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Abstract High-quality finger vein datasets available for the research community
are still relatively scarce; therefore, we collected a set of finger vein images of high
resolution and a known pixel density. Furthermore, this is the first dataset which con-
tains the age, gender and handedness of the participating data subjects as metadata.
This dataset has been collected using a custom-designed biometric capture device.
The various aspects of designing this biometric capture device are addressed in this
chapter. New insights and continuing work on the design of better capture devices
have led to novel ideas which are presented in this chapter. To justify the importance
of this dataset, performance figures in terms of EER of several well-established
algorithms using this dataset and an existing dataset are compared side by side.

Keywords Finger vein capture device + Finger vein data set - 3D finger vein
reconstruction

2.1 Introduction

The vascular or vein pattern of the finger is advertised as a promising new biometric
characteristic. Biometric recognition based on finger vein patterns is characterised by
very low error rates, good presentation attack resistance and a user convenience that
is equivalent to that of fingerprint recognition. Though this new form of biometrics
is already commercially deployed, it still lacks a strong scientific base. This is due to
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industrial protectiveness, which restricts the ability to verify claimed performances.
In order to compare existing algorithms, a standardised testing method is needed and
more datasets should be made available to researchers.

In order to stimulate the academic research on vascular pattern recognition, this
chapter will present a finger vascular pattern dataset which has recently been made
available to other researchers [17]. The presented dataset is unique in its kind as
it provides high-resolution images together with demographics about the data sub-
jects. Another contribution of this chapter is the performance verification of several
published algorithms using both the newly collected dataset and an existing dataset
collected by the Peking University [12].

Our dataset has been collected using a custom-designed capture device. The var-
ious aspects of designing this capture device are also covered in this chapter.

In the remainder of this chapter, first a brief overview is provided of finger vein
acquisition techniques and systems in Sect.2.2. Next, the custom-designed capture
deviceis described in detail (Sect. 2.3), followed by the dataset (Sect. 2.4). In Sect. 2.5,
results of various finger vein recognition algorithms on the database are presented.
Section 2.6 presents the next-generation finger vein scanner currently under devel-
opment at the University of Twente: a more compact design with 3D capabilities and
other enhancements. Section 2.7 presents conclusions and in Sect. 2.8 future work is
described.

2.2 Overview of Finger Vein Acquisition Systems

2.2.1 Types of Sensors

We first briefly summarise the different types of sensors for finger vein recognition
and then present our own design. Devices that capture the vascular pattern inside
a finger are based on the fact that the haemoglobin inside the veins has a higher
absorption of Near-Infrared Light (NIR light) than the surrounding tissue. This means
that the vascular pattern inside a finger can be captured by a device that is sensitive
to NIR light. The veins have to be made visible with NIR light, but there are multiple
possibilities to illuminate the finger. The main types that are found in existing devices
are shown in Fig.2.1.

The illumination with the light reflection method is on the same side as the camera.
This allows the device to be more compact. During operation, the user of the device
can still see his finger. The disadvantage of this method is that the image sensor
mainly captures the reflected light from the surface of the finger, because the light
shallowly penetrates the skin. Hence, this method gives images with low contrast
between tissue and veins. The light transmission method does deliver high-contrast
vascular pattern images, because the light passes through the finger and no reflections
of the surface are captured. The illumination is at the other side of the finger relative to
the camera. The disadvantage of this method is that the user has to put his finger into
the device such that he cannot see his finger anymore, which can cause discomfort.
The third illumination type is side lighting method. This method still allows an open
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Fig. 2.1 Reflection, transmission and side illumination acquisition

device such that the user can see his finger. The light sources are placed on either
one side or both sides of the finger. NIR light goes through the sides of the finger
and scatters there, before it is captured by the image sensor. This method does allow
for high-contrast images. However, the sides of the finger are overexposed in the
images.

Some examples of commercially available sensors and sensors developed by aca-
demics are presented in Sects. 2.2.2 and 2.2.3. For a more complete overview, please
refer to Chap. 3 of this book.

2.2.2 Commercial Sensors

There are several devices on the market for vascular pattern recognition. The market
leader in finger vein capture devices is Hitachi. They have developed multiple systems
that are capable of capturing finger vein images using light transmission or side
illumination. Hitachi claims that it has a False Non-Match Rate (FNMR) of 0.01%
at a False Match Rate (FMR) of 0.0001% [3, 4]. However, it is hard to verify these
claims, because the devices and image data are not accessible.

Another company that builds finger vein capture devices is Mofiria, a daughter
company of Sony. This company also produces various devices among which one
using light transmission, but where the finger is placed sideways on the sensor. They
claim an FNMR of 0.1% at an FMR of 0.0001% [15], but again these are closed
devices and data are not accessible.

2.2.3 Sensors Developed by Academics

At several universities, research into finger vein recognition is performed and acqui-
sition devices were developed. Examples are the finger vein scanner devices devel-
oped by the Civil Aviation University of China [21] and the University of Electronic
Science and Technology [9]. The latter device also has the capability of making
3D recordings of finger veins. A more recent sensor, developed at the Norwegian
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Biometrics Laboratory (NBL), allows simultaneous capturing of both finger vein
patterns and fingerprints [13]. This is a closed sensor, and the user has to place his
finger through a hole inside the device.

The device developed at the University of Twente, which is described in the
subsequent sections, is also an example of this group of finger vein acquisition
devices. The huge advantage of these devices, developed by academics, is that they
are usually open devices, the image data is accessible and datasets are made available
to the research community. This enables us to evaluate and compare various methods
for finger vein recognition.

2.3 University of Twente Finger Vein Capture Device

A custom transillumination device type has been designed to capture the finger vas-
cular pattern [18, 19]. This type of capture device has been chosen for its simplicity,
robustness and the fact that external light interferences have little influence on the
captured images. A downside of this type of capture device is the reduced user con-
venience because the finger is partially obscured during the capture process. All
finger vascular pattern capture devices are based on the fact that blood has a higher
absorbency than surrounding tissue in the near-infrared spectrum. A schematic cross
section of the capture device can be seen in Fig. 2.2. The USB lightbox is responsible
for regulating the individual LED intensities and is encapsulated in the capture device
for the ease of portability. The overview also shows the slanted mirror indicated in
green and the top plate containing the eight LEDs. The total length of the realised
capture device is 50 cm, and the maximum height is 15 cm.

The constructed capture device consists of three main components: a light source,
a camera and a mirror. These components will be described briefly in the successive
paragraphs.

Light source This the most important part of the capture device since it determines
the intensity of the captured image. Eight SFH4550 near-infrared LEDs produced
by Osram with a wavelength of 850nm are used to transilluminate the finger. This
LED type has been chosen because it has a small angle of half intensity, which
means more power can be directed into the finger. Each individual LED intensity is
regulated using a simple control loop in such a way that a uniform intensity along
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Fig. 2.2 Schematic cross section of the capture device
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the finger is obtained in the captured image. This control loop is also necessary to
cope with varying thicknesses along the finger and between various biometric data
subjects. The benefit of this simple control loop can be seen in Fig.2.3. It clearly
shows the over- and underexposure in the non-regulated case.

Camera The camera used to capture the images is a BCi5 monochrome CMOS
camera with firewire interface produced by C-Cam technologies. The camera has
been fitted with a Pentax H1214-M machine vision lens with a focal length of 12 mm.
This lens is fitted with a B+W 093 infrared filter which has a cutoff wavelength of
930 nm. The filter is used to block out any interfering visible light. The camera is
used in 8-bit mode with a resolution of 1280 x 1024 pixels.

Mirror To minimise the height of the capture device, a mirror is used so the
camera can be placed horizontally. An NT41-405 first surface mirror produced by
Edmund Optics has been used for this purpose. The reason for choosing a first surface
mirror is to avoid distortions in the captured image. A conventional mirror has its

-

(a) Eight equal LED intensities (b) LED intensities regulated by control loop

Fig. 2.3 Benefit of the control loop to adjust the individual LED intensities

Fig. 2.4 Realised finger vascular pattern capture device
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reflective layer protected by glass. The refractive indices of glass and air differ which
means distortions will occur in the captured image. The final constructed capture
device can be seen in Fig.2.4.

2.4 Description of Dataset

The University of Twente Finger Vein Pattern (UTVP) dataset contains 1440 finger
vascular pattern images in total which have been collected from 60 volunteering sub-
jects at our university during the 2011-2012 academic year. Images were captured
in two identical sessions with an average time-lapse of 15 days. For each data sub-
ject, the vascular pattern of the index, ring and middle finger of both hands has been
collected twice at each session. This means that each individual finger has been cap-
tured four times in total. The captured images have a resolution of 672 x 380 pixels
and have a pixel density of 126 pixels per centimetre (ppcm). The images are stored
using the lossless 8-bit greyscale Portable Network Graphics (PNG) format. The
percentage of male data subjects was 73%, and the percentage of right-handed data
subjects was 87%. The dataset represents a young population with 82% of the data
subjects falling in the age range of 19-30, and the remaining data subjects were older
than this. A set of sample images from the collected dataset can be seen in Fig.2.5.
The quality of the collected images varies among biometric capture subjects, but the
variation in quality of the images from the same biometric capture subject is small.

(a) Female, age 24 (b) Male, age 32

(c) Male, age 20 (d) Female, age 31

Fig. 2.5 Sample images of the left-hand ring finger from the collected dataset
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The width of the visible blood vessels ranges from 4-20 pixels which, using a pixel
density of 126 pixels per centimetre, corresponds to vessel widths of approximately
0.3-1.6 mm. The pixel density was determined by placing a piece of flat graph paper
at exactly the same position as the finger and counting the number of pixels per
centimetre in the recorded image. This resulted in a pixel density of 126 pixels per
centimetre.

The UTVP dataset is available from the University of Twente by completing an
online download request and license agreement, see [17].

2.5 Results

2.5.1 Performance Analysis

To illustrate and rank the quality of the collected dataset, the performance of a
few published algorithms was evaluated. These algorithms have been applied to our
collected dataset and the V4 finger vein database from the Peking University [12]
which has been used as a reference. The performance of the algorithms is measured
in terms of Equal Error Rate (EER). The experiments also investigate the merit of
Adaptive Histogram Equalisation (AHE) as a preprocessing step. Each directory of
the Peking dataset contains between four and eight images of the same finger. For the
experiments only directories containing exactly eight images have been used, this
accounts for 153 directories out of the available 200 directories. For this dataset, it
is not known which fingers belong to the same subject.

For both datasets, 10% of the fingers have been used for tuning the various param-
eters of the algorithms. For the Peking dataset, the valid directories are sorted ascend-
ing by filename and the first 10% are used for parameter tuning. For our dataset, 10%
of the fingers have been selected by taking the first finger of the first data subject, the
second finger of the second data subject ... the first finger of the seventh data subject.
This method of selecting the training set has been chosen to get a larger variation in
the quality of the vascular pattern images. The other 90% of both datasets have been
used to determine the actual performance of the algorithms.

The exact number comparison trials done for both the parameter tuning and the
actual determination of the performance are given in Table 2.1.

For all of these experiments, fingers were treated as identical individual biometric
samples, for example, left-hand index fingers were compared with right-hand middle
fingers. Two performance experiments are done per dataset, one with and one without
adaptive histogram equalisation as preprocessing step. This preprocessing step is
done using MATLAB’s adapthisteq() function with the default parameters’
set. The effect of applying an adaptive histogram equalisation to a vascular pattern
image can be seen in Fig.2.6.

To ensure that only image regions containing finger are compared with each other
a binary mask is used. This mask is created by first determining the edges of the
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Table 2.1 Number of mated and non-mated comparison trials performed

Dataset # fingers Mated Non-mated
Parameter tuning

Peking 15 420 6720

UTFVP 35 210 9520
Actual performance experiment

Peking 138 3864 604,992

UTFVP 325 1950 842,400

(a) Original image (b) Adaptive Histogram Equalisation

Fig. 2.6 Effect of Adaptive Histogram Equalisation

finger in the image using the method described by Lee et al. [8] and then filling in
the area between these edges.

The edges detected in the previous step are used to normalise the image using the
method described by Huang et al. [S]. This method tries to estimate a rotation and
a translation based on the detected finger edges. After these parameters have been
estimated, they are used to define an affine image transformation which aligns the
finger to the centre of the image. This affine transformation is also applied to the
binary mask.

The output of each of the algorithms, except the normalised cross-correlation, is
a binary template indicating the position of a blood vessel. Two binary templates are
compared with each other by using the method described by Miura et al. [10]. An
incidental side effect of using the binary finger region mask is that the shape of the
finger is also indirectly taken into account when comparing two templates.

The final verification results are shown in Table 2.2 which indicates that our dataset
performs significantly better in all cases and that adaptive histogram equalisation is
beneficial in most of the cases. The results presented here have been independently
replicated by Vanoni et al. [20].

The two methods proposed by Miura et al. have been tested by other researchers
using their own collected datasets. One of them is Huang et al. [5] who has achieved
an EER of 2.8% for the maximum curvature method and an EER of 5% for the
repeated line tracking method. Another one is Choi et al. [2] who have achieved
an EER of 3.6% for the maximum curvature method. The last one is Kumar and
Zhou [7] who achieved an EER of 8.3% for the repeated line tracking method and
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Table 2.2 Performance expressed in terms of EER (%) of several algorithms for both datasets,
both with and without Adaptive Histogram Equalisation (AHE) as a preprocessing step

EER (%)

Original paper | Best reported | Peking UTFVP

No AHE | With AHE |No AHE | With AHE

Normalised| 0.0 - 14.7 9.8 3.1 1.9
Cross-
correlation?®

Maximum | 0.0 2.7¢ 1.2 1.3 0.4 0.4
curvature®

Repeated | 0.2 5.0f 6.8 5.9 0.9 12
line

tracking®
Principal | 0.4 - 2.7 22 0.8 0.4
curvatured

Wide line | 0.9 - 4.7 2.7 1.5 0.9
detector®

4 See [6]
b See [11]
¢ See [10]
d See [2]
¢ See [5]
f See [7]

achieved an EER of 2.7% for the maximum curvature method. The mentioned EERs
from Kumar and Zhou are the average EER of the middle and index fingers. The
best reported performance figures for these two methods are mentioned in Table 2.2
as well. Our MATLAB implementation of these algorithms can be found in [16].

2.6 Next-Generation Finger Vein Scanner

2.6.1 Overview

Since the design of the described finger vein scanner, we developed a second version
of the finger vein scanner with new capabilities, see Fig.2.7 [14]. The scanner is
much more compact and is built using cheaper components: it uses Raspberry Pi
processing boards and cameras. This new scanner has been designed in such a way as
to support further research in various ways. It supports multiple NIR LED strips that
can be positioned in a semicircle from 0° to 180°. It also supports three cameras, thus
allowing for 3D finger vein reconstruction. Currently, we are investigating optimal
illumination and settings of the cameras and 3D finger vein reconstruction.
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Fig. 2.7 Second-generation finger vein scanner of the University of Twente. It has three cameras
for 3D recordings and multiple adjustable LED strips

2.6.2 Ilumination Control

The setup with multiple LED strips that can be rotated up to 180° allows for various
illumination methods. It supports both transmission and side illumination. Reflection
is not supported, however. Care was taken to position the LED strip with respect to
the finger position and the opening for the finger with below it the infrared filter,
such that as little as possible infrared light can “leak” around the finger. The new
setup inherited the advanced control over the intensity of each individual LED from
the previous version of the scanner, enabling a more homogeneous illumination and
adjustment to the properties of the finger (e.g. thick and thin fingers). In Fig.2.8, a
comparison is made between images recorded using the first- and second-generation
finger vein scanner of the University of Twente. The images of the new scanner show
much less overexposure at the boundaries of the fingers.

We are currently investigating various ways to optimise illumination ranging from
illumination from different angles and multiple LED strips to refined control of the
LED intensities and combination of multiple images with different illumination.

2.6.3 3D Reconstruction

The advantage of 3D recordings is that if fingers are slightly rotated, causing a
deformation of the finger vein pattern, this deformation can be compensated for.
Another possibility is direct comparison of 3D finger vein patterns. Using the three
cameras in the new scanner, we used stereo reconstruction to recover the 3D vein
patterns. A preliminary result of 3D finger vein reconstruction using this second-
generation finger vein scanner is shown in Fig.2.9 [1].
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Fig. 2.8 Comparison between images of the same fingers captured by the first (top)- and sec-
ond (bottom)-generation finger vein scanners. The images captured by the new scanner show less
overexposure near the boundaries of the fingers

Fig. 2.9 Preliminary 3D
finger vein reconstruction
using new vein scanner

Careful observation shows that the veins at the sides of the fingers are somewhat
above the veins in the middle of the finger, i.e. they follow the curvature of the surface
of the finger. This is to be expected, because only the veins at the surface of the finger
can be visualised using this technique.

2.7 Conclusions

A finger vascular pattern dataset containing 1440 high-quality images is presented
to the research community. Despite the low number of 60 data subjects which par-
ticipated, the major contribution of this dataset is the addition of demographic data
such as gender, age, and handedness. Another contribution is the high quality of the
captured images and the known pixel density of the images. Furthermore, the data
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is collected in two identical sessions with a time lapse of approximately 2 weeks.
Because of the high quality of the captured images, our dataset can pave the way
for the research of high-security cooperative applications. The performance evalua-
tion using existing algorithms has shown that equal error rates down to 0.4% can be
achieved by using our dataset.

2.8 Future Work

The use of the vascular pattern of the finger as a biometric is still not as mature as
other biometric traits such as 2D face recognition. To reach an equal maturity, more
research is needed.

Future research should include the collection of larger datasets including 3D data,
together with demographic data of the data subjects. These larger datasets will enable
researchers to report performance figures with a higher confidence. It will also enable
the research of factors such as age, gender and ethnicity on the performance. The
research community would also greatly benefit from standardised testing methods
and datasets.

The biometric performance can further be improved by fusing other finger traits
such as traditional fingerprints, the crease pattern of the finger and the shape of the
finger. An advantage of finger shape is that it is already present in the captured image.

The current control loop which adjusts the LED intensities is still rather crude
and leaves space for further improvements in terms of speed and image intensity
uniformity. Preliminary results have shown that the relation between the intensity in
the captured image and the intensity of the LEDs is as good as linear.

Finally, 3D scanning techniques allow compensation of distortions of the finger
vein pattern caused by rotation of the finger. Also, direct 3D finger vein comparison
is an interesting subject for further research.
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