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Abstract This chapter contributes towards advancing finger vein template protec-
tion research by presenting the first analysis on the suitability of the BioHashing tem-
plate protection scheme for finger vein verification systems, in terms of the effect on
the system’s recognition performance. Our results show the best performance when
BioHashing is applied to finger vein patterns extracted using theWide Line Detector
(WLD) and Repeated Line Tracking (RLT) feature extractors, and the worst perfor-
mance when the Maximum Curvature (MC) extractor is used. The low recognition
performance in the Stolen Token scenario is shown to be improvable by increasing
the BioHash length; however, we demonstrate that the BioHash length is constrained
in practice by the amount of memory required for the projection matrix. So, WLD
finger vein patterns are found to be the most promising for BioHashing purposes
due to their relatively small feature vector size, which allows us to generate larger
BioHashes than is possible for RLT or MC feature vectors. In addition, we also pro-
vide an open-source implementation of a BioHash-protected finger vein verification
system based on the WLD, RLT and MC extractors, so that other researchers can
verify our findings and build upon our work.

Keywords BioHashing · Finger veins · Biometric template protection ·Wide
Line Detector · Repeated Line Tracking ·Maximum Curvature · EU General Data
Protection Regulation (GDPR) · UTFVP

15.1 Introduction

As our world is transforming into an interconnected network of individuals and
devices, we are beginning to realise that current data protection mechanisms are
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becoming inadequate to meet our growing security needs. Traditional security mech-
anisms, such as passwords and access cards, are no longer sufficient for establishing
an individual’s true identity, which is why we are turning to biometrics for stronger
identity assurance. While the unique link between an individual and their biometric
characteristics is the very fact that makes biometric authentication so reliable, it is
this same aspect of biometrics that makes this authentication factor vulnerable. For
this reason, the past decade has seen the emergence of a new field of research into
developing effective biometric template protection strategies to secure biometric fea-
tures during storage and transmission in an authentication system.1 Research in this
area is particularly important in light of the recent EU General Data Protection Reg-
ulation (GDPR),2 which legally obliges users of biometric data to exercise caution
in processing and storing this data to protect individuals’ digital identities.

A recent review paper on biometric template protection by Sandhya and Prasad [1]
shows that, between the years 2005 to 2016, the smallest amount of effort has been
invested into developing protectionmechanisms for finger veins. Nevertheless, finger
vein recognition has increased in popularity over the past few years, with several
companies having already deployed finger vein recognition systems for public use,
e.g. M2SYS, Idemia, Hitachi and NEC. This suggests that there is an urgent need to
direct our attention towards researching effective mechanisms for protecting finger
vein templates.

Although the finger vein template protection field is still in its infancy, a number
of methods have been proposed in the literature. For example, in one of the earliest
approaches towards finger vein template protection [2], the finger vein pattern image
is first transformed using the Number Theoretic Transform,3 after which the trans-
formed template is masked by a random filter. Image-based transformations are also
applied towards protecting the finger vein template in [3], where block re-mapping
and mesh warping are (separately) applied to the finger vein image to derive two
versions of a cancellable finger vein template. Random projection is the template
protection method of choice in [4], where the finger vein template consists of end
points and intersections. Hybrid template protection strategies have been proposed
for finger veins in [5, 6]. In [5], the finger vein image is first transformed into a
template where the number of black (background) and white (vein) pixels is approx-
imately equal, and then the Fuzzy Commitment scheme is applied to this template.
In [6], the authors propose generating two BioHashes from the same finger vein tem-
plate, then encrypting one BioHash using Fuzzy Commitment and the other using
Fuzzy Vault, after which the two encrypted BioHashes are combined. Finally, [7–
9] have focused on multi-biometric systems. More specifically, in [7], finger vein,
fingerprint, finger knuckle print and finger shape features are fused, and then the

1https://www.iso.org/standard/52946.html.
2https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/
2018-reform-eu-data-protection-rules_en.
3This is essentially the Fourier transform, constrained to a finite field.

https://www.iso.org/standard/52946.html
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
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resulting feature vector is secured via Fuzzy Commitment. A similar approach is
presented in [8], except here the authors also consider score-level and decision-level
fusion, whereby Fuzzy Commitment is used to secure each individual feature vector,
then the scores or decisions, respectively, of the resulting biometric cryptosystems
are fused. In [9], the finger vein feature vector is protected using the Bloom filter
approach, and the authors also investigate a multi-biometric system whereby the
Bloom filter-protected finger vein template is fused with a Bloom filter-protected
face template.

This chapter contributes towards research on finger vein template protection by
investigatingwhether the BioHashing template protection strategy [10] is suitable for
protecting finger vein templates, in terms of its effect on the recognition performance
of the underlying recognition system. BioHashing is one of the most widely studied
biometric template protection schemes in the literature. It involves the projection
of a biometric feature vector into a random subspace defined by a user-specific
seed, followed by binarisation of the resulting projected vector to produce a so-
called BioHash. Although BioHashing has been applied to a number of biometric
characteristics (e.g. fingerprints [10], face [11], palm prints [12], and iris [13]), the
only mention of BioHashing on finger vein templates that we have come across is
the BioHashing/Fuzzy Vault and BioHashing/Fuzzy Commitment hybrid scheme in
[6], mentioned earlier. To the best of our knowledge, there does not yet exist any
published research on applying BioHashing on its own to finger vein templates. This
is where our contribution lies. We also provide an open-source BioHash-protected
finger vein verification system, which can be used by other researchers to verify and
build upon our work.

We have chosen to focus on BioHashing for three main reasons. First, one of
the biggest and most well-known advantages of BioHashing is that, theoretically,
there is the possibility of achieving a 0% error rate. While low error rates may be
characteristic of two-factor template protection schemes in general, BioHashing is
currently the most popular in this category. Second, finger vein images tend to be
fairly large, so we were interested in seeing whether BioHashing could be used to
produce significantly smaller finger vein templates. Finally, since BioHashing is one
of the most well-known template protection schemes in the literature, we wished
to provide an open-source implementation of this method for comparison purposes
against other template protection techniques developed for finger vein templates.

Note that the new standard4 for the evaluation of biometric template protection
schemes, ISO/IEC 30136:2018, specifies a number of requirements that should be
considered when assessing the robustness of a biometric template protection scheme.
These include the recognition performance of a biometric system employing tem-
plate protection compared to that of the same system without template protection;
the irreversibility of a template protection scheme, which refers to the difficulty
of recovering information about the underlying biometric characteristic from its
protected template; diversity, renewability (or cancellability), and unlinkability, all
of which relate to the possibility of generating multiple protected templates from

4https://www.iso.org/standard/53256.html.

https://www.iso.org/standard/53256.html
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the same biometric characteristic, such that the protected templates are effectively
seen as different identities and can thus be used to (i) replace a compromised pro-
tected template, and (ii) enroll into multiple applications using the same biometric
characteristic without the risk of cross-matching the protected reference templates.
The standard also specifies the need to evaluate the possibility of impersonating an
enrolled individual using information about their underlying biometric characteristic
leaked from one ormore of their protected templates, whichmay largely be attributed
to the template protection scheme’s compliance with the irreversibility and unlinka-
bility properties. A thorough evaluation of a biometric template protection scheme
must, therefore, take into account all of the aforementioned requirements. While the
evaluation of recognition performance is relatively established, there are currently
no solid, agreed-upon methods for assessing requirements such as irreversibility and
diversity/cancellability/unlinkability (despite some guidelines provided by the new
standard). Consequently, a thorough evaluation of a biometric template protection
scheme necessitates a dedicated treatise of each requirement, which, in many cases,
may involve the development and justification of new evaluation methodologies. In
light of these reasons, this chapter focuses on evaluating only the recognition per-
formance of BioHash-protected finger vein templates, and we reserve the analysis
of the remaining requirements for future work.

The remainder of this chapter is structured as follows. Section15.2 briefly
describes the implementation of our BioHash-protected finger vein verification sys-
tem. Section15.3 presents experimental results on the recognition performance of
this system and discusses memory constraints that should be considered when apply-
ingBioHashing to finger veins. Section15.4 concludes the chapter and suggests areas
for future work.

15.2 BioHash-Protected Finger Vein Verification System

Our BioHash-protected finger vein verification system5 is an adaptation of the base-
line finger vein verification system implemented in the PyPI package.6 Our adapted
system consists of four modules, as illustrated in Fig. 15.1.

The preprocessor locates, crops and horizontally aligns the finger in each finger
vein image, as per [14, 15].

The extractor extracts the vein pattern from the cropped finger image. We used
three well-known extractors:Wide Line Detector (WLD) [15], Repeated Line Track-
ing (RLT) [16] andMaximumCurvature (MC) [17]. The output of each extractor is a
binary image, in which white pixels represent the finger vein pattern and black pixels
represent the background. For each binary image, we then concatenate its rows to
generate a finger vein feature vector.

5Code available at the following link: https://gitlab.idiap.ch/bob/bob.chapter.
fingerveins_biohashing.
6https://pypi.python.org/pypi/bob.bio.vein.

https://gitlab.idiap.ch/bob/bob.chapter.fingerveins_biohashing
https://gitlab.idiap.ch/bob/bob.chapter.fingerveins_biohashing
https://pypi.python.org/pypi/bob.bio.vein
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Fig. 15.1 Enrolment (blue arrows) and verification (red arrows) stages in our BioHash-protected
finger vein verification system. IR and IP denote the reference and probe finger images, respectively.
Similarly, BR and BP denote the reference and probe BioHashes, respectively

The finger vein feature vector obtained from the feature extraction stage is next
BioHashed. Our implementation is based on the original BioHash method proposed
in [10]. The steps are summarised below:

1. Generate a user-specific7 random projection matrix of size n × l for each unique
finger8 in the database, where n represents the dimensionality of the finger vein
feature vector and l denotes the desired BioHash length. To ensure that the same
matrix can be generated for a specific finger during every verification attempt, the
random matrix generation is seeded with a user-specific seed. (This seed should
be stored on an external token, separately from the BioHash.)

2. Orthonormalise the random matrix.
3. Compute the dot product between the finger vein feature vector and each column

of the orthonormalised random matrix. The result is an l-dimensional projected
vector.

4. Binarise the projected vector using the mean of the vector as the binarisation
threshold, such that all values greater than the mean are set to 1 and all values
less than or equal to the mean are set to 0. The result is an l-dimensional binary
vector, referred to as the “BioHash”.

For the unprotected (without BioHashing) templates in our baseline finger vein
verification system, comparison is performed on the extracted finger vein features
separately for each of the three extractors (WLD,RLTandMC), using the comparison
algorithm proposed in [16]. This method is based on a cross-correlation between
the enrolled (reference) finger vein template and the probe template obtained during
verification. For the protected (withBioHashing) templates in our BioHash-protected
finger vein verification system, comparison is done by computing the Hamming
distance between the reference and probe BioHashes.

7Note that “user” refers to an individual using the finger vein verification system. While the stan-
dardised term would be “biometric data subject” or “individual”, we have chosen to retain the term
“user” for consistency with [10].
8Each finger represents a different identity or “user”.
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15.3 Recognition Performance of BioHash-Protected
Finger Vein Verification System

This section presents the results of the experiments we conducted to determine the
recognition performance of our BioHash-protected finger vein verification system.

For the experiments reported in this paper, we employed the publicly available
finger vein database UTFVP.9 This database consists of four images for each of
60 subjects’ left and right index, ring and middle fingers, which makes up 1,440
images in total. Each image has a height of 380 pixels and a width of 672 pixels.
Associated with the database are a number of different evaluation protocols. We
used the “nom” protocol,10 for which the database is split into three sets (“world”,
“dev”, and “eval”). We employed the “eval” set, which consists of fingers 29–60.
The comparison protocol involved using the first two finger vein images from each
finger for enrolment and the last two as probes.

We chose this database for two reasons. First, it is publicly available, whichmeans
that our results can be easily verified by other researchers. Second, it has been shown
[18] that an EER of as low as 0.4% is achievable on this database, so we wanted to
investigate the effects of BioHashing on such remarkable recognition performance.

15.3.1 Baseline Recognition Performance

To determine how effective our BioHash-protected finger vein verification system
is for finger verification purposes, it was necessary to first establish the recognition
performance of our baseline verification system, i.e. using unprotected finger vein
features. We had three baselines, one for each of the three extractors.

Figure15.2 illustrates the outputs of each of the three feature extractors on a finger
image from UTFVP, and Table15.1 shows the dimensionalities of the finger vein
feature vectors from each extractor. Although the images in Fig. 15.2 have all been
scaled to the same size for easier visual comparison of the extracted patterns, the three
extractors actually produce images of different sizes, as is evident from Table15.1.
The MC extractor is the only one that outputs a binary image of the same size as
the original image from the database, plus a little extra background padding for
comparison purposes. On the other hand, both the WLD and RLT extractors output
binary images that are much smaller than the original image. Our adopted WLD
extractor reduces the image to a quarter of its original size in each dimension prior
to feature extraction to speed up the processing, and the RLT extractor reduces each
dimension of the image to a third of its original size. These dimensionalities will be
shown to play an important role in the practical feasibility of applying BioHashing
to finger vein patterns, a point which will be discussed further in Sect. 15.3.3.

9http://scs.ewi.utwente.nl/downloads/show,Finger%20Vein/.
10Defined by Idiap Research Institute. See https://www.beat-eu.org/platform/databases/utfvp/1/
for more details.

http://scs.ewi.utwente.nl/downloads/show,Finger%20Vein/
https://www.beat-eu.org/platform/databases/utfvp/1/
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(a)WLD (b)RLT (c)MC

Fig. 15.2 Finger vein patterns extracted using three different feature extractors on the same finger
image from UTFVP

Table 15.1 Sizes of the extracted binary finger vein pattern images and corresponding finger vein
feature vectors

Extractor Image size (pixels) Feature vector dimensionality

WLD 94× 164 15,416

RLT 234× 409 95,706

MC 390× 682 265,980

Figure15.3 presents a visual comparison of the recognition performance of the
three extractors in terms of Receiver Operating Characteristic (ROC) plots. We refer
to this as the baseline recognition performance (i.e. the performance of the finger
vein recognition systems prior to incorporating BioHashing).

Considering the recognition performance of the three extractor baselines in
Fig. 15.3, it is evident that the MC extractor has the best performance. Looking at
Fig. 15.2, this makes sense, because the MC extractor seems to produce the cleanest,
thinnest finger vein patterns, which would be expected to contribute to more accu-
rate recognition. The fact that the recognition performance of the WLD and RLT
extractors is very similar may be attributed to the fact that the two extractors produce
finger vein patterns of similar quality (thick, with a fairly noisy background), even

Fig. 15.3 Comparing
baseline ROCs across the
three feature extractors on
the UTFVP database
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though theRLT-extracted pattern inFig. 15.2 appears cleaner than theWLD-extracted
pattern.

15.3.2 BioHashing Recognition Performance

This section presents experimental results on the recognition performance of our
BioHash-protected finger vein verification system. We consider two scenarios: the
Normal scenario and the Stolen Token scenario. The Normal scenario refers to the
scenario where each user of the verification system employs their own secret seed
and associated random projection matrix in the generation of their BioHash. This is
the expected scenario for most cases in practice. The Stolen Token scenario refers to
the scenario where a genuine user’s secret seed is stolen and used with the impostor’s
own finger vein template to generate the impostor’s BioHash. While it is hoped that
such a scenario would not occur in practice, the fact that the user-specific seed is a
valuable secret means that we must consider the scenario where that secret is leaked.

To determine the recognition performance of our BioHash-protected finger vein
verification system in both the Normal and Stolen Token scenarios, we generated
BioHashes of lengths l = {100, 200, 300, 400, 500} (number of bits) for finger vein
feature vectors resulting from each of our three feature extractors (WLD, RLT and
MC). For the Normal scenario, the unique ID of the finger image was used as the
seed,11 and for the Stolen Token scenario, the same seed (seed = 100) was used
to generate the BioHashes for all fingers. Table15.2 indicates the dimensionality
reduction resulting from applying BioHashing to the finger vein feature vectors (refer
to Table15.1 for the original finger vein feature vector dimensionality). Figure15.4
shows the recognition performance of the three finger vein extractors in both the
Normal and Stolen Token scenarios, in terms of ROC plots.

From Table15.2, it is evident that generating BioHashes of 100–500 bits from
finger vein feature vectors results in a significant dimensionality reduction for all
three feature extractors. The greatest dimensionality reduction is observed for the
MC extractor, and the WLD extractor shows the smallest dimensionality reduction.
This makes sense, since MC finger vein feature vectors have the largest dimen-
sionality and WLD finger vein feature vectors the smallest (see Table15.1). While
“dimensionality” does not necessarily equal “information”, and thus “dimensionality
reduction” does not necessarily imply “information loss”, the size of the dimension-
ality reductions noted in Table15.2 makes it highly probable that mapping finger
vein feature vectors to BioHashes does result in some information loss. In particular,
from the results in Table15.2, wewould conclude that BioHashing onMCfinger vein
feature vectors would incur the largest information loss and WLD feature vectors
the smallest. This should be evident when comparing the recognition performance
of the BioHash-protected finger vein recognition system to the baseline system (i.e.
the system without BioHashing). We refer to Fig. 15.4 for this purpose.

11In practice, the seed should be randomly generated. We only used the finger ID as the seed so that
our results are more easily reproducible.
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Table 15.2 Dimensionality reduction (percentage of dimensionality lost) as a result of converting
finger vein feature vectors to BioHashes of different lengths (l)

Extractor l = 100 l = 200 l = 300 l = 400 l = 500

WLD (%) 99.35 98.70 98.05 97.41 96.76

RLT (%) 99.90 99.79 99.69 99.58 99.48

MC (%) 99.96 99.92 99.89 99.85 99.81

Fig. 15.4 Recognition performance of our BioHash-protected finger vein verification system in
the Normal and Stolen Token scenarios
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There a number of important observations from Fig. 15.4. First, in the Normal
scenario, the BioHash-protected finger vein recognition performance for the WLD
and RLT extractors is generally better than the baseline and has an error rate of
approximately 0% at all FMR values, for l > 100. This is interesting, since the
BioHashes are significantly smaller than the original finger vein feature vectors, as
noted in Table15.2. However, the additional entropy introduced by the user-specific
projection matrices makes the resulting BioHashes more discriminative than the
original finger vein feature vectors, so the superior performance of BioHashes is
not surprising. The fact that the BioHashed MC finger vein patterns struggle to
reach the baseline recognition performance as quickly as WLD or RLT BioHashes
is probably because BioHashing on MC finger vein feature vectors results in the
largest dimensionality reduction (see Table15.2). It is interesting to note, however,
that although the dimensionality reduction for both RLT andMC is greater than 99%
for all BioHash lengths tested (refer to Table15.2), RLT BioHashes perform much
better than MC BioHashes. So, perhaps such a large dimensionality reduction is too
severe for MC finger vein patterns. Nevertheless, we can see that the recognition
performance improves as the BioHash length increases, and for all three extractors,
the Normal scenario recognition performance in the BioHashed domain equalises or
surpasses the baseline recognition performance as the FMR approaches 10−1.

As for the Stolen Token scenario, from Fig. 15.4 we can see that the recognition
performance for all three extractors is significantly worse than the baseline. Such a
trend has been shown for other biometric characteristics in the literature (e.g. [19]),
and itmakes sense because in the StolenToken scenariowe are essentially performing
a huge dimensionality reduction using the same projection matrix for each finger.12

So, here we see the “real” effect (i.e. without the additional entropy introduced
by the user-specific projection matrix in the Normal scenario) of the significant
dimensionality reduction reported in Table15.2. Since we cannot, in general, expect
better recognition performance than the baseline when the dimensionality of our
feature vectors is reduced via random projection, the best we can hope for is that the
performance of our BioHash-protected finger vein verification system in the Stolen
Token scenario is as close as possible to our baseline. From Fig.15.4, we can see that,
as in the Normal scenario, the recognition performance in the Stolen Token scenario
approaches that of the baseline as the BioHash length increases.

If we were to rank our three extractors in the Normal scenario based on Fig. 15.4,
we would place WLD and RLT first equal, followed by MC. This is an interesting
turn of events, since the baseline ranking in Fig. 15.3 is the opposite. Our suspicion
is that this is due to the thinness of the finger veins extracted by MC, which means
that the MC feature vector may need a much higher resolution than theWLD or RLT
feature vectors. So, a BioHash in the range of 100–500 bits might just be too small
to represent the MC features.

Ranking the three extractors in the Stolen Token scenario, once again MC takes
last place, with WLD and RLT fighting for first. It seems as if WLD has slightly
better recognition performance than RLT for all but a BioHash length of 500, where

12Recall that each finger corresponds to a different identity.
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RLT marginally takes over. We would expect that the smallest feature vector, that
produced byWLD, would incur the smallest information loss as a result of the small-
est dimensionality reduction in the projection to a 100–500 bit BioHash, while the
greatest information loss would be incurred by the largest feature vector, that pro-
duced byMC. So, we would predict that theWLD extractor recognition performance
would be closest to its baseline andMC furthest from its baseline in the Stolen Token
scenario. This is, more or less, what we observe in Fig. 15.4.

If we had to draw a conclusion about the suitability of applying BioHashing to
a finger vein verification system based on the recognition performance observed in
Fig. 15.4 alone, we would probably have to say that BioHashing is not a suitable
template protection scheme in this case. While we would assume that the system
would operate in the Normal scenario most of the time, in which case BioHashing
would be great for achieving a 0% error rate with theWLD or RLT feature extractors
(or even the MC extractor, depending on what FMR the system needs to operate at),
unfortunately we cannot ignore the possibility of the Stolen Token scenario. Since
the recognition performance of all three extractors in the Stolen Token scenario is
significantly worse than the baseline for the BioHash lengths tested, it seems too
risky to recommend incorporating BioHashing into a finger vein verification system.

However, we have observed that the recognition performance of the BioHash-
protected finger vein verification system improves as the BioHash length increases.
So, this brings to mind a possible solution: Why not just try larger lengths? We
discuss this point in Sect. 15.3.3.

15.3.3 Memory Constraints

This section investigates the possibility of increasing theBioHash length to gain better
recognition performance for our BioHash-protected finger vein verification system
in the Stolen Token scenario. Since we know that, theoretically, we cannot achieve
better recognition performance than the baseline in the Stolen Token scenario, our
first approach might be to choose the MC extractor, since Fig. 15.3 shows that it
has the best baseline out of the three extractors tested. Even though the recognition
performance of the BioHashed MC finger vein features in Fig. 15.4 was shown to be
worse than the performance of the WLD and RLT features, our hope might be that if
we choose a large enough BioHash length then perhaps it would be possible to push
the performance of our BioHashed MC features up to the MC baseline performance.
The question is, how large would this BioHash need to be in order for us to achieve
such an improvement in the recognition performance?

Figure15.5 shows a plot of the amount of memory required, in bytes, to generate
the projection matrix for a single feature vector for each of our three extractors, as the
BioHash length increases from 100 to 2,000. Remember that the projection matrix
consists of n rows by l columns, where n denotes the number of bits in the binary
feature vector (see Table15.1) and l represents the BioHash length.
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Fig. 15.5 Amount of memory required for the projection matrix as the BioHash length increases.
Note that memory ranges from 0 to just over 4GB in this plot

From Fig. 15.5, we can see that the amount of memory required for a projection
matrix corresponding to aWLD feature vector grows quite gradually as the BioHash
length increases, that for an RLT feature vector grows faster, and that for an MC
feature vector the fastest. For example, it seems that for a 1,000-bit BioHash we
would require less than 0.1GB for aWLD projection matrix, about 0.75GB for RLT,
and over 2GB forMC!This immediately suggests that anything close to or larger than
a 1,000-bit BioHash would probably be impractical forMC features, possibly doable
for RLT features but not for a much larger l, and manageable for larger BioHashes
on WLD features.

We attempted 1,000-bit BioHashes for our three extractors. As expected, the result
was a memory error for our MC feature vectors (i.e. insufficient memory available).
This confirms our suspicion that, although MC has the best baseline, it may be
impractical for BioHashing. We might consider re-scaling the MC-extracted finger
vein pattern image so that we have a smaller feature vector to work with, but this is
currently not a characteristic of our adopted MC extractor implementation. As for
the WLD and RLT extractors, Fig. 15.6 compares their recognition performance on
1,000-bit BioHashes in the Stolen Token scenario (note that both extractors had an
error rate of 0% in the Normal scenario, so this is not shown).

As expected from the Stolen Token plots in Fig. 15.4, the recognition performance
of the two extractors in Fig. 15.6 is fairly close, with RLT doing slightly better at the
larger BioHash length. Overall, however, this recognition performance may still be
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Fig. 15.6 WLD versus RLT
when BioHash length is
1,000

Fig. 15.7 1,000-bit versus
5,000-bit BioHashes on
WLD compared to the
baseline recognition
performance

impractically low, so we might need to consider an even larger BioHash length to try
to improve the performance.

We attempted a BioHash length of 5,000 for our WLD and RLT features. As
expected, the RLT-based BioHash generation resulted in a memory error. This means
that, with our current implementation of the RLT extractor, we cannot expect to gain
a significant improvement in the recognition performance of RLT-based BioHashes
in the Stolen Token scenario. The WLD-based BioHashes, on the other hand, had no
memory issues. Figure15.7 compares the recognition performance of our BioHash-
protected finger vein verification system for 1,000-bit and 5,000-bit BioHashes on
theWLD finger vein features in the Stolen Token scenario to theWLD baseline (note
that both BioHash lengths had an error rate of 0% in the Normal scenario, so this is
not shown).

Figure15.7 confirms our previously observed trend (in Fig. 15.4) that the recog-
nition performance of our WLD-based BioHash-protected finger vein verification
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system approaches the performance of the corresponding baseline in the Stolen
Token scenario as the BioHash length increases. The final length will depend on
how much of a drop in recognition performance is acceptable in the Stolen Token
scenario. Technically, we can expect the BioHash recognition performance to be
approximately the same as the baseline performance when the BioHash length is
the same as the length of the original feature vector. The issue here is that, in this
case, the BioHash is more or less fully invertible, meaning that it would be possible
to recover the original feature vector if the user’s secret seed and thus their projec-
tion matrix is leaked to an attacker. So, it is important to try to find a large enough
BioHash length to ensure we have reasonable recognition performance in both the
Normal and Stolen Token scenarios, while keeping the length small enough to ensure
that the resulting BioHash is sufficiently privacy-preserving. The privacy-preserving
properties of our BioHash-protected finger vein verification system must be investi-
gated before we can fully justify any conclusions on whether or not BioHashing is a
suitable template protection scheme for finger veins.

15.4 Conclusions and Future Work

This chapter presented the first investigation into the suitability of BioHashing as a
finger vein template protection scheme for finger vein verification systems based on
three feature extractors (WLD, RLT and MC), in terms of recognition performance
only. Our experiments showed that, in the Normal scenario, it is possible to achieve
a 0% error rate for BioHashes that are significantly smaller than the original finger
vein feature vectors. BioHashes generated from WLD and RLT finger vein feature
vectors were found to perform the best, while BioHashed MC features were shown
to approach the baseline recognition performance as the FMR approached 10−1. As
expected, the recognition performance for all three extractors was worse than the
baseline in the Stolen Token scenario due to the huge dimensionality reduction that
is incurred in projecting a finger vein feature vector to a relatively small BioHash.
While the recognition performance was shown to improve by increasing the length
of the BioHash vectors, it was also demonstrated that the choice of length is con-
strained in practice by the amount of memory required for the projection matrix.
Consequently, the WLD extractor was found to be the most promising for BioHash-
ing purposes, since the relatively small size of WLD feature vectors allows for much
larger BioHashes than would be possible for RLT or MC feature vectors. One issue
with generating large BioHashes, however, is that, the larger the BioHash length,
the easier it becomes to invert the BioHash to recover the original feature vector,
thereby jeopardising the privacy of the verification system’s users. To determine an
optimal BioHash length that would ensure a reasonable balance between recognition
performance and privacy preservation, we would need to conduct a full security and
privacy analysis for the BioHashed WLD finger vein patterns. This will form part
of our future work. Another area for future work could be to investigate the effect
on BioHashing recognition performance when the three extractors are modified to
produce feature vectors of the same size.
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