (%) (%) (%) (%)
Scores 0.4155 [0.555 |1.296 |1.111 |2.453 |4.120 |2.175 |5.879 |9.351

when training networks with labels generated by the MC algorithm for all networks
(compared to training networks with manual labels). As well, labels generated by
the GF algorithm improve the networks’ performance (especially SegNet’s), but in a
fewer degree. When trained with the labels generated by the RLT algorithm, SegNet
and especially RefineNet recognition results are also clearly improved, while U-net
results are significantly deteriorated. Obviously, the different network architectures
react very differently when trained with labels of different origin. It is also interesting
to directly consider the recognition accuracy of the vein patterns generated by the
classical algorithms (recognition results shown in Table 8.4): The very clear ranking
is that MC is best, GF is ranked second while RLT exhibits the worst recognition
performance. This ranking is not consistently reflected by the vein patterns generated
by the networks when trained with these classical algorithms’ labels. For the U-
net, the ranking is MC, GF, RLT (thus reflecting the “original” ranking), while for
the RefineNet the ranking is MC, RLT, GF, and the SegNet’s ranking is GF, RLT
and MC. Training networks jointly with manual labels and equivalent number of
labels generated by the classical algorithms (joint approach) again result in different
performance behaviours. As compared to training with manual labels only, results
are improved in all cases for SegNet, while for RefineNet and U-net we observe
both result improvements as well as degradations, respectively. As compared to the
automated training method, we observe both result improvements and degradations
for all CNNs. There is a tendency that for those automatically generated labels,
which perform well when used just with 40 pcs of manual label in training, we
typically do not observe improvements when used jointly with equivalent number
of manual labels. Considering training the networks jointly with MC, GF and RLT
labels at once (joint method), we get results never improving the best result obtained
when training with a single technique (results shown only in Table 8.3) for U-net.
However, using such a training configuration, we can improve the performance of
SegNet and RefineNet even further than the best result obtained when training with
a single technique. Thus, this training configuration can be recommended only for
this network.

In order to assess the recognition performance of the vein patterns generated by
the different network training approaches presented in Table 8.3, we compare the
corresponding recognition performance to that of the vein patterns as generated with
classical algorithms directly in terms of DET as presented in Figs. 8.3, 8.4 and 8.5.
We conduct this comparison for different CNNs and the automated label generation
techniques separately to facilitate a clear comparison. For MC labels (left graphs),
we observe that CNN-generated vein patterns considerably enhance the recognition
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performance of RefineNet and U-net, respectively, as compared to the classically
generated patterns. The most interesting results here are obtained by RefineNet,
which clearly outperforms the best classical algorithms results (obtained by MC
algorithm) in all terms.

For GF labels (middle graphs), we see improvements using automated and also
joint training method for the U-net, while for the SegNet and RefineNet no specific
improvement is visible. Finally, for the RLT labels (right graphs), all the CNN-based
vein patterns outperform the classical ones, whether using automated or joint training
method.

As a further training configuration, we trained the networks considering several
training label fusion scenarios. Table 8.5 demonstrates the results for this experiment.
Comparing the results to the corresponding results obtained using the joint training
method, interestingly we can see that training the networks with the labels gener-
ated by fusing all types of automatically generated labels (last line of the table) not
only doesn’t improve the networks’ performance but also undermines them severely
(especially in case of U-net). Furthermore, training the networks with labels which
are result of fusion between the manual and automatically generated labels by MC
or GF algorithms improves the performance of RefineNet, U-net and rather SegNet.
We also observe that while training the networks with the labels generated by fusing
manual and automatically generated labels by RLT algorithm improves the results
obtained by RefineNet, yet this training label configuration degrades the correspond-
ing results for U-net and SegNet.

8.7 Discussion

When analysing our results, the poor performance of the networks trained with
manual labels is surprising. Thus, the firstissue to be discussed is the quality/accuracy
of our manual labels (see Fig.8.6a for an example). Human annotators have been
instructed to only annotate vein pixels without any ambiguity in order to avoid false-
positive annotations. When looking at the example, it is obvious that manual labels
are restricted to rather large-scale vessels, while fine-grained vasculature is entirely
missed/avoided. The correspondingly segmented vein patterns (i.e. the outputs of
CNNs trained with the manual labels, 8.6e, i and m in the example figures) are
rather sparse and it may be conjectured that these patterns simply do not contain
sufficiently high entropy to facilitate high-accuracy recognition. In contrast, MC
labels and their corresponding outputs of CNNs trained with these labels (8.6f, j
and n in the figures) exhibit much more fine-grained vasculature details, reflected
in much better recognition accuracy. RLT vein patterns, on the other hand, tend to
over-segment and obviously also contain many false-positive vein pixels (e.g. at the
border between finger texture and background, 8.6d in the figures). Consequently,
this also applies to outputs of CNNs trained with RLT labels (see 8.6h, 1 and p in the
figures).
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(a)

Fig. 8.6 A sample of manual (a), MC (b), GF (c¢), RLT (d) labels, and thier corresponding seg-
mentation results when used to train: U-net (e, f, g, h), SegNet (i, j, k, 1) and RefineNet (m, n, o,
P), respectively

We have observed that in many configurations, utilising automatically generated
labels is beneficial for the recognition performance of the vein patterns generated
by CNN-based segmentation (i.e. training U-net and RefineNet with labels automat-
ically generated by MC algorithm). However, there is significant interplay of the
nature of the used labels (in particular, their accuracy with respect to the relation
between false-positive and false-negative vein pixels) and the network architecture.
Interestingly, it is not the case that training with the vein patterns generated by the
classical algorithm exhibiting the best recognition performance (i.e. MC) does lead
to the best performing CNN segmentations for all networks. As observed before, the
ranking among the schemes is not maintained after network training, which indicates
a distinct capability of the networks to cope with false positives (highly present in
RLT labels for example) and false negatives (obviously highly present in manual
labels).

For example, while the performance of SegNet and especially RefineNet improve
when trained with labels generated by the RLT algorithm, the U-net’s performance
clearly degrades when trained with identical labels. In general, the RefineNet exhibits
comparably better segmentation capabilities, especially when trained with MC labels.
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Basically, this network has a multi-path refinement architecture, which exploits the
information available along the down-sampling process to enable high-resolution
prediction, emphasising on preservation of edges and boundaries. Consequently,
introducing further vein pixels to the network by automatically generated or fused
labels seems to improve the actual network vein pattern extraction capabilities sig-
nificantly (compared to the other two networks).

The network architecture of the U-net has been proven to excel in many biomedical
applications, and when trained with precise vein labels, it is able to deal well with
the ambiguous boundary issue between vein and non-vein regions in finger vein
images. This capability is mainly due to the large number of feature channels built
in the network architecture, which allow for propagating key context information
to higher resolution layers. However, due to the high sensitivity of the network,
imprecise labels can equally degrade the network’s performance seriously. A simple
comparison of the network’s performance when trained with labels generated by the
MC algorithm (more precise labels, some false negatives) with when trained with
labels generated by the RLT algorithm (less precise labels with more false positives)
underpins this behaviour, as also reflected in Fig. 8.6.

The SegNet network is unable to extract vein patterns from the NIR finger images
well when trained with manual labels. However, the network’s performance consis-
tently improves by introducing further vein pixel labels using automatically generated
or fused labels. This network shows good ability to exclude the incorrectly labelled
vein pixels (i.e. false positives) during the training process, as imprecise labels (i.e.
those generated by RLT algorithm) do not degrade the network’s performance sig-
nificantly. This ability of the network is mainly owed to the up-sampling mechanism
used in this network, which uses max-pooling indicts from the corresponding encoder
feature maps to generate the up-sampled feature maps without learning.

Considering the applied training approaches (fusion versus joint), as the results
show, in majority of cases (i.e. training networks jointly with labels automatically
generated by all classical algorithms), the latter approach (joint) performs superior
to the fusion technique, and results more in improvement of networks’ performance
rather than degradation. However, the extent of such improvement/degradation again
is subject to the interplay of the nature of the used labels and the network architecture.
Conflicting results obtained by Unet and RefineNet when trained jointly with manual
and automatically generated labels by MC or GF algorithms indicates this fact clearly.
Therefore, we can conclude that selection of the proper network training approach
is highly subject to these two key factors (nature of the used labels and the network
architecture).

8.8 Conclusion

In this work, we proposed a new model for finger vein recognition using fully con-
volutional neural networks (FCN), focusing on direct extraction of actual finger vein
patterns from the finger images by segmentation, and using them as the actual finger
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vein features for the recognition process. In this context, we trained three different
FCN architectures, utilising different combinations of manual and automatically gen-
erated labels, and evaluated the respective recognition performance of the generated
vein patterns in each case. We showed that automatically generated labels (whether
used solely or fused with manual labels) can improve the network’s performance in
terms of achieved recognition accuracy. It also turned out that these improvements
are highly dependent on the interplay between properties of the used labels and the
network architecture. In any case, we have demonstrated that utilising automatically
generated labels to train the networks eliminates the need for manual labels, whose
generation is an extremely cumbersome, difficult and error-prone process.

In future works, we will change the way how to employ and combine addition-
ally available label data. In particular, we will assess the strategy to pre-train with
manual labels (as they do not contain false-positive vein pixels) and refine networks
with automatically generated ones (as these do contain more fine-grained vascular
details). Also, an evaluation of cross-database (using training data from a different
vein sensor) and cross-vessel type (using training data of different vessel types, e.g.
retinal vasculature) training will be conducted. Finally, we will look into augmenta-
tion techniques specifically tailored to the observed problem with the manual labels,
i.e. scaling the data to model also more detailed and finer vessel structures.
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