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and Vitomir Struc

Abstract In this chapter, we address the problem of biometric identity recognition
from the vasculature of the human sclera. Specifically, we focus on the challenging
task of multi-view sclera recognition, where the visible part of the sclera vasculature
changes from image to image due to varying gaze (or view) directions. We pro-
pose a complete solution for this task built around Convolutional Neural Networks
(CNNs) and make several contributions that result in state-of-the-art recognition
performance, i.e.: (i) we develop a cascaded CNN assembly that is able to robustly
segment the sclera vasculature from the input images regardless of gaze direction,
and (ii) we present ScleraNET, a CNN model trained in a multi-task manner (com-
bining losses pertaining to identity and view-direction recognition) that allows for
the extraction of discriminative vasculature descriptors that can be used for identity
inference. To evaluate the proposed contributions, we also introduce a new dataset of
ocular images, called the Sclera Blood Vessels, Periocular and Iris (SBVPI) dataset,
which represents one of the few publicly available datasets suitable for research
in multi-view sclera segmentation and recognition. The datasets come with a rich
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set of annotations, such as a per-pixel markup of various eye parts (including the
sclera vasculature), identity, gaze-direction and gender labels. We conduct rigorous
experiments on SBVPI with competing techniques from the literature and show that
the combination of the proposed segmentation and descriptor-computation models
results in highly competitive recognition performance.

Keywords Ocular biometrics * Vascular biometrics - Deep learning « Sclera
segmentation -+ Sclera recognition - Dataset - Eye recognition

13.1 Introduction

With the growing need for secure authentication systems, forensic applications and
surveillance software, biometric recognition techniques are attracting interest from
research groups and private companies trying to improve the current state of the
technology and exploit its immense market potential. Among the existing biometric
characteristics used in automated recognition systems, ocular traits offer a num-
ber of advantages over other modalities such as contactless data acquisition, high
recognition accuracy and considerable user acceptance. While iris recognition is the
predominant technology in this area, recent research [1, 2] is looking increasingly
at additional ocular characteristics that can complement iris-based features and con-
tribute towards more secure and less-spoofable authentication schemes within this
branch of biometrics [3].

One trait that presents itself as a particularly viable option in this context is the
vasculature of the sclera. The eye’s sclera region contains a rich vascular structure
that is considered unique for each individual, is relatively stable over time [4] and can
hence be exploited for recognition and authentication purposes, as also evidenced by
recent research efforts [1, 5]. As suggested in [6], the vascular patterns also exhibit
other desirable properties that make them appealing for recognition systems, e.g.
the patterns are discernible despite potential eye redness and also in the presence of
contact lenses that may adversely affect iris recognition systems. Despite the potential
of the sclera vasculature for biometric recognition, research on this particular trait
is still in its infancy and several research problems need to be addressed before the
technology can be deployed in commercial systems, e.g.:

e The sclera vasculature contains distinct, but also finer blood vessels that need to be
segmented from the input ocular images to ensure competitive recognition perfor-
mance. As emphasised in the introductory chapter of the handbook, these vessels
feature very different border types and have a complex texture that is difficult to
model, which makes vasculature segmentation highly challenging. To approach
this problem, existing solutions typically adopt a two-stage procedure, where the
sclera region is first identified in the ocular images and the vasculature structure
is then extracted using established (typically unsupervised) algorithms based, for
example, on Gabor filters, wavelets, gradient operators and alike [1, 7-9]. While
these approaches have shown promise, recent research suggests that supervised
techniques result in much better segmentation performance [5, 10], especially
if challenging off-angle ocular images need to be segmented reliably. However,
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next to the difficulty of sclera vasculature segmentation task itself, the lack of
dedicated and suitably annotated datasets for developing supervised techniques
has so far represented one of the major roadblocks in the design of competitive
sclera recognition systems.

e Dueto the particularities (and potentially unconstrained nature) of the image acqui-
sition procedure, ocular images are in general not aligned well with respect to a
reference position. Additionally, as the gaze direction may vary from image to
image, not all parts of the sclera vasculature are necessarily visible in every cap-
tured image. To efficiently compare sclera images and facilitate recognition, dis-
criminative features need to be extracted from the segmented vasculature. These
features have to be robust with respect to variations in position, scale and rotation
and need to allow for comparisons with only parts of the located vascular structure.
Existing solutions, therefore, commonly rely on hand-crafted image descriptors,
such as Scale-Invariant Feature Transforms (SIFTs), Histograms of Oriented Gra-
dients (HOGs), Local Binary Patterns (LBPs) and related descriptors from the
literature [5, 8, 9]. These local descriptor-based approaches have dominated the
field for some time, but, as indicated by recent trends in biometrics [11-14], are
typically inferior to learned image descriptors based, for example, on Convolu-
tional Neural Networks (CNNSs).

In this chapter, we try to address some of the challenges outlined above and present
a novel solution to the problem of sclera recognition built around deep learning
and Convolutional Neural Networks (CNNs). Specifically, we first present a new
technique for segmentation of the vascular structure of the sclera based on a cascaded
SegNet [15] assembly. The proposed technique follows the established two-stage
approach to sclera vasculature segmentation and first segments the sclera region from
the input images using a discriminatively trained SegNet model and then applies a
second SegNet to extract the final vascular structure. As we show in the experimental
section, the technique allows for accurate segmentation of the sclera vasculature
from the input images even under different gaze directions, thus facilitating feature
extraction and sclera comparisons in the later stages.

Next, we present a deep-learning-based model, called ScleraNET, that is able to
extract discriminative image descriptors from the segmented sclera vasculature. To
ensure that a single (learned) image descriptor is extracted for every input image
regardless of the gaze direction and amount of visible sclera vasculature, we train
ScleraNET within a multi-task learning framework, where view-direction recogni-
tion is treated as a side task for identity recognition. Finally, we incorporate the
segmentation and descriptor-computation approaches into a coherent sclera recog-
nition pipeline.

To evaluate the proposed segmentation and descriptor-computation approaches,
we also introduce a novel dataset of ocular images, called Sclera Blood Vessels,
Periocular and Iris (SBVPI) and make it publicly available to the research commu-
nity. The dataset represents one of the few existing datasets suitable for research in
(multi-view) sclera segmentation and recognition problems and ships with a rich set
of annotations, such as a pixel-level markup of different eye parts (including the sclera
vasculature) or identity, gaze-direction and gender labels. Using the SBVPI dataset,
we evaluate the proposed segmentation and descriptor-computation techniques in
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rigorous experiments with competing state-of-the-art models from the literature.
Our experimental results show that the cascaded SegNet assembly achieves com-
petitive segmentation performance and that the ScleraNET model generates image
descriptors that yield state-of-the-art recognition results.

In summary, we make the following contributions in this chapter:

e We propose a novel model for sclera vasculature segmentation based on a cascaded
SegNet assembly. To the best of our knowledge, the model represents the first
attempt to perform sclera vasculature segmentation in a supervised manner and is
shown to perform well compared to competing solutions from the literature.

e We present ScleraNET, a CNN-based model able to extract descriptive image
representations from ocular images with different gaze directions. Different from
existing techniques, the model allows for the description of the vascular structure
of the sclera using a single high-dimensional image descriptor even if the charac-
teristics (position, scale, translation, visibility, etc.) of the vascular patterns vary
from image to image.

e We introduce the Sclera Blood Vessels, Periocular and Iris (SBVPI) dataset—a
dataset of ocular images with a distinct focus on research into sclera recognition.
We make the dataset publicly available: http:/sclera.fri.uni-lj.si/.

The rest of the chapter is structured as follows: In Sect. 13.2, we survey the relevant
literature and discuss competing methods. In Sect. 13.3, we introduce our sclera
recognition pipeline and elaborate on the segmentation procedure and ScleraNET
models. We describe the novel dataset and its characteristics in Sect. 13.4. All parts
of our pipeline are evaluated and discussed in rigorous experiments in Sect. 13.5. The
chapter concludes with a brief summary and directions for future work in Sect. 13.6.

13.2 Related Work

In this section, we survey the existing research work relevant to the proposed segmen-
tation and descriptor-computation approaches. The goal of this section is to provide
the necessary context for our contributions and motivate our work. The reader is
referred to some of the existing surveys on ocular biometrics for a more complete
coverage of the field [8, 16-18].

13.2.1 Ocular Biometrics

Research in ocular biometrics dates back to the pioneering work of Daugman [19-
21], who was the first to show that the texture of the human iris can be used for identity
recognition. Daugman developed an iris recognition system that used Gabor filters to
encode the iris texture and to construct a discriminative template that could be used
for recognition. Following the success of Daugman’s work, many other hand-crafted
feature descriptors were proposed [22-25] to encode the texture of the iris.
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With recent research on iris recognition moving towards unconstrained image
acquisition settings and away from the Near-Infrared (NIR) spectrum towards vis-
ible light (VIS) imaging, more powerful image features are needed that can better
model the complex non-linear deformations of the iris typically seen under non-ideal
lightning conditions and with off-angle ocular images. Researchers are, therefore,
actively trying to solve the problem of iris recognition using deep learning methods,
most notably, with Convolution Neural Networks (CNNs). The main advantage of
using CNNs for representing the iris texture (compared to the more traditional hand-
crafted image descriptors) is that features can be learned automatically from training
data typically resulting in much better recognition performance for difficult input
samples. Several CNN-based approaches have been described in the literature over
the last few years with highly promising results, e.g. [26-30].

Despite the progress in this area and the introduction of powerful (learned) image
descriptors, there are still many open research question related mostly to uncon-
strained image acquisition conditions (e.g. the person is not looking straight into the
camera, eyelashes cover the iris, reflections appear in the images, etc.). To improve
robustness of ocular biometric systems in such settings, additional ocular traits can be
integrated into the recognition process, such as the sclera vasculature [1] or informa-
tion from the periocular region [31, 32] . These additional modalities have received
significant attention from the research community and are at the core of many ongo-
ing research projects—see, for example, [1, 16, 33—40].

The work presented in this chapter adds to the research outlined above and intro-
duces a complete solution to the problem of multi-view sclera recognition with
distinct contributions for vasculature segmentation and descriptor computation from
the segmented vascular structure.

13.2.2 Sclera Recognition

Recognition systems based on the vasculature of the sclera typically consist of mul-
tiple stages, which in the broadest sense can be categorised into a (i) a vasculature
segmentation stage that extracts the vascular structure of the sclera from the image,
and (ii) arecognition stage, where the vascular structure is represented using suitable
image descriptors and the descriptors are then used for comparisons and subsequent
identity inference.

The first stage (aimed at vasculature segmentation) is commonly subdivided into
two separate steps, where the first step locates the sclera in the image and the sec-
ond extracts the vasculature needed for recognition . To promote the development
of automated segmentation techniques for sclera segmentation (the first step), sev-
eral competitions were organised in the scope of major biometric conferences [5,
10, 41, 42]. The results of these competitions suggest that supervised segmenta-
tion techniques, based on CNN-based models represent the state of the art in this
area and significantly outperform competing unsupervised techniques. Particularly
successful here are Convolutional Encoder—Decoder (CED) networks (such as Seg-
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Net [15]) , which represent the winning techniques from the 2017 and 2018 sclera
segmentation competitions—see [5, 10] for details. In this chapter, we build on these
results and incorporate multiple CED models into a cascaded assembly that is shown
in the experimental section to achieve competitive performance for both sclera and
vasculature segmentation.

To extract the vascular structure from the segmented scleraregion, image operators
capable of emphasising gradients and contrast changes are typically used. Solutions
to this problem, therefore, include standard techniques based, for example, on Gabor
filters, wavelets, maximum curvature, gradient operators (e.g. Sobel) and others [1,
7-9]. As suggested in the sclera recognition survey in [8], a common aspect of
these techniques is that they are unsupervised and heuristic in nature. In contrast to
the outlined techniques, our approach uses (typically better performing) supervised
segmentation models, which are possible due to the manual markup of the sclera
vasculature that comes with the SBVPI dataset (introduced later in this chapter) and,
to the best of our knowledge, is not available with any of the existing datasets of
ocular images.

For the recognition stage, existing techniques usually use a combination of image
enhancement (e.g. histogram equalisation, Contrast-Limited Adaptive Histogram
Equalization (CLAHE) or Gabor filtering [1, 43]) and feature extraction techniques,
with a distinct preference towards local image descriptors, e.g. SIFT, LBP, HOG,
Gray-level Co-occurrence Matrices, wavelet features or other hand-crafted repre-
sentations [6, 8, 44—46]. Both dense and sparse (keypoint) image descriptors have
already been considered in the literature. With ScleraNET, we introduce a model
for the computation of the first learned image descriptor for sclera recognition. We
also make the model publicly available to facilitate reproducibility and provide the
community with a strong baseline for future research in this area.

13.2.3 Existing Datasets

A variety of datasets is currently available for research in ocular biometrics [16] with
the majority of existing datasets clearly focusing on the most dominant of the ocu-
lar modalities—the iris [5, 9, 47, 48, 48-55]. While these datasets are sometimes
used for research into sclera recognition as well, a major problem with the listed
datasets is that they are commonly captured in the Near-Infrared (NIR) spectrum,
where most of the discriminative information contained in the sclera vasculature is
not easily discernible. Furthermore, existing datasets are not captured with research
on vascular biometrics in mind and, therefore, often contain images of insufficient
resolution or images, where the Region-Of-Interest (ROI) needed for sclera recog-
nition purposes is not well visible. While some datasets with characteristics suitable
for sclera recognition research have been introduced recently (e.g. MASD [5]), these
are, to the best of our knowledge, not publicly available.

Table 13.1 shows a summary of some of the most popular datasets of ocular
images and also lists the main characteristics of the SBVPI dataset introduced in this
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Table 13.1 Comparison of the main characteristics of existing datasets for ocular biometrics. Note
that most of the datasets have been captured with research in iris recognition in mind, but have
also been used for experiments with periocular (PO) and sclera recognition techniques. The dataset
introduced in Sect. 13.4 of this chapter is the first publicly available dataset dedicated to sclera
recognition research

Dataset Modality | Public | NIR/VIS | Image | # Sub- | # SC- VS- Gaze
size  |jects |Images| M¥ M*

CASIA Iris Yes NIR 320 x | 54 756 No No Static

Iris v1 280

[47]

CASIA Iris Yes NIR 640 x | 60 2400 | No No Static

Iris v2 480

[47]

CASIA Iris Yes NIR 640 x | > 700 | 22034 | No No Static

Iris v3 480

[47]

CASIA Iris Yes NIR 640 x | > 54601 | No No Static

Iris v4 480 2800

[47]

ND-IRIS- | Iris Yes NIR 640 x | 356 64980 | No No Static

0405 [49] 480

UTIRIS Sclera, Yes Both 2048 x| 79 1540 |No No Static

[50] iris 1360

UBIRIS | Sclera, Yes VIS 800 x | 241 1877 |No No Static

vl [48] iris 600

UBIRIS Sclera, Yes VIS 400 x | 261 11102 | No No Variable

v2[52] | PO, iris 300

IITD [51] | Iris Yes NIR 320 x | 224 1120 | No No Static
240

MICHE-I | Sclera, Yes VIS 2048 x| 92 3732 | No No Static

[53] PO, iris 1536

UBIPr PO Yes VIS 500 x | 261 10950 | No No Variable

[54] 400

IMP [55] | PO Yes Both 260 x | 62 930 No No Static
270

IUPUI [9]| Sclera, No Both n/a 44 352 No No Variable

PO, iris

MASD [5]| Sclera No VIS 7500 x| 82 2624 | Partial | No Variable
5000

SBVPI Sclera, Yes VIS 3000 x| 55 1858 | Full Partial | Variable

(ours) PO, iris 1700

TPO—periocular, ~¥SC-M—sclera markup,  *VS-M—vasculature markup
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chapter. While researchers commonly resort to the UBIRISv1 [48], UBIRISv2 [52],
UTIRIS [56], or MICHE-I [53] datasets when conducting experiments on sclera
recognition, their utility is limited, as virtually no sclera-specific metadata (e.g. sclera
markup, vasculature markup, etc.) is available with any of these datasets. SBVPI
tries to address this gap and comes with a rich set of annotations that allow for the
development of competitive segmentation and descriptor-computation models.

13.3 Methods

In this section, we present our approach to sclera recognition. We start with a high-
level overview of our pipeline and then describe all of the individual components.

13.3.1 Overview

A high-level overview of the sclera recognition pipeline proposed in this chapter is
presented in Fig. 13.1. The pipeline consist of two main parts: (i) a cascaded SegNet
assembly used for Region-Of-Interest (ROI) extraction and (ii) a CNN model (called
ScleraNET) for image-representation (or descriptor) computation.

The cascaded SegNet assembly takes an eye image as input and generates a
probability map of the vascular structure of the sclera using a two-step segmentation
procedure. This two-step procedure first segments the sclera from the input image and
then identifies the blood vessels within the sclera region using a second segmentation
step.

The CNN model of the second part of the pipeline, ScleraNET, takes a probability
map describing the vascular patterns of the sclera as input and produces a discrimi-
native representation that can be used for matching purposes. We describe both parts
of our pipeline in detail in the next sections.

13.3.2 Region-Of-Interest (ROI) Extraction

One of the key steps of every biometric system is the extraction of the Region-Of-
Interest (ROI) . For sclera-based recognition systems, this step amounts to segmenting
the vascular structure from the input image. This structure is highly discriminative
for every individual and can, hence, be exploited for recognition. As indicated in the
previous section, we find the vasculature of the sclera in our approach using a two-
step procedure built around a cascaded SegNet assembly. In the remainder of this
section, we first describe the main idea behind the two-step segmentation procedure,
then briefly review the main characteristics of the SegNet model and finally describe



13 Deep Sclera Segmentation and Recognition 403

Y

Initial segmentation Segmented vasculature %

S

2 [}

Sclera Blood Vessel n Feature | ¢

| Segmentation Segmentation|] i Extraction - §
g (ScleraNET)| &

=

=1

N

Region of Interest (ROI) extraction
(Cascaded SegNet assembly)

Fig. 13.1 Block diagram of the proposed sclera recognition approach. The vascular structure of the
sclera is first segmented from the input image X using a two-step procedure. A probability map of
the vascular structure y is then fed to a CNN model (called ScleraNET) to extract a discriminative
feature representation that can be used for sclera comparisons and ultimately recognition. Note that
m denotes the intermediate sclera region (or masks) generated by the first segmentation step and z
represent the learned vasculature descriptor extracted by ScleraNET
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Fig. 13.2 Tllustration of the two-step segmentation procedure. In the initial segmentation step, a
binary mask of the sclera region is generated by a SegNet model. The mask is used to conceal
irrelevant parts of the input image for the second step of the segmentation procedure, where the
goal is to identify the vascular structure of the sclera by a second SegNet model. To be able to
capture fine details in the vascular structure the second step is implemented in a patch-wise manner
followed by image mosaicing. Please refer to the text for an explanation of the symbols used in the
image

the training procedure used to learn the parameters of the cascaded segmentation
assembly.

13.3.2.1 The Two-Step Segmentation Procedure

The cascaded SegNet assembly used for ROI extraction in our pipeline is illustrated
in Fig. 13.2. It consists of two CNN-based segmentation models, where the first tries
to generate a binary mask of the sclera region from the input image and the second
aims to extract the vascular structure from within the located sclera. The segmenta-
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tion models for both steps are based on the recently introduced SegNet architecture
from [15]. SegNet was chosen as the backbone model for our segmentation assembly,
because of its state-of-the-art performance for various segmentation tasks, competi-
tive results achieved in the recent sclera segmentation competitions [5, 10] and the
fact that an open- source implementation is publicly available.'!

Note that our two-step procedure follows existing unsupervised approaches to
sclera vasculature segmentation, where an initial sclera segmentation stage is used
to simplify the segmentation problem and constrain the segmentation space for the
second step, during which the vasculature is extracted. Our segmentation procedure
is motivated by the fact that CNN-based processing does not scale well with image
size. Thus, to be able to process high-resolution input images, we initially locate
the sclera region from down-sampled images in the first segmentation step and then
process image patches at the original resolution in the second segmentation step
with the goal of capturing the fine-grained information on the vascular structure of
the sclera. Note that this information would otherwise get lost if the images were
down-sampled to a size manageable for CNN-based segmentation.

If we denote the input RGB ocular image as x and the binary mask of the sclera
region generated by the first SegNet model as m, then the first (initial) segmentation
step can formally be described as follows:

m=fy (%), (13.1)

where fy, denotes the mapping from the input X to the segmentation result m by
the first CNN model and 6; stands for the model parameters that need to be learned
during training.

Once the sclera is segmented, we mask the input image x with the generated
segmentation output m and, hence, exclude all image pixels that do not belong to the
sclera from further processing, i.e.:

X, =X (O m, (13.2)

where © denotes the Hadamard product. The masked input image x,, is then used as
the basis for the second segmentation step.

Because the vasculature of the sclera comprises large, but also smaller (finer)
blood vessels, we use a patch-wise approach in the second segmentation step. This
patch-wise approach allows us to also locate large blood vessels within the sclera
region, but also the finer ones that would get lost (or overseen) within a holistic
segmentation approach due to poor contrast and small spatial area these vessels
occupy. Towards this end, we split the masked input image x,, into M non-overlapping
patches {%;}”, and subject them to a second segmentation model fp, that locates the
vascular structure y; within each patch:

}A’i :fgz(ﬁi), fOrizl,...,M. (133)

SegNet on GitHub: https://github.com/alexgkendall/caffe-segnet.
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Here, 6, denotes the model parameters of the second SegNet model that again need
to be learned on some training data.

The final map of the vascular structure y is generated by re-assembling all gener-
ated patches §; using image mosaicing. Note that different from the first segmentation
step, where a binary segmentation mask m is generated by the segmentation model,
y represents a probability map, which was found to be better suited for recognition
purposes than a binary mask of the vasculature (details on possible segmentation
outputs are given in Sects. 13.3.2.2 and 13.3.2.3).

To ensure robust segmentation results when looking for the vascular structure of
the sclera in the second segmentation step, we use a data augmentation procedure
at run-time. Thus, the masked image x,, is randomly rotated, cropped and shifted
to produce multiple versions of the masked sclera. Here, the run-time augmentation
procedure selects all image operations with a probability of 0.5 and uses rotations
in the range of +8°, crops that reduce the image size by up to 1% of the spatial
dimensions, and shifts up to £20 pixels in the horizontal and up to 10 pixels in the
vertical direction. Each of the generated images is then split into M patches which
are fed independently to the segmentation procedure. The output patches y; are then
reassembled and all generated maps of the vascular structure are averaged to produce
the final segmentation result.

As indicated above, the basis for the ROI extraction procedure is the SegNet
architecture, which is used in the first, but also the second segmentation step. We,
therefore, briefly describe the main SegNet characteristics in the next section.

13.3.2.2 The SegNet Architecture

SegNet [15] represents a recent convolutional encoder—decoder architecture pro-
posed specifically for the task of semantic image segmentation. The architecture
consists of two high-level building blocks: an encoder and a decoder. The goal of the
encoder is to compress the semantic content of the input and generate a descriptive
representation that is fed to the decoder to produce a segmentation output [57, 58].

SegNet’s encoder is inspired by the VGG-16 [59] architecture, but unlike VGG-
16, the encoder uses only convolutional and no fully connected layers. The encoder
consists of 13 convolutional layers (followed by batch normalisation and ReL.U acti-
vations) and 5 pooling layers. The decoder is another (inverted) VGG-16 model again
without fully connected layers, but with a pixel-wise softmax layer at the top. The
softmax layer generates a probability distribution for each image location that can be
used to classify pixels into one of the predefined semantic target classes. During train-
ing, the encoder learns to produce low-resolution semantically meaningful feature
maps, whereas the decoder learns filters capable of generating high-resolution seg-
mentation maps from the low-resolution feature maps produced by the encoder [57].

A unique aspect of SegNet are so-called skip-connections that connect the pooling
layers of the encoder with the corresponding up-sampling layers of the decoder. These
skip-connections propagate spatial information (pooling indices) from one part of
the model to the other and help avoid information loss throughout the network.
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Consequently, SegNet’s output probability maps have the same dimensions (i.e. width
and height) as the input images, which allows for relatively precise segmentation.
The number of output probability maps is typically equal to the number of semantic
target classes—one probability map per semantic class [57]. The reader is referred
to [15] for more information on the SegNet model.

13.3.2.3 Model Training and Output Generation

To train the two SegNet models, fy, and fj,, and learn the model parameters 6; and
0, needed by our segmentation procedure, we use categorical cross-entropy as our
training objective. Once the models are trained, they return a probability distribution
over the C = 2 target classes (i.e. sclera vs. non-sclera for the first SegNet and
blood vessels vs. other for the second SegNet in the cascaded assembly) for each
pixel location. This is, for every location s = [x, y]” in the input image, the model
outputs adistribution p; = [psc,, Psc,)T € RE*!, where p;c, denotes the probability
that the pixel at location s belongs to the ith target class C; and Zic=1 psc; = 1 [57].
In other words, for each input image the model returns two probably maps, which,
however are only inverted versions of each other, because p;c, = 1 — psc,-

When binary segmentation results are needed, such as in the case of our sclera
region m, the generated probability maps are thresholded by comparing them to a
predefined segmentation threshold A.

13.3.3 ScleraNET for Recognition

For the second part of our pipeline, we rely on a CNN model (called ScleraNET)
that serves as a feature extractor for the vasculature probability maps. It needs to
be noted that recognition techniques based on the vascular structure of the sclera
are sensitive to view (or gaze) direction changes, which affect the amount of visi-
ble vasculature and consequently the performance of the final recognition approach.
As a consequence, the vasculature is typically encoded using local image descrip-
tors that allow for parts-based comparisons and are to some extent robust towards
changes in the appearance of the vascular structure. Our goal with ScleraNET is to
learn a single discriminative representation of the sclera that can directly be used
for comparison purposes regardless of the given gaze direction. We, therefore, use a
Multi-Task Learning (MTL) objective that takes both identity, but also gaze direc-
tion into account when learning the model parameters. As suggested in [60], the
idea of MTL is to improve learning efficiency and prediction accuracy by consid-
ering multiple objectives when learning a shared representation. Because domain
information is shared during learning due to the different objectives (pertaining to
different tasks), the representations learned by the model offer better generalization
ability than representations that rely only on a single objective during training. Since
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we try to jointly learn to recognise gaze direction and identity from the vascular
structure of the sclera with ScleraNET, the intermediate layers of the model need to
encode information on both tasks in the generated representations.

In the following sections, we elaborate on ScleraNET and discuss its architecture,
training procedure and deployment as a feature (or descriptor) extractor.

13.3.3.1 ScleraNET Architecture

The ScleraNET model architecture builds on the success of recent CNN models for
various recognition tasks and incorporates design choices from the AlexNet [61] and
VGG models [59]. We design the model as a (relatively) shallow network with a
limited number of trainable parameters that can be learned using a modest amount
of training data [11], but at the same time aim for a network topology that is able to
generate powerful image representations for recognition. Consequently, we built on
established architectural design choices that have proven to work well for a variety
of computer vision tasks.

As illustrated in Fig. 13.3 and summarised in Table 13.2, the architecture consists
of 7 convolutional layers (with ReLLU activations) with multiple max-pooling layers
in between followed by a global average pooling layer, one dense layer and two
softmax classifiers at the top.

The first convolutional layer uses 128 reasonably large 7 x 7 filters with a stride of
2 to capture sufficient spatial context and reduce the dimensionality of the generated
feature maps. The layer is followed by a max-pooling layer that further reduces the
size of the feature maps by 2x along each dimension. Next, three blocks consisting
of two convolutional and one max-pooling layer are utilised in the ScleraNET model.
Due to the max-pooling layers, the spatial dimensions of the feature maps are halved
after each block. To ensure a sufficient representational power of the feature maps,
we double the number filters in the convolutional layers after each max-pooling
operation. The output of the last of the three blocks is fed to a global average pooling
layer and subsequently to a 512-dimensional Fully Connected (FC) layer. Finally,
the FC layer is connected to two softmax layers, upon which an identity-oriented
and a view-direction-oriented loss is defined for the MTL training procedure. The
softmax layers are not used during run-time.

13.3.3.2 Learning Objective and Model Training

We define a cross-entropy loss over each of the two softmax classifiers at the top
of ScleraNET for training. The first cross-entropy loss L; penalises errors when
classifying subjects based on the segmented vasculature, and the second L, penalises
errors when classifying different gaze directions. The overall training loss is a Multi-
Task Learning (MTL) objective:

Liotas = L1 + AL>. (13.4)
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Fig. 13.3 Overview of the ScleraNET model architecture. The model incorporates design choices
from the AlexNet [61] and VGG [59] models and relies on a Multi-Task Learning (MTL) objec-
tive that combines an identity and gaze-direction-related loss to learn discriminative vasculature
representations for recognition

Table 13.2 Summary of the ScleraNET model architecture

No. Layer type # Filters Description

1. conv 128 7 x 7 (stride of 2)
2. max-pooling 2x2

3. conv 128 3 x 3 (stride of 1)
4. conv 128 3 x 3 (stride of 1)
5. max-pooling 2x2

6. conv 256 3 x 3 (stride of 1)
7. conv 256 3 x 3 (stride of 1)
8. max-pooling 2x2

9. conv 512 3 x 3 (stride of 1)
10. conv 512 3 x 3 (stride of 1)
11. max-pooling 2x2

12. global average pooling

13. dense 512

14. softmax (2x) Multi-task objective

To learn the parameters € of ScleraNET, we minimise the combined loss over some
training data and when doing so give equal weights to both loss terms, i.e. A = 1.
As suggested earlier, the intuition behind the MTL objective is to learn feature rep-
resentations that are useful for both tasks and, thus, contribute to (identity) recognition
performance as well as to the accuracy of gaze-direction classification. Alternatively,
one can interpret the loss related to gaze-direction classification as a regularizer for
the identity recognition process [62]. Hence, the additional term helps to learn (to
a certain extent) view-invariant representations of the vasculature, or to put it dif-
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ferently, it contributes towards more discriminative feature representations across
different views.

13.3.3.3 Identity Inference with ScleraNET

Once the ScleraNET model is trained, we make it applicable to unseen identities by
performing network surgery on the model and removing both softmax layers. We
then use the 512-dimensional output from the fully connected layer as the feature
representation of the vascular structure fed as input to the model.

If we again denote the probability map of the vascular structure produced by
our two-step segmentation procedure as y then the feature representation calculation
procedure implemented by ScleraNET can be described as follows:

z=2g(y), (13.5)

where gy again denotes the mapping from the vascular structure y to the feature
representation z by the ScleraNET model and 6 stands for the model’s parameters.
The feature representation can ultimately be used with standard similarity measures
to generate comparison scores for recognition purposes.

13.4 The Sclera Blood Vessels, Periocular and Iris (SBVPI)
Dataset

In this section, we describe a novel dataset for research on sclera segmentation and
recognition called Sclera Blood Vessels, Periocular and Iris (SBVPI) , which we
make publicly available for research purposes from http://sclera.fri.uni-1j.si/. While
images of the dataset contain complete eyes, including the iris and periocular region,
the focus is clearly on the sclera vasculature, which makes SBVPI the first pub-
licly available dataset dedicated specifically to sclera (segmentation and) recognition
research. As emphasised in the introductory chapter of the handbook, currently there
exists no dataset designed specifically for sclera recognition, thus, SBVPI aims to
fill this gap.

In the remainder of this section, we describe the main characteristics of the intro-
duced dataset, discuss the acquisition procedure and finally elaborate on the available
annotations.

13.4.1 Dataset Description

The SBVPI (Sclera Blood Vessels, Periocular and Iris) dataset consists of two sep-
arate parts. The first part is a dataset of periocular images dedicated to research in
periocluar biometrics and the second part is a dataset of sclera images intended for
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Fig. 13.4 An example image from the SVBPI dataset with a zoomed in region that shows the
vascular patterns of the sclera

research into vascular biometrics. We focus in this chapter on the second part only,
but a complete description of the data is available from the webpage of SBVPI.

The sclera-related part of SBVPI contains 1858 RGB images of 55 subjects.
Images for the dataset were captured during a single recording session using a Digital
Single-Lens Reflex camera (DSLR) (Canon EOS 60D) at the highest resolution and
quality setting. Macro lenses were also used to capitalise on the quality and details
visible in the captured images. The outlined capturing setup was chosen to ensure
high-quality images, on which the vascular patterns of the sclera are clearly visible,
as shown in Fig. 13.4.

During the image capturing process, the camera was positioned at a variable
distance between 20 and 40 centimetres from the subjects. Before acquiring a sclera
sample, the camera was always randomly displaced from the previous position by
moving it approximately 0—30cm left/right/up/down. During the camera-position
change, the subjects also slightly changed the eyelid position and direction of view.
With this acquisition setup, we ensured that the individual samples of the same eye
looking at the same direction is always different from all other samples of the same
eye looking in the same direction. It is known that the small changes in view direction
cause complex non-linear deformations in the appearance of the vascular structure
of the sclera [7] and we wanted our database to be suitable for the development of
algorithms robust to such kind of changes.

The captured samples sometimes contained unwanted facial parts (e.g. eyebrows,
parts of the nose, etc.). We, therefore, manually inspected and cropped (using a fixed
aspect ratio) the captured images to ensure that only a relatively narrow periocluar
region was included in the final images as shown in the samples in Fig. 13.5. The
average size of the extracted Region-Of-Interest (ROI) was around 1700 x 3000
pixels, which is sufficient to also capture the finer blood vessels of the sclera in
addition to the more expressed vasculature. Thus, 1700 x 3000 px was selected as the
target size of the dataset and all samples were rescaled (using bicubic interpolation)
to this target size to make the data uniform in size.

The image capturing process was inspired by the MASD dataset [5]. Each subject
was asked to look in one of four directions at the time, i.e. straight, left, right and
up. For each view direction, one image was captured and stored for the dataset. This
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Fig. 13.5 Sample images from the SVBP dataset. The dataset contains high-quality samples with
a clearly visible sclera vasculature. Each subject has at least 32 images covering both eyes and 4
view directions, i.e. up, left, right and straight. The top two rows show 8 sample images of a male
subject and the bottom two rows show 8 sample images of a female subject from the dataset

process was repeated four times, separately for the left and right eye, and resulted
in a minimum of 32 images per subject (i.e. 4 repetitions x 4 view directions x 2
eyes)—some subjects were captured more than four times. The images were manu-
ally inspected for blur and focus and images not meeting subjective quality criteria
were excluded during the recording sessions. A replacement image was taken if an
image was excluded. Subjects with sight problems were asked to remove prescrip-
tion glasses, while contact lenses, on the other hand, were allowed. Care was also
taken that no (or minimal) reflections caused by the camera’s flash were visible in
the images.

The final dataset is gender balanced and contains images of 29 female and 26 male
subjects all of Caucasian origin. The age of the subjects varies from 18 to 80 with
the majority of subjects being below 35-year old. SBVP contains eyes of different
colours, which represents another source of variability in the dataset. A summary
of the main characteristics of SBVP is presented in Table 13.3. For a high-level
comparison with other datasets of ocular images, including those used for research
in sclera recognition, please refer to Table 13.1.

13.4.2 Available Annotations

The dataset is annotated with identity (one of 55 identities), gender (male or female),
eye class (left eye or right eye) and view/gaze-direction labels (straight, left, right,
up), which are available for each of the 1858 SVBPI sclera images. Additionally,
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Table 13.3 Main characteristics of the SVBP dataset

Characteristic Description

Acquisition device DSLR camera, Canon EOS 60D + macro lenses

Number of images 1858

Number of subjects 55

Number of images per subject | 32 minimum, but variable

Image size 1700 x 3000 px

Available annotations Identity, gender, view direction, eye markup (segmentation
masks)

Fig. 13.6 Examples of the markups available with the SBVPI dataset. All images contain manually
annotated irises and sclera regions and a subset of images has a pixel-level markup of the sclera
vasculature. The images show (from left to right): a sample image from SBVPI, the iris markup,
the sclera markup and the markup of the vascular structure

ground truth information about the location of certain eye parts is available for images
in the dataset. In particular, all 1858 images contain a pixel-level markup of the sclera
and iris regions, as illustrated in Fig. 13.6. The vascular structure and pupil area are
annotated for a subset of the dataset i.e. 130 images. The segmentation masks were
generated manually using the GNU Image Manipulation Program (GIMP) and stored
as separate layers for all annotated images. The markups are included in SBVPI in
the form of metadata.

The available annotations make our dataset suitable for research work on sclera
recognition, but also segmentation techniques, which is not the case with competing
datasets. Especially the manual pixel-level markup of the sclera vasculature is a
unique aspect of the sclera-related part of SBVPIL.

13.5 Experiments and Results

In this section, we evaluate our sclera recognition pipeline. We start the section
with a description of the experimental protocol and performance metrics used, then
discuss the training procedure for all parts of our pipeline and finally proceed to the
presentation of the results and corresponding discussions. To allow for reproducibility
of our results, we make all models, data, annotations and experimental scripts publicly
available through http://sclera.fri.uni-1j.si/.
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13.5.1 Performance Metrics

The overall performance of our recognition pipeline depends on the performance of
the segmentation part used to extract the vascular structure from the input images
and on the discriminative power of the feature representation extracted from the
segmented vasculature. In the experimental section we, therefore, conduct separate
experiments for the segmentation and feature extraction parts of our pipeline. Next,
we describe the performance metrics used to report results for these two parts.
Performance metrics for the segmentation experiments: We measure the per-
formance of the segmentation models using standard performance metrics, such as
precision, recall and the F'1-score, which are defined as follows [57, 58, 63]:

. TP
precision = m, (13.6)
TP
recall = TP—{——F]V’ (137)
precision - recall
Fl-score =2 - (13.8)

precision + recall’

where T P denotes the number of true positive pixels, F P stands for the number of
false positive pixels and F N represents the number of false negative pixels.

Among the above measures, precision measures the proportion of correctly seg-
mented pixels with respect to the overall number of true pixels of the target class
(e.g. the sclera region) and, hence, provides information about how many segmented
pixels are in fact relevant. Recall measures the proportion of correctly segmented
pixels with respect to the overall number of pixels assigned to the target class and,
hence, provides information about how many relevant pixels are found/segmented.
Precision and recall values are typically dependent—it is possible to increase one at
the expense of the other and vice versa by changing segmentation thresholds. If a
simple way to compare two segmentation models is required, it is, therefore, conve-
nient to combine precision and recall into a single metric called F1-score, which is
also used as an additional performance metric in this work [57].

Note that when using a fixed segmentation threshold A, we obtain fixed precision
and recall values for the segmentation outputs, while the complete trade-off between
precision and recall can be visualised in the form of precision—recall curves by
varying the segmentation threshold A over all possible values. This trade-off shows
a more complete picture of the performance of the segmentation models and is also
used in the experimental section [57].

Performance metrics for the recognition experiments: We measure the perfor-
mance of the feature extraction (and recognition) part of our pipeline in verification
experiments and report performance using standard False Acceptance (FAR) and
False Rejection error Rates (FRR). FAR measures the error over the illegitimate
verification attempts and FRR measures the error over the legitimate verification
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attempts. Both error rates, FAR and FRR, depend on the value of a decision thresh-
old (similar to the precision and recall values from the previous section) and selecting
a threshold that produces low FAR values contributes towards high FRR scores and
vice versa, selecting a threshold that produced low FRR values generates high FAR
scores. Both error rates are bounded between 0 and 1. A common practice in biomet-
ric research is to report Verification Rates (VER) instead of FRR scores, where VER
is defined as 1-FRR [11, 64-66]. We also adopt this practice in our experiments.

Toshow the complete trade-off between FAR and FRR (or VER), we generate
Receiver Operating Characteristic (ROC) curves by sweeping over all possible values
of the decision threshold. We then report on several operating points from the ROC
curve in the experiments, i.e. the verification performance at a false accept rate of
0.1% (VER@0.1FAR), the verification performance at a false accept rate of 1%
(VER@1FAR) and the so-called Equal Error Rate (EER), which corresponds to the
ROC operating point, where FAR and FRR are equal. Additionally, we provide Area
Under the ROC Curve (AUC) scores for all recognition experiments, which is a
common measure of the accuracy of binary classification tasks, such as biometric
identity verification.

13.5.2 Experimental Protocol and Training Details

We conduct experiments on the SBVPI dataset introduced in Sect. 13.4 and use
separate experimental protocols for the segmentation and recognition parts of our
pipeline. The protocols and details on the training procedures are presented below.

13.5.2.1 Segmentation Experiments

The segmentation part of our pipeline consists of two components. The first generates
an initial segmentation result and locates the sclera region in the input image, whereas
the second segments the vasculature from the located sclera.

Sclera segmentation: To train and test the segmentation model for the first com-
ponent of our pipeline, we split the sclera-related SBVPI data into two (image and
subject) disjoint sets:

e A training set consisting of 1160 sclera images. These images are further par-
titioned into two subsets. The first, comprising 985 images, is used to learn the
model parameters and the second, comprising 175 images, is employed as the
validation set and used to observe the generalization abilities of the model during
training and stop the learning stage if the model starts to over-fit.

e A test set consisting of 698 sclera images. This set is used to test the final perfor-
mance of the trained segmentation model and compute performance metrics for
the experiments.
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To avoid over-fitting, the training data (i.e. 985 images) is augmented by a factor of
40 by left-right flipping, cropping, Gaussian blurring, changing the image brightness
and application of affine transformations such as scale changes, rotations (up to 35°)
and shearing.

Training of the SegNet model for the initial segmentation step (for sclera seg-
mentation) is conducted on a GTX 1080 Ti with 11GB of RAM. We use the Caffe
implementation of SegNet made available by the authors® for the experiments. The
input images are rescaled to fixed size of 360 x 480 pixels for the training procedure.
The model weights are learned using Stochastic Gradient Descent (SGD) and Xavier
initialization [67]. The learning rate is set to 0.001, the weight decay to 0.0005,
the momentum to 0.9 and the batch size to 4. The model converges after 26, 000
iterations.

Vasculature segmentation: The second component of our pipeline requires a
pixel-level markup of the vascular structure of the sclera for both the training and the
testing procedure. The SBVP dataset contains a total of 130 such images, which are
used to learn the SegNet model for this part and assess its performance. We again
partition the data into two (image and subject) disjoint sets:

e A training set of 98 images, which we split into patches of manageable size, i.e.
360 x 480 pixels. We generate a total of 788 patches by sampling from the set
of 98 training images and randomly select 630 of these patches for learning the
model parameters and use the remaining 158 patches as our validation set during
training. To avoid over-fitting, we again augment the training patches 40-fold using
random rotations, cropping and colour manipulations.

e A test set consisting of 32 images. While the test images are again processed patch-
wise, we report results over the complete images and not the intermediate patch
representations.

To train the segmentation model for the vascular structure of the sclera, we use
the same setup as described above for the sclera segmentation model.

13.5.2.2 Recognition Experiments

The vascular structure of the sclera is an epigenetic biometric characteristic with high
discriminative power that is known to differ between the eyes of the same subject.
We, therefore, treat the left and right eye of each subject in the SBVPI dataset as a
unique identity and conduct recognition experiments with 110 identities. Note that
such a methodology is common for epigenetic biometric traits and has been used
regularly in the literature, e.g. [68, 69].

For the recognition experiments, we split the dataset into subject disjoint training
and test sets, where the term subject now refers to one of the artificially generated 110
identities. The training set that is used for the model learning procedure consists of
1043 images belonging to 60 different identities. These images are divided between

2 Available from: https://github.com/alexgkendall/caffe-segnet.
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the actual training data (needed for the learning model parameters) and the validation
data (needed for the early stopping criterion) in a ratio of 70% versus 30%. The
remaining 815 images belonging to 50 subjects are used for testing purposes.

For the training procedure, we again use a GTX 1080 Ti GPU. We implement our
ScleraNET model in Keras and initialize its weights in accordance with the method
from [67]. We use the Adam optimizer with a learning rate of 0.001, betal equal
to 0.9 and beta2 equal to 0.999 to learn the model parameters. We augment the
available training data on the fly to avoid over-fitting and to ensure sufficient training
material. We use random shifts (£20 pixels in each direction) and rotations (£20°)
for the augmentation procedure. The model reaches stable loss values after 70 epochs.
As indicated in Sect. 13.3.3.3, once trained, the model takes 400 x 400 px images
as input and returns a 512-dimensional feature representation at the output (after
network surgery). The input images to the model are complete probability maps of
the sclera vasculature down-sampled to the target size expected by ScleraNET. Note
that because the down-sampling is performed after segmentation of the vasculature,
information on the smaller veins is not completely lost when adjusting for the input
size of the descriptor-computation model.

13.5.3 Evaluation of Sclera Segmentation Models

We start our experiments with an evaluation of the first component of the sclera
recognition pipeline, which produces the initial segmentation of the sclera region.
The goal in this series of experiments is to show how the trained SegNet architecture
performs for this task and how it compares to competing deep models and existing
sclera segmentation techniques. We need to note that while the error from this stage
is propagated throughout the entire pipeline to some extent, these errors are not as
critical as long as the majority of the scleraregion is segmented from the input images.
Whether the segmentation is precise (and able to find the exact border between the
sclera region and fine details such as the eyelashes, eyelids, etc.) is not of paramount
importance at this stage.

To provide a frame of reference for the performance of SegNet, we implement 4
additional segmentation techniques and apply them to our test data. Specifically, we
implement 3 state-of-the-art CNN-based segmentation models and one segmentation
approach designed specifically for sclera segmentation. Note that these techniques
were chosen, because they represent the top performing techniques from the sclera
segmentation competitions of 2017 and 2018. Details on the techniques are given
below:

e RefineNet-50 and RefineNet-101: RefineNet [70] is recent deep segmentation
model built around the concept of residual learning [71]. The main idea of
RefineNet is to exploit features from multiple levels (i.e. from different layers)
to produce high-resolution semantic feature maps in a coarse-to-fine manner.
Depending on the depth of the model, different variants of the model can be trained.
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In this work, we use two variants, one with 50 model layers (i.e. RefineNet-50)
and one with 101 layers (i.e. RefineNet-101). We train the models on the same
data and with the same protocol as SegNet (see Sect. 13.5.2.1) and use a publicly
available implementation for the experiments.> Note that RefineNet was the top
performer of the sclera 2018 segmentation competition held in conjunction with
the 2018 International Conference on Biometrics (ICB) [10].

e UNet: The UNet [72] model represents a popular CNN architecture particularly
suited for data-scarce image translation tasks such as sclera segmentation. Simi-
larly to SegNet, the model uses an encoder—decoder architecture but ensures infor-
mation flow from the encoder to the decoder by concatenating feature maps from
the encoder with the corresponding outputs of the decoder. We train the models on
the same data and with the same protocol as SegNet. For the experiments we use
our own Keras (with TensorFlow backend) implementation of UNet and make it
publicly available to the research community.*

e Unsupervised Sclera Segmentation (USS) [73]: Different from the models above,
USS represents an unsupervised segmentation technique, which does not rely on
any prior knowledge. The technique operates on greyscale images and is based
on an adaptive histogram normalisation procedure followed by clustering and
adaptive thresholding. Details on the method can be found in [73]. The technique
was ranked second in the 2017 sclera segmentation competition. Code provided
by the author of USS was used for the experiments to ensure a fair comparison
with our segmentation models.

Note that the three CNN-based models produce probability maps for the sclera vas-
culature, whereas the USS approach returns only binary masks. In accordance with
these characteristics we report precision, recall and F1-scores for all tested methods
(the CNN models are thresholded with a value of A that ensures the highest possible
F1-score) in Table 13.4 and complete precision—recall curves only for the CNN-based
methods in Fig. 13.7. For both the quantitative results and the performance graphs,
we also report standard deviations to have a measure of dispersion across the test set.

The results show that the CNN-based models perform very similarly (there is
no statistical difference in performance between the models). The unsupervised
approach USS, on the other hand, performs somewhat worse, but the results are
consistent with the ranking reported in [5]. Overall, the CNN models all achieve
near-perfect performance and are able to ensure Fl-scores of around 0.95. Note
that such high results suggest that performance for this task is saturated and fur-
ther improvements would likely be a consequence of over-fitting to the dataset and
corresponding manual annotations.

The average processing time per image (calculated over a test set of 100 images)
is 1.2s for UNet, 0.6s for RefineNet-50, 0.8s for RefineNet-101, 0.15s for SegNet
and 0.34s for USS. In our experiments, SegNet is the fastest of the tested models.

We show some examples of the segmentation results produced by the tested seg-
mentation models in Fig. 13.8. Here, the first column shows the original RGB ocular

3 Available from https:/github.com/guosheng/refinenet.
4 Available from: http://sclera.fri.uni-1j.si/.
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Table 13.4 Segmentation results generated based on binary segmentation masks. For the CNN-
based models, the masks are produced by thresholding the generated probability maps with a value
of A that ensures the highest possible F1-score, whereas the USS approach is designed to return a
binary mask of the sclera region only. Note that all CNN perform very similarly with no statistical
difference in segmentation performance, while the unsupervised USS approach performs somewhat
worse. The reported performance scores are shown in the form i & o, computed over all test images

Algorithm Precision Recall F1-score
UNet [72] (ours) 0.936 £ 0.044 0.930 + 0.037 0.933 +£0.037
RefineNet-50 [70] 0.959 £ 0.020 0.959 £+ 0.020 0.959 +£0.018
(ours)
RefineNet-101 [70] 0.953 £0.025 0.951 £0.023 0.952 +0.021
(ours)
SegNet [5, 57] (ours, |0.949 +0.024 0.949 +0.022 0.949 £+ 0.021
this chapter)
USS [5, 73] 0.729 £ 0.041 0.718 £ 0.039 0.723 +£0.036
1 1 —— RefineNet-50
—— RefineNet-101

0.8 0.98 —— UNet
= o —— SegNet
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Fig. 13.7 Precision—recall curves for the tested CNN models. USS is not included here, as it returns
only binary masks of the sclera region. The left graph shows the complete plot generated by varying
the segmentation threshold A over all possible values, whereas the right graph shows a zoomed in
region to highlight the minute differences between the techniques. The marked points stand for the
operating points with the highest F1-Score. The dotted lines show the dispersion (o) of the precision
and recall scores over the test images

images, the second shows the manually annotated ground truth and the remain-
ing columns show results generated by (from left to right): USS, RefineNet-50,
RefineNet-101, SegNet and UNet. These results again confirm that all CNN-based
models ensure similar segmentation performance. All models segment the sclera
region well and differ only in some finer details, such as eyelashes, which are not
really important for the second segmentation step, where the vasculature needs to be
extracted from the ocular images.

Consequently, any of the tested CNN-based segmentation models could be used
in our sclera recognition pipeline for the initial segmentation step, but we favour
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Fig.13.8 Visual examples of the segmentation results produced by the tested segmentation models.
The first column shows the input RGB ocular images, the second the manually annotated ground
truth and the remaining columns show the results generated by (from left to right): USS, RefineNet-
50, RefineNet-101, SegNet and UNet. Note that the CNN models (last four columns) produce
visually similar segmentation results and differ only in certain fine details

SegNet because of the fast prediction time, which is 4 times faster the second fastest
CNN model, i.e. RefineNet-50.

13.5.4 Evaluation of Vasculature Segmentation Models

In the next series of experiments, we evaluate the performance of the second segmen-
tation step of our pipeline, which aims to locate and segment the vascular structure of
the sclera from the input image. The input to this step is again an RGB ocular image
(see Fig.13.9), but masked with the segmentation output produced by the SegNet
model evaluated in the previous section.
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Fig. 13.9 Examples of vasculature segmentation results. Each of the two image blocks shows
(from left to right and top to bottom): the input RGB ocular image, the input image masked with
the sclera region produced by the initial segmentation step, the ground truth markup, results for the
proposed cascaded SegNet assembly, and results for the Adaptive Gaussian Thresholding (AGT),
and the NMC, NRLT, Coye and B-COSFIRE approaches. The results show the generated binary
masks corresponding to the operating point used in Table 13.5. Note that the proposed approach
most convincingly captures the characteristics of the manual vasculature markup. Best viewed
electronically and zoomed in
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Asemphasised earlier, we conduct segmentation with our approach in a patch-wise
manner to ensure that information about the finer details of the sclera vasculature
is not lost. Because the second SegNet model of the cascaded assembly outputs
probability maps, we use adaptive Gaussian thresholding [74] to generate binary
masks to compare with the manually annotated ground truth. To assess performance,
we compute results over the binary masks and again report fixed precision, recall and
F1-score values in this series of experiments. The performance scores are computed
for the operating point on the precision—recall curve that corresponds to the maximum
possible Fl-score. We again report standard deviations in addition to the average
scores to have a measure of dispersion for the results of the test data.

For comparison purposes, we implement a number of competing techniques from
the literature that are regularly used for vessel segmentation in the field of vascu-
lar biometrics, i.e. (i) Adaptive Gaussian Thresholding (AGT) [74], (ii) Normal-
ized Maximum Curvature (NMC) [75], (iii) Normalized Repeated Line Tracking
(NRLT) [76], (iv)) Coye filtering [77] and (v) the B-COSFIRE approach from [78,
79]. The NMC and NRLT approaches represent a modified version of the origi-
nal segmentation techniques and are normalised to return continuous probability
maps rather than binarized segmentation results. The hyper-parameters of all base-
line techniques (if any) are selected to maximise performance. The techniques are
implemented using publicly available source code.’ We note again that no supervised
approach to sclera vasculature segmentation has been presented in the literature so
far. We focus, therefore, exclusively on unsupervised segmentation techniques in our
comparative assessment.

The results of the experiments are presented in Table 13.5. As can be seen, SegNet
ensures the best overall results by a large margin with an average F1-score of 0.727.
The B-COSFIRE techniques, regularly used for vasculature segmentation in retina
images, is the runner-up with an average F1-score of 0.393, followed closely by AGT
thresholding with an F1-score of 0.306. The NMC, NRLT and Coye filter approaches
result in worse performance with F1-scores below 0.25. While the performance dif-
ference between the SegNet model and the competing techniques is considerable, it
is also expected, as SegNet is trained on the manually annotated vasculature, while
the remaining approaches rely only on local image characteristics to identify the vas-
cular structure of the sclera. As aresult, the vasculature extracted by the unsupervised
techniques (NMC, NRLT, Coye filter and B-COSFIRE) does not necessarily corre-
spond to the markup generated by a human annotator. However, the low-performance
scores of the unsupervised techniques do not indicate that the extracted vasculature
is useless for recognition, but only that there is low correspondence with the man-
ual markup. To investigate the usefulness of the extracted vascular patterns of these

3Code for the techniques is available from: AGT from OpenCV: https://opencv.org/, NMC and
NRLT from Mathworks: https://www.mathworks.com/matlabcentral/fileexchange/35716-miura-
et-al-vein-extraction-methods

Coye filter from Mathworks: https://www.mathworks.com/matlabcentral/fileexchange/50839-
novel-retinal-vessel-segmentation-algorithm-fundus-images

B-COSFIRE from Mathworks: https://www.mathworks.com/matlabcentral/fileexchange/49172-
trainable-cosfire-filters-for-curvilinear-structure-delineation-in-images.


https://opencv.org/
https://www.mathworks.com/matlabcentral/fileexchange/35716-miura-et-al-vein-extraction-methods
https://www.mathworks.com/matlabcentral/fileexchange/35716-miura-et-al-vein-extraction-methods
https://www.mathworks.com/matlabcentral/fileexchange/50839-novel-retinal-vessel-segmentation-algorithm-fundus-images
https://www.mathworks.com/matlabcentral/fileexchange/50839-novel-retinal-vessel-segmentation-algorithm-fundus-images
https://www.mathworks.com/matlabcentral/fileexchange/49172-trainable-cosfire-filters-for-curvilinear-structure-delineation-in-images
https://www.mathworks.com/matlabcentral/fileexchange/49172-trainable-cosfire-filters-for-curvilinear-structure-delineation-in-images
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Table 13.5 Comparison of vasculature segmentation techniques. Results are presented for the
proposed cascaded SegNet assembly, as well as for five competing unsupervised segmentation
approaches from the literature. The probability maps generated by the techniques have been thresh-
olded to allow for comparisons with the annotated binary vasculature markup. Note that the proposed
approach achieves the best overall performance by a large margin

Algorithm Precision Recall F1-score
SegNet [15] + AGT 0.806 £ 0.155 0.675 £ 0.131 0.727 £0.120
(ours, this chapter)

Adaptive Gaussian 0.308 £0.119 0.372 £ 0.201 0.306 +0.120
thresholding (AGT)

Normalized maximum | 0.240 &+ 0.097 0.247 +0.044 0.232 +0.062
curvature (NMC)

Normalized repeated | 0.145 £+ 0.055 0.314+0.114 0.191 4+ 0.066
line tracking (NRLT)

Coye filter 0.143 £0.070 0.376 £+ 0.085 0.198 £ 0.078
B-COSFIRE 0.351 £0.142 0.480 £+ 0.083 0.393+0.116

techniques for recognition, we conduct a series of recognition experiments in the
next section.

To put the reported results into perspective and show what the scores mean visually,
we present in Fig. 13.9 some qualitative segmentation results. Here, each of the two
image blocks shows (from left to right and top to bottom): the input ocular image,
the masked sclera region, the ground truth annotation and results for the proposed
cascaded SegNet assembly, the Adaptive Gaussian Thresholding (AGT), and the
NMC, NRLT, Coye and B-COSFIRE techniques. It is interesting to see what level
of detail the SegNet-based model is able to recover from the input image. Despite
the relatively poor contrast of some of the finer veins, the model still successfully
segments the sclera vasculature from the input images. The B-COSFIRE results are
also convincing when examined visually, but as emphasised earlier do not result in
high-performance scores when compared to the manual markup. Other competing
models are less successful and generate less precise segmentation results. However,
as suggested above, the competing models use no supervision to learn to segment the
vascular structures and therefore generate segmentation results that do not correspond
well to the manual markup.

To further highlight the quality of the segmentation ensured by the SegNet-based
model, we show a close up of the vascular structure of an eye and the corresponding
segmentation output in Fig.13.10. We see that the model successfully segments
most of the vascular structure, but also picks up on the eyelashes, which very much
resemble the vein patterns of the sclera even from a human perspective. In the area
where reflections are visible, the model is not able to recover the vascular structure
from the input image. Furthermore, despite the patch-wise processing used with
the cascaded SegNet segmentation approach, we observe no visible artifacts caused
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Fig. 13.10 Visualisation of the fine vascular structure recovered by our segmentation model. The
image shows a zoomed in region of the vascular structure of the eye (on the left) and the corre-
sponding binarized output of our model (on the right)

by the re-assembly procedure. We assume this is a consequence of the run-time
augmentation step that smooths out such artifacts.

Because the segmentation is performed in a patch-wise manner, the average time
needed to process one input image with the proposed model in this part is 5.6 seconds
when using a single GPU (please note that this step can be parallelised using multiple
GPUs, because patch predictions can be calculated independently). For comparison,
the average processing time for AGT is 1.2, for NMC it is 32.5s, for NRLT the
processing time is 7.9 s, for Coye it is 1.2s and for the B-COSFIRE the processing
time is 13.9s. However, note that different programming languages were used for
the implementation of the segmentation methods, so the processing times need to
be interpreted accordingly. For the proposed cascaded SegNet assembly, the entire
region-of-interest extraction step (which comprises the initial sclera segmentation
and vascular structure segmentation steps), takes around 6s using a single GPU for
one input image on average.

Overall, these results suggest that the trained segmentation model is able to pro-
duce good quality segmentation results that can be used for recognition purposes.
We evaluate the performance of our recognition approach with the generated seg-
mentation outputs next.
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Fig. 13.11 Example of an input image and the corresponding probability map generated by the
SegNet model. The probability mask on the left is used as input to the ScleraNET model

13.5.5 Recognition Experiments

In the last series of experiments, we assess the performance of the entire recognition
pipeline and feed the segmented sclera vasculature into our ScleraNET model for
feature extraction. Note again that we use the probability output of the segmentation
models as input to ScleraNET (marked y in Fig. 13.2) and not the generated binary
masks of the vasculature. An example of the probability map generated with the
SegNet model is shown in Fig. 13.11. Once a feature representation is computed from
the input image, it is used with the cosine similarity to compute similarity scores and
to ultimately conduct identity inference. The feature computation procedure takes
0.1s per image on average.

To evaluate the recognition performance of ScleraNET, we conduct verification
experiments using the following experimental setup:

e We first generate user templates by randomly selecting four images of each subject
in the test set. We sample the test set in a way that ensures that each template
contains all four gaze directions (i.e. up, down, left and right). Since each subject
has at least 4 images of each gaze direction, we are able to generate multiple
templates for each subject in the test set.

e Next, we use all images in the test set and compare them to the generated user tem-
plates. The comparison is conducted by comparing (using the cosine similarity)
the query vasculature descriptor to the descriptors of each image in the template.
The highest similarity score is kept as the score for the query-to-template compar-
ison. If the query image is also present in the template, we exclude the score from
the evaluation.

e We repeat the entire process 5-times to estimate average performance scores as
well as standard deviations. The outlined setup results in a total of 1228 legitimate
and 121572 illegitimate verification attempts in each of the 5 repetitions.

Becausethe ocular images are not aligned, we implement multiple descriptor-
based approaches for comparison. Specifically, we implement the dense SIFT (dSIFT
hereafter) approach from [8] and several keypoint based techniques. For the latter, we
compute SIFT [80], SURF [81] and ORB [82] descriptors using their corresponding
keypoint detectors. For each image-pair comparison, we use the average Euclidean
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Table 13.6 Results of the recognition experiments. The table shows performance scores for five
different descriptor-computation strategies and five approaches to vasculature segmentation. For
each performance metric, the best overall result is coloured red and the best results for a given
segmentation approach is coloured blue. The proposed ScleraNET model ensures competitive per-
formance significantly outperforming the competing models when applied on the segmentation
results generated by the proposed cascaded SegNet assembly

Segment. Algorithm VER@0.1FAR| VER@1FAR |EER AUC
C. SegNet ScleraNET 0.181 +0.009 | 0.459 £ 0.009 | 0.145 4 0.002 | 0.933 £ 0.002
(ours) (ours)
SIFT 0.184 +0.076 | 0.452 £ 0.040 | 0.176 £ 0.005 | 0.903 £ 0.005
SURF 0.023 +0.007 | 0.126 4= 0.010 | 0.286 & 0.004 | 0.782 £ 0.005
ORB 0.017 £ 0.004 | 0.080 £ 0.011 | 0.351 £ 0.003 | 0.704 £ 0.005
Dense SIFT | 0.326 £0.016 | 0.507 +0.010 | 0.221 £ 0.004 | 0.865 % 0.002
NMC ScleraNET 0.002 4 0.001 | 0.023 £ 0.003 | 0.425 £ 0.004 | 0.596 £ 0.004
SIFT 0.000 % 0.000 | 0.000 % 0.000 | 0.500 4= 0.000 | 0.500 £ 0.000
SURF 0.017 £0.024 | 0.031 £ 0.016 | 0.488 £ 0.013 | 0.535 £ 0.010
ORB 0.000 = 0.000 | 0.005 %= 0.005 | 0.504 4= 0.006 | 0.497 & 0.006
Dense SIFT | 0.063 £0.014 | 0.184 +0.028 | 0.371 £0.012 | 0.683 £ 0.010
NRLT ScleraNET 0.1124+£0.011 | 0.311 £ 0.006 | 0.196 £ 0.008 | 0.888 £ 0.004
SIFT 0.000 = 0.000 | 0.014 £ 0.005 | 0.500 4= 0.001 | 0.500 £ 0.002
SURF 0.000 £ 0.000 | 0.021 £ 0.013 | 0.492 £ 0.008 | 0.509 £ 0.005
ORB 0.000 £ 0.000 | 0.021 £ 0.010 | 0.502 £ 0.005 | 0.499 £ 0.007
Dense SIFT | 0.047 +0.004 | 0.153 4+ 0.010 | 0.362 4= 0.008 | 0.701 & 0.004
Coye ScleraNET 0.067 £ 0.008 | 0.215 £ 0.007 | 0.267 £ 0.006 | 0.812 £ 0.004
SIFT 0.000 £ 0.000 | 0.036 £ 0.014 | 0.496 £ 0.001 | 0.507 £ 0.002
SURF 0.000 % 0.000 | 0.000 % 0.000 | 0.500 4 0.005 | 0.497 £ 0.005
ORB 0.002 £ 0.001 | 0.023 £ 0.005 | 0.451 4 0.005 | 0.568 +£ 0.006
Dense SIFT | 0.091 £0.005 | 0.234 +0.018 | 0.300 £ 0.004 | 0.772 £+ 0.004
B-COSFIRE | ScleraNET 0.042 £ 0.004 | 0.140 £ 0.008 | 0.337 4 0.005 | 0.723 £ 0.006
SIFT 0.000 £ 0.000 | 0.012 £ 0.005 | 0.488 £ 0.002 | 0.522 £ 0.003
SURF 0.000 £ 0.000 | 0.000 £ 0.000 | 0.494 £ 0.005 | 0.513 £ 0.003
ORB 0.000 # 0.000 | 0.008 £ 0.002 | 0.467 4 0.003 | 0.539 £ 0.004
Dense SIFT | 0.110 £0.011 [ 0.242 £ 0.011 | 0.325 £ 0.006 | 0.748 & 0.005

distance between matching descriptors as the similarity score for recognition. Since
the descriptor-based approaches are local and rely on keypoint correspondences,
they are particularly suitable for problems such as sclera recognition, where (par-
tially visible) unaligned vascular structures under different views need to be matched
against each other. We conduct experiments with the vasculature extracted with the
proposed cascaded SegNet assembly, so we are able to evaluate our complete pro-
cessing pipeline, but also with the segmentation results produced by the competing
segmentation approaches evaluated in the previous section, i.e. NMC, NRLT, Coye
and B-COSFIRE.

From the results in Table 13.6 and Fig. 13.12 (results for ScleraNET in the figures
are marked as CNN), we see that the proposed pipeline (cascaded SegNet assembly +
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(a) Recognition results based on vasculature extracted with the SegNet assembly.
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(d) Coye-filter-based ROC curves. (e) B-COSFIRE-based ROC curves.

Fig. 13.12 Results of the verification experiments. The graphs show recognition results for several
feature extraction techniques and multiple approaches to vasculature segmentation. The pipeline
proposed in this chapter results in the best overall performance
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ScleraNET) ensures an average AUC of 0.933 for the verification experiments com-
pared to the average AUC of 0.903 for the runner-up, the SIFT-based approach.
Interestingly, the dSIFT approach is very competitive at the lower FAR values,
but becomes less competitive at the higher values of FAR—see Fig. 13.12a. This
behaviour can likely be ascribed to the dense nature of the descriptor, which makes
it difficult to reliably compare images when there is scale and position variability
present in the samples. The remaining three descriptors, SIFT, SURF and ORB, are
less competitive and result in lower performance scores.

The segmentation results generated by the proposed cascaded SegNet assembly
appear to be the most suitable for recognition purposes, as can be seen by comparing
the ROC curves from Fig. 13.12b—e, to the results in Fig. 13.12a, or examining the
lower part of Table 13.6. While the NMC, NRLT, Coye and B-COSFIRE segmen-
tation results (in the form of probability maps) result in above-random verification
performance with the ScleraNET and dSIFT descriptors, the performance is at chance
for the keypoint-descriptor-based methods—SIFT, SURF and ORB. The reason for
this is the difficulty of finding matching descriptors in the images, which leads to
poor performance. The ScleraNET model, on the other hand, seems to generalise
reasonably well to segmentation outputs with characteristics different from those
produced by the cascaded SegNet assembly. It achieves the best performance with
the NRLT and Coye segmentation techniques, it is comparable in performance to
dSIFT on B-COSFIRE segmented vasculature and is second only to dSIFT with the
NMC approach. This is surprising, as it was not trained on vascular images produced
by these methods. Nonetheless, it seems to be able to extract useful descriptors for
recognition from these images as well.

Overall, the results achieved with the proposed pipeline are very encouraging and
present a good foundation for further research, also in the context of multi-modal
biometric systems built around (peri-)ocular information.

13.6 Conclusion

We have presented a novel approach to sclera recognition built around convolutional
neural networks. Our approach uses a two-step procedure that first locates the vas-
cular structure of the sclera from the input image and then extracts a discriminative
representation from the segmented vasculature that can be used for image compar-
isons and ultimately recognition. The two-step segmentation procedure is based on
cascaded SegNet assembly, the first supervised approach to sclera vasculature seg-
mentation presented in the literature, while the descriptor-computation procedure
is based on a novel CNN-based model, called ScleraNET, trained in a multi-task
manner. We evaluated our approach on a newly introduced and publicly available
dataset of annotated sclera images and presented encouraging comparative results
with competing methods. As part of our future work, we plan to integrate the pre-
sented pipeline with other ocular traits into a multi-modal recognition system.
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