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Abstract This chapter makes the first attempt to quantify the amount of discrimina-
tory information in finger vein biometric characteristics in terms of Relative Entropy
(RE) calculated on genuine and impostor comparison scores using a Nearest Neigh-
bour (NN) estimator. Our findings indicate that the RE is system-specific, meaning
that it would be misleading to claim a universal finger vein RE estimate. We show,
however, that the RE can be used to rank finger vein recognition systems (tested on
the same database using the same experimental protocol) in terms of their expected
recognition accuracy, and that this ranking is equivalent to that achieved using the
EER. This implies that the RE estimator is a reliable indicator of the amount of
discriminatory information in a finger vein recognition system. We also propose a
Normalised Relative Entropy (NRE) metric to help us better understand the signifi-
cance of the RE values, as well as to enable a fair benchmark of different biometric
systems (tested on different databases and potentially using different experimental
protocols) in terms of their RE. We discuss how the proposed NRE metric can be
used as a complement to the EER in benchmarking the discriminative capabilities of
different biometric systems, and we consider two potential issues that must be taken
into account when calculating the RE and NRE in practice.
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17.1 Introduction

There is no doubt that biometrics are fast becoming ubiquitous in response to a grow-
ingneed formore robust identity assurance.Anegative consequenceof this increasing
reliance on biometrics is the looming threat of serious privacy and security concerns
in the event that the growing biometric databases are breached.1 Fortunately, the past
decade has seen notable efforts in advancing the field of biometric template protec-
tion, which is dedicated to protecting the biometric data that is collected and used
for recognition purposes, thereby safeguarding the privacy of the data subjects and
preventing “spoofing” attacks using stolen biometric templates. Unfortunately, we
are still lacking solid methods for evaluating the effectiveness of the proposed solu-
tions. An important missing ingredient is a measure of the amount of discriminatory
information in a biometric system.

A few approaches, for example, [1–3], have focused on estimating the “individu-
ality” (or discrimination capability) of biometric templates in terms of the inter-class
variation alone (i.e. the False Match Rate or False Accept Rate). Along the same
lines, the best-known attempt to measure the amount of information in a biometric
system is probably the approach proposed by Daugman [4]. This method computes
the Hamming distance between every pair of non-mated IrisCodes, and the resulting
distance distribution is then fitted to a binomial distribution. The number of degrees
of freedom of the representative binomial distribution approximates the number of
independent bits in each binary IrisCode, which in turn provides an estimate for the
discrimination entropy of the underlying biometric characteristic. This approach was
adopted to measure the entropy of finger vein patterns in [5]. However, as explained
in [5], while thismethod ofmeasuring entropy is correct from the source coding point
of view, the issue with calculating the entropy in this way is that it only provides
a reasonable estimate of the amount of biometric information if there is no vari-
ation between multiple samples captured from the same biometric instance. Since
this intra-class variation is unlikely to be zero in practice, the discrimination entropy
would probably overestimate the amount of available biometric information [6, 7].

In an attempt to extend the idea of using entropy as a measure of biometric
informationwhilemore practically incorporating both inter- and intra-class variation,
several authors have adopted the relative entropy approach. Adler et al. [8] defined
the term “biometric information” as the decrease in uncertainty about the identity

1For a real-life example, see: http://money.cnn.com/2015/09/23/technology/opm-fingerprint-hack.

http://money.cnn.com/2015/09/23/technology/opm-fingerprint-hack
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of a person due to a set of biometric measurements. They proposed estimating the
biometric information via the relative entropy or Kullback–Leibler (KL) Divergence
between the intra-class and inter-class biometric feature distributions. Takahashi and
Murakami [6] adopted a similar approach to [8], except that they used comparison
score distributions instead of feature distributions, since this ensures that the whole
recognition pipeline is considered when estimating the amount of discriminative
biometric information in the system. Around the same time, Sutcu et al. [9] adopted
the same method as that employed in [6], with an important difference: they used
a Nearest Neighbour (NN) estimator for the KL divergence, thereby removing the
need to establish models for the comparison score distributions prior to computing
the relative entropy.

This paper adopts the approach proposed in [9] to estimate the amount of discrimi-
natory information in finger vein biometrics.We show that the Relative Entropy (RE)
metric is equivalent to the Equal Error Rate (EER) in terms of enabling us to rank
finger vein biometric systems according to their expected recognition accuracy. This
suggests that the RE metric can provide a reliable estimation of the amount of dis-
criminatory information in finger vein recognition systems. We additionally propose
a Normalised Relative Entropy (NRE) metric to help us gain a more intuitive under-
standing of the significance of RE values and to allow us to fairly benchmark the
REs of different biometric systems. The new metric can be used in conjunction with
the EER to determine the best-performing biometric system.

The remainder of this chapter is structured as follows. Section17.2 explains the
adoptedREmetric inmore detail. Section17.3 presents our results for theREoffinger
vein patterns and shows how this metric can be used to rank finger vein recognition
systems in comparison with the EER. Section17.4 proposes the new NRE metric
and presents NRE results on various finger vein recognition systems. Section17.5
discusses how the NRE could be a useful complement to the EER in benchmarking
the discrimination capabilities of different biometric systems, and we also present
two issues that must be considered when calculating the RE and NRE in practice.
Section17.6 concludes this chapter and proposes a primary direction for future work.

17.2 Measuring Biometric Information via Relative
Entropy

Let us say that G(x) represents the probability distribution of genuine (mated) com-
parison scores in a biometric recognition system, and I (x) represents the probability
distribution of impostor (non-mated) comparison scores. The RE between these two
distributions is then defined in terms of the KL divergence as follows:

D(G||I ) =
n∑

i=1

G(xi ) log2
G(xi )

I (xi )
(17.1)
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Fig. 17.1 Examples of G and I relationships producing lower and higher D(G||I ) values

In information-theoretic terms, D(G||I ) tells us the number of extra bits that we
would need to encode samples from G when using a code based on I, compared
to simply using a code based on G itself. Relating this to our biometric system,
we can think of D(G||I ) as providing some indication of how closely our genuine
score distribution corresponds to our impostor score distribution. The worse the
match, the higher the D(G||I ) value and the easier it is to tell the two distributions
apart. Consequently, the higher the RE, the easier it should be for our biometric
recognition system to differentiate between genuine users and impostors based on
their corresponding comparison scores, and thus the better the expected recognition
accuracy. Figure17.1 shows a simple illustration of what the relationship between
G and I might look like for lower and higher D(G||I ) values.

One issue with using Eq. (17.1) to estimate the RE is evident when we consider
what is represented by n. Technically, n is meant to denote the total number of
comparison scores, and it is expected that the G and I distributions extend over
the same range of scores. This, however, is not usually the case, since the overlap
between the two distributions should only be partial. One consequence of this is that
we will have at least one division by 0, for the range where I (x) = 0 but G(x) �= 0.
The result will be D(G||I ) = ∞. This makes sense theoretically, since if a score
does not exist in I then it is impossible to represent it using a code based on I. For
our purposes, however, an RE of ∞ does not tell us much, since we already expect
only partial overlap between G and I. So, we would like our RE metric to generate
a finite number to represent the amount of information in our biometric recognition
system.

Another issue with Eq. (17.1) is that this approach requires us to produce models
for the genuine and impostor score distributions, G and I. Since the number of scores
we have access to is generally not very large (this is particularly likely to be the case
for genuine scores), it may be difficult to generate accurate models for the underlying
score distributions.

In light of the issuesmentioned above, Sutcu et al. [9] proposed approximating the
RE using the NN estimator from [10]. Let s1g , . . . , s

Ng
g and s1i , . . . , s Ni

i represent the
comparison scores from the sets of genuine and impostor scores, respectively. Further,
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let dgg(i) = min j �=i ||si
g − s j

g || represent the distance between the genuine score si
g

and its nearest neighbour in the set of genuine scores, and let dgi (i) = min j ||si
g − s j

i ||
denote the distance between the genuine score si

g and its nearest neighbour in the set
of impostor scores. Then the NN estimator of the KL divergence is defined as

D̂(G||I ) = 1

Ng

Ng∑

i=1

log2
dgi (i)

dgg(i)
+ log2

Ni

Ng − 1
(17.2)

Using Eq. (17.2), we can estimate the RE of a biometric system using the genuine
and impostor comparison scores directly, without establishing models for the under-
lying probability densities. Moreover, using the proposed KL divergence estimator,
we can circumvent the issue of not having complete overlap between the genuine
and impostor score distributions. For these reasons, this is the approach we adopted
to estimate the amount of information in finger vein patterns.

17.3 Relative Entropy of Finger Vein Patterns

We used the NN estimator approach from [9] to estimate the RE of finger vein
patterns.2 Section17.3.1 describes our adopted finger vein recognition systems, and
Sect. 17.3.2 presents our RE results for finger vein patterns.

17.3.1 Finger Vein Recognition Systems

We used two public finger vein databases for our investigation: VERA3 [11] and
UTFVP4 [12]. VERA consists of two images for each of 110 data subjects’ left and
right index fingers, which makes up 440 samples in total. UTFVP consists of four
images for each of 60 data subjects’ left and right index, ring and middle fingers,
which makes up 1,440 samples in total. Both databases were captured using the same
imaging device, but with slightly different acquisition conditions. Figure17.2 shows
an example of a finger image from each database.

Finger vein patterns were extracted and compared using the bob.bio.vein
PyPI package.5 To extract the vein patterns from the finger images in each database,
the fingerswere first cropped and horizontally aligned as per [13, 14]. Next, the finger
vein pattern was extracted from the cropped finger images using three well-known

2Code available at https://gitlab.idiap.ch/bob/bob.chapter.fingerveins_relative_entropy.
3https://www.idiap.ch/dataset/vera-fingervein.
4http://scs.ewi.utwente.nl/downloads/show,Finger%20Vein/.
5https://pypi.python.org/pypi/bob.bio.vein.

https://gitlab.idiap.ch/bob/bob.chapter.fingerveins_relative_entropy
https://www.idiap.ch/dataset/vera-fingervein
http://scs.ewi.utwente.nl/downloads/show,Finger%20Vein/
https://pypi.python.org/pypi/bob.bio.vein


512 V. Krivokuća et al.

(a) VERA (b) UTFVP

Fig. 17.2 Examples of finger images from the VERA and UTFVP databases. Note that the UTFVP
images are larger in size, as shown in this figure

feature extractors: Wide Line Detector (WLD) [14], Repeated Line Tracking (RLT)
[15] and Maximum Curvature (MC) [16].

The comparison between the extracted finger vein patterns was performed sepa-
rately for each extractor, using the algorithm proposed in [15]. This method is based
on a cross-correlation between the enrolled finger vein template and the probe tem-
plate obtained during verification. The resulting comparison scores lie in the range
[0, 0.5], where 0.5 represents maximum cross-correlation and thus a perfect match.

17.3.2 Relative Entropy of Finger Veins

We used Eq. (17.2) to calculate the RE of finger vein patterns6 for each of the three
feature extractors (WLD, RLT, and MC) on both the VERA and UTFVP databases.
One issuewe facedwhen implementing this equationwas dealingwith the casewhere
the dgg(i) and/or dgi (i) termswere zero. If dgi (i) = 0 (regardless of what value dgg(i)
takes), this would result in D̂(G||I ) = −∞, whereas dgg(i) = 0 (regardless of what
value dgi (i) takes) would result in D̂(G||I ) = ∞. This is one of the issues wewanted
to circumvent by using the NN estimator in the first place! Neither the paper that
proposed the NN estimator for KL divergence [10], nor the paper that proposed
using this estimator to calculate the RE of biometrics [9], suggests how to proceed
in this scenario. So, we decided to add a small value (ε) of 10−10 to every dgg(i) and
dgi (i) term that turned out to be 0. The choice of ε was based on the fact that our
comparison scores are rounded to 8 decimal places, so we wanted to ensure that ε

would be smaller than 10−8 tominimise the impact on the original score distribution.7

6Note: RE = D̂(G||I ).
7This choice of ε may not necessarily be optimal, but it seems sensible.
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Table 17.1 Relative Entropy (RE) and Equal Error Rate (EER) for different extractors on the
VERA and UTFVP databases. The RE and EER ranks refer to the rankings of the three extractors
(separately for each database) in terms of the highest RE and lowest EER, respectively

DB Extractor RE EER (%) RE rank EER rank

VERA WLD 11.8 9.5 2 2

VERA RLT 4.2 24.3 3 3

VERA MC 13.2 4.3 1 1

UTFVP WLD 18.9 2.7 2 2

UTFVP RLT 18.0 3.2 3 3

UTFVP MC 19.5 0.8 1 1

Fig. 17.3 Genuine and impostor score distributions corresponding to the lowest (left) and highest
(right) RE values for the VERA database from Table17.1

For this experiment, a comparison score was calculated between a finger vein
template and every other finger vein template in the database. The resulting RE
values are summarised in Table17.1, along with the corresponding EERs.8

We can interpret the RE results in Table17.1 as providing an indication of how
many bits of discriminatory information are contained in a particular finger vein
recognition system. For example, we can see that using the RLT extractor on the
VERA database results in a system with only 4.2 bits of discriminatory information,
while the MC extractor on the same database contains 13.2 bits of discriminatory
information. Figure17.3 illustrates the genuine and impostor score distributions for
these two RE results.

Since our results show the RE to be dependent upon both the feature extractor
and database adopted, it would be misleading to claim a universal finger vein RE
estimate; rather, it makes more sense for the RE to be system-specific.

8Note that we have chosen to compare the RE to the EER, because the EER is a widely used
metric for evaluating the overall recognition accuracy (in terms of the trade-off between the False
Match Rate (FMR) and False Non-Match Rate (FNMR)) of a biometric recognition system. The
comparison seems appropriate, since RE aims to provide us with an idea of a biometric system’s
overall discrimination capability.
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Intuitively, we can see that, the higher the RE, the greater the amount of discrim-
inatory information, and thus the greater the expected recognition capabilities of the
underlying system. This intuition is confirmed when we compare the REs and EERs
of the different systems in Table17.1, in terms of the RE-based versus EER-based
rankings. From this analysis, it is evident that the ranking of the three extractors for
each database is the same regardless of whether that ranking is based on the RE or
the EER. In particular, MC has the highest RE and lowest EER, while RLT has the
lowest RE and highest EER. This implies that the most discriminatory information
is contained in finger vein patterns that have been extracted using the MC extrac-
tor, and the least discriminatory information is contained in RLT-extracted finger
veins. These results suggest the possibility of using the REs of different finger vein
recognition systems to rank the systems according to the amount of discriminatory
information and thus their expected recognition accuracies. Consequently, it appears
reasonable to conclude that the RE estimator is a reliable indicator of the amount of
discriminatory information in a finger vein recognition system.

While RE quantifies the amount of discriminatory information in a biometric sys-
tem, it is difficult to gauge what exactly this number, on its own, means. For example,
what exactly does x bits of discriminatory information signify, and is a y-bit differ-
ence in the REs of two biometric systems significant? Furthermore, benchmarking
different biometric systems in terms of their RE is not straightforward, since the RE
estimate depends on both the comparison score range as well as on the number of
genuine (Ng) and impostor scores (Ni ) for each database and experimental protocol.
Consequently, REs reported for different biometric systems usually do not lie in the
same [REmin, REmax] range.9 To help us better understand the meaning of the RE
metric in the context of a biometric system, as well as to enable fair cross-system
RE benchmarking, Sect. 17.4 adapts Eq. (17.2) to propose a normalised RE metric.

17.4 Normalised Relative Entropy

This section proposes a normalised version of the RE (NRE), based on the NN
estimator in Eq. (17.2). The reason for this normalisation is to help us interpret the
RE in a more intuitive way, and to enable fair benchmarking of different biometric
systems in terms of their RE.

We propose using the well-known “min–max” normalisation formulated by Eq.
(17.3):

NRE = RE − REmin

REmax − REmin
(17.3)

9For the finger vein systems we used, the comparison scores for both the VERA and UTFVP
databases lie in the same range of [0, 0.5]. However, the Ng values across the two databases are
different as are the Ni values. Consequently, the [REmin, REmax] range is not the same for both
databases, meaning that we cannot fairly compare the RE results across the two databases.
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In Eq. (17.3), REmin and REmax refer to the minimum and maximum possible
RE values, respectively, for a particular biometric system. Thus, we need to begin
by establishing REmin and REmax. In this formulation, we assume that comparison
scores are similarity values, such that small scores indicate low similarity and large
scores indicate high similarity. Keeping this in mind, the minimum RE would occur
when all dgi values are zero and all dgg values are as large as possible. Therefore, for
each genuine score, there would need to be at least one impostor score with exactly
the same value, and all the genuine scores would need to be spread apart as far as
possible. Let us say that all scores lie in the range [smin, smax], and that the number of
genuine scores for a particular database and experimental protocol is denoted by Ng .
Then, the maximum possible dgg value would be smax−smin

Ng
. By adapting Eq. (17.2),

our equation for the minimum RE thus becomes

REmin = 1

Ng

Ng∑

i=1

log2
0

smax−smin
Ng

+ log2
Ni

Ng − 1
(17.4)

If we now tried to solve Eq. (17.4), we would get REmin = −∞, because of the
0 dgi term. Since this is an impractical result for measuring the (finite) amount of
information in a biometric system, we replace the 0 with ε. Furthermore, we can see
that the division by Ng gets cancelled out by the summation across Ng , so we can
simplify Eq. (17.4) as follows:

REmin = log2
ε

smax−smin
Ng

+ log2
Ni

Ng − 1
(17.5)

Equation (17.5) thus becomes the final REmin equation.
The maximum RE would occur when all dgi values are as large as possible and

all dgg values are zero. The only way this could occur would be if all the genuine
scores took on the largest possible value, smax, and all the impostor scores took on
the smallest possible value, smin. In this case, the genuine and impostor score sets
would be as different as possible. By adapting Eq. (17.2), we thus get the following
equation for the maximum RE:

REmax = 1

Ng

Ng∑

i=1

log2
smax − smin

0
+ log2

Ni

Ng − 1
(17.6)

If we tried to solve Eq. (17.6), we would get REmax = ∞ due to the 0 term in
the denominator. So, once again we replace the 0 term with ε. Furthermore, just like
we did for Eq. (17.4), we can simplify Eq. (17.6) by removing the Ng division and
summation. Our final equation for REmax thus becomes

REmax = log2
smax − smin

ε
+ log2

Ni

Ng − 1
(17.7)
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We can now use Eq. (17.3), with Eq. (17.5) for REmin and Eq. (17.7) for REmax,
to calculate the NRE of a particular biometric system.

Due to the “min–max” operation in Eq. (17.3), the NRE will lie in the range
[0.00, 1.00]. We can thus interpret the NRE as follows. An NRE of 0.00 would
suggest that the system in question contains zero discriminative information (i.e.
recognition would actually be impossible), whereas an NRE of 1.00 would indicate
that the system contains themaximum amount of discriminative information possible
for that system (i.e. the recognition accuracy would be expected to be perfect).

Figure17.4 illustrates what the impostor and genuine comparison score distribu-
tions might look like for a minimum NRE system and a maximum NRE system,
when the comparison score range is [0, 0.5] (i.e. the score range corresponding to
our finger vein recognition systems).

In general, therefore, we can look at the NRE as providing an indication of the
proportion of the maximum amount of discriminatory information that the corre-
sponding biometric system contains. An NRE of 0.50, for example, would indicate
that the biometric system achieves only 50% of the maximum attainable recogni-
tion accuracy. Therefore, the higher the NRE, the better the expected recognition
accuracy of the biometric system we are measuring.

Table17.2 shows the NRE results for our aforementioned finger vein recognition
systems. Note that, for these finger vein systems: smin = 0; smax = 0.5; Ng = 440
for VERA; Ng = 4, 320 for UTFVP; Ni = 192, 720 for VERA; Ni = 2, 067, 840
for UTFVP.

Note that the first column of Table17.2 refers to the finger vein recognition system
constructed using the specified database and feature extractor. We have pooled the
databases and extractors into “systems” now to indicate that the NRE values can
be benchmarked across systems (as opposed to, for example, in Table17.1, where
the databases were separate to indicate that RE-based benchmarking of the different
extractors should be database-specific).

Fig. 17.4 Illustration of impostor and genuine score distributions for a minimum and a maximum
NRE system, when the comparison score range is [0, 0.5]
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Table 17.2 Relative Entropy (RE) and Normalised Relative Entropy (NRE) for different finger
vein recognition systems

System RE NRE

VERA-WLD 11.8 0.48

VERA-RLT 4.2 0.34

VERA-MC 13.2 0.50

UTFVP-WLD 18.9 0.58

UTFVP-RLT 18.0 0.56

UTFVP-MC 19.5 0.59

As an example of how the NRE results from Table17.2 can be interpreted, let
us compare the NRE of VERA-RLT to that of UTFVP-MC. The NRE of 0.34 for
VERA-RLT tells us that this system achieves only 34% of the maximum attainable
discrimination capability. Comparatively, the UTFVP-MC system contains 59% of
the maximum amount of discriminative information. So, we could conclude that
the UTFVP-MC finger vein recognition system contains 25% more discriminatory
information than the VERA-RLT system.

Using the NRE also helps us gauge the significance of the differences in the REs
across different biometric systems. For example, if we look at the RE on its own
for the UTFVP-WLD and UTFVP-MC systems in Table17.2, we can see that the
latter system’s RE is 0.6 bits larger than the former system’s RE. It is difficult to
tell, however, whether or not this is a significant difference. If we then look at the
NREs of the two systems, we can see that their difference is only 0.01. This indicates
that the 0.6-bit difference between the two systems’ REs is not too significant in
terms of the proportion of the maximum discriminatory information the two systems
contain. On the other hand, the 15.3-bit difference in the REs between the VERA-
RLT andUTFVP-MC systems seemsmuchmore significant, and wemay be tempted
to conclude that the latter system contains about five times more discriminative
information than the former system. Looking at the two systems’ NREs, we do see
a fairly significant difference, but we would have to conclude that the UTFVP-MC
system contains not five times, but two times, more discriminative information than
the VERA-RLT system.

In this section, we have shown how the NRE can be used for RE-based bench-
marking of different finger vein recognition systems, for which comparison scores
were evaluated on different databases. Themain reason for using the NRE in our case
was thus to conduct fair cross-database system benchmarking. Our proposed NRE
metric, however, can also be used to fairly benchmark the REs of systems based on
different biometric modalities, tested on different databases using different experi-
mental protocols. For example, part of our future work will involve benchmarking
the NRE of our best finger vein recognition system, UTFVP-MC, against NREs of
systems based on different types of biometrics. This makes the proposed NREmetric
a flexible tool for both quantifying and benchmarking the amount of discriminative
information contained in different biometric systems.



518 V. Krivokuća et al.

17.5 Discussion

In this section, we begin by presenting a discussion on an important aspect of the
NRE, which supports its adoption in the biometrics community. We then discuss two
potential issues that may arise when calculating the NRE, and we suggest the means
of dealing with them. Sections17.5.1, 17.5.2 and 17.5.3, respectively, tackle these
three discussion points.

17.5.1 NRE as a Complement to EER

So far, we have shown how the RE can be used to measure the amount of dis-
criminatory information in finger vein recognition systems. We also proposed the
NRE metric to fairly benchmark the REs across different biometric systems. In this
section, we discuss how an NRE estimate could complement the EER to provide a
more complete picture of the performance of a biometric recognition system.

In Sect. 17.2, we explained how, in the context of a biometric recognition system,
the RE metric provides some indication of how closely our genuine score distribu-
tion matches our impostor score distribution. Let us explore the meaning of this by
considering Eq. (17.2). Equation (17.2) tells us that we are attempting to estimate the
relative entropy of a set of genuine comparison scores (G) in terms of a set of impostor
comparison scores (I). In other words, we wish to quantify the “closeness” of these
two sets10 of scores. The dgi and dgg terms represent the distance between a genuine
score and its closest score in the set of impostor and genuine scores, respectively.
Larger dgi values will result in larger RE results, whereas larger dgg values will result
in smaller RE results.11 We can thus see that larger REs favour a larger inter-class
variance (i.e. greater separation between genuine comparison trials and impostor
trials) and a smaller intra-class variance (i.e. smaller separation between multiple
biometric samples from the same biometric instance). This makes the RE suitable as
a measure of the performance of a biometric recognition system: the larger the RE
value, the better the recognition accuracy. The best (highest) RE would, therefore,
be obtained in the case where all the dgi values are as large as possible, while the dgg
values are as small as possible, and vice versa for the worst (lowest) RE.

The RE metric thus informs us about two things: how far genuine scores are from
impostor scores, and how far genuine scores are from each other. Consider the case
where we have a set of impostor scores, I, and a set of genuine scores, G. The larger
the intersection between I and G, the smaller the dgi values and thus the lower the
RE. Conversely, the smaller the intersection between the two sets, the greater the dgi

values and thus the higher the RE. So far, the RE metric appears to tell us the same
thing as the EER, since a smaller EER indicates less overlap between genuine and

10Note: We are purposely using the word “set” as opposed to “distribution”, since the NN estimator
in Eq. (17.2) works directly on the scores as opposed to distributions representing the scores.
11Assume constant Ng and Ni values.
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Fig. 17.5 Two biometric systems with the same EER of 0%, but where the system on the right has
greater separation between the impostor and genuine comparison scores, and thus a higher NRE
than the system on the left

impostor comparison scores, while a larger EER indicates more overlap. Where the
twometrics differ, however, is in the scenariowhere I andG are completely separated.
In this case, the further apart the two sets of scores are the higher the resulting RE.
The EER, however, would be 0% regardless of whether the separation is small or
large. Imagine if we had to benchmark two biometric systems, both of which had
complete separation between the genuine and impostor comparison scores, but where
for one system the separation was much larger than for the other, as illustrated12 in
Fig. 17.5. If we considered only the EER, it would indicate that the two systems
are the same (i.e. both have an EER of 0%). The NRE,13 however, would clearly
indicate that the system with greater separation is better in terms of distinguishing
genuine trials from impostors, since the NRE value would be higher for that system.
In this case, complementing the EER with an NRE estimate would provide a more
complete picture of the system comparison. This could come in useful particularly
in situations where the data used for testing the biometric system was collected in a
constrained environment, in which case an EER of 0% could be expected. The NRE,
on the other hand, would provide us with more insight into the separation between
the genuine and impostor score distributions.

Another example of a scenario in which the NRE metric would be a useful com-
plement to the EER is when we have two biometric systems for which I is the same
and the separation (or overlap) between I and G is the same, but G differs. In par-
ticular, in the first system the genuine scores are closer together, while in the second
system the genuine scores are further apart from each other. Figure17.6 illustrates

12Note: The only reason for using probability density plots in this figure is to present a cleaner
illustration of our point. Probability density functions are not used to represent genuine and impostor
score distributions for the NRE calculation.
13When benchmarking different biometric systems, the NRE should be used instead of the RE to
ensure that the benchmarking is fair. The only exception to this rule would be in the case where the
different systems had the same comparison score range, and the same Ng and Ni values, in which
case the resulting REs would lie in the same [REmin, REmax] range.
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Fig. 17.6 Two biometric systems with the same I, the same separation between I and G and thus
the same EER, but with different G. In particular, G for the system on the right has a larger variance,
and thus the NRE is lower to reflect this

this scenario.14 In this case, since the separation between I and G for both systems
is the same, the EER would also be the same, thereby indicating that one system is
just as good as the other. The NRE, however, would be smaller for the second system
due to the larger dgg values. The NRE would thus indicate that the larger intra-class
variance in the second system makes this system less preferable in terms of biomet-
ric performance when compared to the first system, for which the genuine scores
are closer together and thus the intra-class variance is smaller. Using both NRE and
EER together, we could thus conclude that, although both systems can be expected
to achieve the same error rate, the system with the smaller intra-class variance would
be a superior choice.

When choosing between theEERandNREmetrics for evaluating the performance
of a biometric system, we would still recommend using the EER as the primary one,
since it is more practical in providing us with a solid indication of our system’s
expected error rate. The NRE, however, would be a useful complement to the EER
when we are trying to decide on the best of n biometric systems that have the same
EER.

17.5.2 Selecting the ε Parameter

As mentioned in the introductory paragraph of Sect. 17.3.2, ε is a parameter chosen
to deal with zero score differences (i.e. dgg = 0 or dgi = 0) in order to avoid an
RE of ±∞ (which would be meaningless in the context of measuring the amount of
discriminatory information in a biometric system). It is clear fromEqs. (17.2), (17.3),
(17.5) and (17.7), however, that the choice of ε could potentially have a significant
effect on the resultingREand, therefore,NRE, particularly if the number of zero score

14Note: In Fig. 17.6, the EER for both systems is 0%; however, it could also be possible for both
systems to have the same non-zero EER. In this case, I and G would partially overlap.
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differences is large. While the number of zero score differences will be dependent on
the biometric system in question and this number is, therefore, difficult to generalise,
we wished to see what effect the choice of ε would have on the RE and NRE of our
best finger vein recognition system, that obtained when using MC-extracted finger
veins from the UTFVP database. Figure17.7 shows plots of the RE and NRE versus
ε, when ε is selected to lie in the range [10−12, 10−8]. For convenience, Table17.3
summarises the RE and NRE values from Fig. 17.7.

From Fig. 17.7 and Table17.3, we can see that, while the choice of ε does affect
the RE and NRE to some degree (more specifically, the RE and NRE decrease as
ε decreases15), this effect does not appear to be significant. So, we may conclude
that, as long as the ε parameter is sensibly chosen (i.e. smaller than the comparison
scores, but not so small that it is effectively zero), then the RE and NRE estimates
should be reasonable.

Fig. 17.7 RE versus ε and NRE versus ε, when ε takes on different values in the range
[10−12, 10−8], for MC-extracted finger vein patterns in the UTFVP database

Table 17.3 RE and NRE for MC-extracted finger veins from UTFVP, when ε is varied in the range
[10−12, 10−8]. Note that, for consistency with Table17.2, RE and NRE values are rounded to 1 d.p.
and 2 d.p., respectively

ε RE NRE

10−8 19.5 0.62

10−9 19.5 0.60

10−10 19.5 0.59

10−11 19.5 0.58

10−12 19.5 0.57

15In general, the RE, and thus the NRE, would be expected to decrease with a decrease in ε when
there are more dgi than dgg zero score differences. Alternatively, the RE, and thus the NRE, would
be expected to increase with a decrease in ε when there are more dgg than dgi zero score differences.
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17.5.3 Number of Nearest Neighbours

The method proposed in [9] to estimate the RE of biometrics uses only the first
nearest genuine and impostor neighbours of each genuine score. An issue with this
approach is that it makes the RE estimate highly dependent on any single score, even
if that score is an outlier. This might be particularly problematic if we do not have a
large number of scores to work with, which is often the case.

It seems that a safer approach would be to use k nearest neighbours, where k > 1,
then average the resulting dgg(i) and dgi (i) values over these k neighbours prior to
estimating the RE. This would introduce some smoothing to the underlying score
distributions, thereby stabilising the RE estimates. While the effect of k on the RE,
and therefore NRE, is difficult to generalise since it would, in practice, be dependent
on the biometric system in question, we wished to test the effect of the choice of k on
the RE and NRE of our best finger vein recognition system, that obtained when using
MC-extracted finger veins from the UTFVP database. Figure17.8 shows plots of the
RE and NRE versus k, when k increases from 1 to 5. For convenience, Table17.4
summarises the RE and NRE values from Fig. 17.8. Note that, for this experiment,
ε = 10−10, as for the RE and NRE experiments in Sects. 17.3 and 17.4.

Fig. 17.8 RE versus k and NRE versus k, when k increases from 1 to 5, for MC-extracted finger
vein patterns in the UTFVP database

Table 17.4 RE and NRE for MC-extracted finger veins from UTFVP, when k increases from 1 to
5. Note that, for consistency with Tables17.2 and 17.3, RE and NRE values are rounded to 1 d.p.
and 2 d.p., respectively

k RE NRE

1 19.5 0.59

2 18.8 0.57

3 18.5 0.57

4 18.2 0.56

5 17.9 0.56
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From Fig. 17.8 and Table17.4, it is evident that increasing k tends to decrease
both the RE and NRE, but the decrease is not drastic for k ≤ 5. This decrease makes
sense, since a larger k means a greater degree of smoothing, which decreases the
effects of individual comparison scores. Another consequence of using a larger k
would be that the effect of the ε parameter on RE and NRE would be expected
to be less pronounced. This is because a larger k means that a larger number of
neighbouring scores are averaged when calculating the RE and NRE, so we are less
likely to encounter zero average scores than in the scenario where only one nearest
neighbouring score is considered. Keeping the aforementioned points in mind, it is
important to sensibly tune the k and ε parameters depending on the biometric system
in question (e.g. if there are outlier scores, use k > 1, and select ε based on the score
precision, as discussed in Sect. 17.5.2). Furthermore, we urge researchers adopting
the RE and NREmeasures to be transparent about their selection of these parameters
to ensure fair system comparisons across the biometrics community.

Note that the NN estimator on which Eq. (17.2) is based [10] is actually a k-
NN estimator, where k denotes the number of nearest neighbours. It is not clear,
however, whether the proposed k-NN estimator is based on averaging the k nearest
neighbouring scores, as we have done for Fig. 17.8 and Table17.4, or whether the
authors meant that only the kth neighbour should be used. If their intention is the
latter, then our averaging approach represents an effective new way of stabilising the
k-NN estimator for RE measures.

17.6 Conclusions and Future Work

This chapter represents the first attempt at estimating the amount of information in
finger vein biometrics in terms of score-basedRelative Entropy (RE), using the previ-
ously proposed Nearest Neighbour estimator. We made five important contributions.

First, we showed that the RE estimate is system-specific. In our experiments,
the RE differed across finger vein recognition systems employing different feature
extractors and different testing databases. For this reason, we refrain from claiming
a universal finger vein RE estimate, since this would be misleading.

Second,we showed that theREcanbeused to rankdifferent finger vein recognition
systems, which are tested on the same database using the same experimental protocol
(in our case, the difference was the feature extractor employed), in terms of the
amount of discriminative biometric information available. The ranking was shown
to be comparable to an EER-based ranking, which implies that the RE estimate
is a reliable indicator of the amount of discriminatory information in finger vein
recognition systems.

Third, we proposed a newmetric, the Normalised Relative Entropy (NRE), to help
us gauge the significance of individual RE scores as well as to enable fair bench-
marking of different biometric systems (in particular, systems tested on different
databases using different experimental protocols) in terms of their RE. The NRE lies
in the range [0.00, 1.00] and represents the proportion of the maximum amount of
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discriminatory information that is contained in the biometric system beingmeasured.
The higher the NRE, the better the system is expected to be at distinguishing genuine
trials from impostors.

Fourth, we discussed how the NRE metric could be a beneficial complement
to the EER in ranking different biometric systems in terms of their discrimination
capabilities. TheNREwould be particularly useful in choosing the best of n biometric
systems that have the same EER.

Finally, we discussed two potential issues in calculating the RE and NRE, namely,
the effects of the ε parameter and the number of nearest neighbours (k) used for
computing the genuine–genuine andgenuine–impostor score differences.We showed
that, as long as ε is sensibly selected, its effect on the RE and NRE is unlikely to be
significant. We also showed that increasing the number of nearest score neighbours
may be expected to slightly decrease the RE and NRE, but the upside is that using a
larger number of nearest neighbourswould help to dilute the effects of outliers among
the genuine and impostor comparison scores. We concluded by suggesting that ε and
k be tuned according to the biometric system being evaluated and that researchers
be transparent in terms of reporting their selection of these two parameters.

At the moment, our primary aim for future work in this direction is to use our
proposed NRE metric to benchmark finger vein recognition systems against sys-
tems based on other biometric modalities, in terms of the amount of discriminatory
information contained in each system.
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