Chapter 12 ®)
Vascular Biometric Graph Comparison: Gzt
Theory and Performance

Arathi Arakala, Stephen Davis and K. J. Horadam

Abstract Vascular biometric templates are gaining increasing popularity due to
simple and contact free capture and resilience to presentation attacks. We present
the state of the art in Biometric Graph Comparison, a technique to register and
compare vascular biometric templates by representing them as formal graphs. Such
graphs consist of a set of vertices, representing the branch, termination and crossover
points in the vascular pattern, and a set of edges. An edge represents the relationship
between a pair of feature points that are directly connected by a vessel segment in a
vascular biometric image. We summarise how this information has been successfully
used over the past 8 years to improve registration and recognition performance for
the vasculature under the palm, wrist, hand and retina. The structural properties of
biometric graphs from these modalities differ, with retina graphs having the largest
number of vertices on average and the most complex structure, and hand graphs
having the smallest number of vertices on average and being the least connected. All
vascular graphs have similarities to trees, with the ratio of edges to vertices being
close to 1. We describe our most recent algorithms for biometric graph registration
and comparison, and our performance results. We are interested in the possibility
of using biometric graphs in a template protection scheme based on the paradigm
of dissimilarity vectors. As a first step, we wish to improve registration. Certain
modalities like retina have an intrinsic reference frame that makes registration more
straightforward. Other modalities may not have an intrinsic reference frame. To
overcome this, we introduce the notion of anchors—subgraphs of a biometric graph,
having between 5 and 10 vertices, that occur consistently in samples from the same
individual—that would enable the dissimilarity vector scheme to be applied to any
vascular modality. Experiments on palm and wrist databases show that all individuals
had at least some sets of 6 captures which could be used to identify an anchor,
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and anchors were identified in 94% and 88% for the palm and wrist databases,
respectively.

Keywords Biometric graphs + Graph comparison + Dissimilarity vector
representation * Vascular graphs

12.1 Introduction

The purpose of this Chapter is to provide a single resource for biometric researchers
to learn and use the current state of the art in Biometric Graph Comparison! for
vascular modalities.

Vascular biometric recognition is the process of identifying and verifying an indi-
vidual using the intricate vascular pattern in the body. Sources of vascular patterns for
personal identification and verification are the palm, dorsal hand, wrist, retina, finger
and face. Traditionally, vascular patterns have been compared using feature-based or
image-based templates. Here we work with feature-based templates only. The basic
feature points in a vascular network are vessel terminations (where the vessels leave
the image frame of reference or become too fine to be captured in the image), vessel
bifurcations (where one vessel splits into two) or (in two-dimensional images) vessel
crossovers, where two vessels appear to intersect.

Biometric Graph Comparison (BGC) is a feature-based process, which enhances
and improves on traditional point pattern matching methods for many vascular modal-
ities. Its key idea is the replacement of a feature point based representation of a bio-
metric image by a spatial graph based representation, where the graph edges provide
a formal and concise representation of the vessel segments between feature points,
thus incorporating connectivity of feature points into the biometric template. This
added dimension makes the concepts and techniques of graph theory newly available
to vascular biometric identification and verification.

In particular, the comparison process is treated as a noisy graph comparison prob-
lem, involving local minimisation of a graph editing algorithm. From this, we can
extract a Maximum Common Subgraph (MCS), the noisily matched part found to
be common to the two graphs being compared. Part of the fascination and value of
working with BGC has been to investigate the topology of the MCS: MCSs from
two vascular images from the same biometric instance usually look very different
from those from different instances.

Over the years since its introduction, BGC has been shown by ourselves and
colleagues to improve recognition accuracy, and if more of the topology of the MCS
is used to discriminate between genuine and impostor comparisons, this improvement
can be quite dramatic. It is also possible to exploit specific graphical characteristics
of different modalities to speed up the recognition process.

IPreviously we used the non-standard term Biometric Graph Matching (BGM).
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The Chapter is organised as follows. In Sect. 12.2, we define the vascular Biomet-
ric Graph and explain its background and context. A very brief description is given
of its extraction from a vascular image. Section 12.3 outlines the formal description
of the two components, registration and comparison, of BGC, with some history
of its development from its earliest form in [7] to its newest form presented here.
(Pseudocode for our Algorithms appears in the Appendix.) In Sect. 12.4, we sum-
marise the body of results in [6-8, 20, 21]. We compare the graph topology of the
public retina, hand, palm and wrist databases we use, and describe the topological
features of MCSs we have identified from which to derive comparison scores. We
provide the supporting evidence for our view that the Biometric Graph representa-
tion increases the speed and accuracy of registration, accuracy of comparison, and
that using multiple graph structures in the MCS can improve comparison scores over
single structures.

Section 12.5 presents one stage of an application of BGC to the problem of pri-
vacy protection of vascular templates. The key idea is a feature transformation using
a dissimilarity vector approach. Preliminary investigation of the comparison perfor-
mance of this approach has given encouraging results for retina databases, where
an intrinsic alignment exists in the images [5]. A new problem is faced if no such
alignment exists. Here we present our first results on a potential solution to this prob-
lem, where we look for small but characteristic structures we call “anchors”, which
appear in sufficiently many of an individual’s samples to be used for registration.

12.2 The Biometric Graph

This section presents the Biometric Graph we use for application to vascular biomet-
ric modalities. We describe our motivation for using a spatial graph representation
over more traditional feature point based templates. We provide a formal definition
of a vascular Biometric Graph and give a brief overview of the extraction process.

12.2.1 The Biometric Graph

Biometric Graphs, as we define them, were first introduced in 2011 [17] for the fin-
gerprint modality. Extraction of ridge bifurcations and terminations as feature points
is a fundamental technique in a ridge-based modality, and usually, ridge skeletons
are also extracted from images. The novelty of the Biometric Graph concept lies in
constructing a formal spatial graph from these extracted feature points only. Each
feature point is represented as a vertex (also called a node). An edge (also called a
link) is a straight line drawn between adjacent pairs of feature points on the skeleton.
The edge preserves, in summary form, the connectivity relationship between feature
points typically found by tracing along the ridge skeleton. (This differs from the
earlier ISO/IEC 19794-8:2006 standard, in which additional “virtual minutiae” and
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“continuation minutiae” are inserted along the skeleton, to facilitate piecewise-linear
representation of the connecting ridgeline.) A disadvantage of our representation is
that more detailed information held by a ridgeline curving between feature points
is lost, particularly in regions of high curvature where an edge forms a shortcut
between feature points. Figure 12.9 in Appendix 1 demonstrates this. An advantage
of our spatial graph representation which can outweigh this loss of information is
computational efficiency. An edge can be represented in code concisely by its two end
vertices. Furthermore, the full repertoire of graph theoretical techniques is available
for data analysis.

12.2.1.1 Vascular Graphs

Direct observation of two-dimensional images of vessel-based modalities shows the
physical branching and crossing network of vessels strongly resembles a formal spa-
tial graph drawn in the plane. For example, there is some visible similarity between
the pattern of the principal retinal vessels and a rooted tree (with the root vertex in
the optic disc), and some visible similarity between the pattern of the principal wrist
vessels and a ladder graph or lattice. These similarities to spatial graphs are more
pronounced to the naked eye for vascular modalities than in the ridge-based modal-
ities for which we first studied Biometric Graphs. Fundamentally, this is because
blood vessels do not often exhibit high curvature, so in most cases the vessel seg-
ment between adjacent feature points is quite well represented by a straight line. This
was our motivation in [7] for introducing Biometric Graphs and Biometric Graph
Comparison into vascular biometric modalities.

The idea of a vascular graph has arisen independently (and at approximately the
same time) in the biomedical literature. Drechsler and Laura [13], working with
three-dimensional hepatic vessel CT (computed tomography) images of the liver,
extract a three-dimensional vascular graph from the vessel skeleton (using voxels not
pixels—crossovers do not occur). They classify voxels into three classes: regular, end
(terminations) and branch (bifurcations). Branch and end voxels are represented by
vertices in the graph, while regular voxels are grouped and represented by edges. The
vascular graph provides data for further image recognition, registration and surgical
planning. Deng et al. [12] extract a vascular graph (which they term a vascular
structure graph model) from the skeleton of the vessel tree in two-dimensional retinal
fundus images, to register the images for clinical diagnosis and treatment of retina
diseases.

Definition 12.1 A vascular graph extracted from a vascular image is a spatial graph
with the vessel features of terminations and bifurcations (and crossovers if the image
is two-dimensional) forming the graph vertices. A pair of vertices will have an edge
between them if and only if we can trace along a vessel from one feature to another,
without encountering any other feature in between. More formally, if 7 is a vascular
image then its vascular graph is g = (V, E, u, v, A), where V is a set of vertices
representing the feature points extracted from 7, E is a set of edges between those
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pairs of vertices representing feature points which are adjacent in 7, p is the vertex
labelling function, v is the edge labelling function and A is the attribute set (which
may be empty) comprising a set of vascular attributes that apply to feature points or
to the vessel segments connecting them. The order of g is the number of vertices |V |
and the size of g is the number of edges | E|. If the vascular image / is of a biometric
modality then g is a (vascular) Biometric Graph (BG).

For the BGs in our research, p associates each vertex with its unique two-
dimensional spatial coordinates (x, y) while v associates each edge with its two-
dimensional Euclidean length £ and slope 6.

12.2.2 Biometric Graph Extraction

To construct the Biometric Graph from a two-dimensional biometric image, the
vessel skeleton is extracted from the image and the feature points are found. The
feature points are labelled to form the vertex set, and their coordinates are recorded.
The existence of an edge between vertices is determined by tracing the skeleton from
each feature point until another is encountered. The length and slope of each edge
is calculated and recorded. Other feature point and vessel segment attributes can be
calculated at the same time.

Differences in image capture device and lighting source require different image
processing techniques for different modalities to reduce noise. There are some com-
mon image processing steps in skeleton extraction for any vascular modality, includ-
ing grayscale conversion, Region-of-Interest (ROI) selection, noise reduction, bina-
risation and skeleton thinning. Those we employed for palm, dorsal hand, wrist and
retina images are described in [6, 8, 20, 21] and the references therein, and will not
be further detailed here. For skeleton extraction from finger images, see [23].

A specific problem encountered with extracted skeletons has been the existence of
genuine short spurs due to tiny vessels and spurious short spurs due to noise [6, 8, 13,
23]. This is overcome in post-processing by pruning the skeleton of branches shorter
than a heuristically selected threshold such as 5, 10 or 15 pixels. For palm vessels, an
additional complication has been the inclusion of short to medium length spurs in the
skeleton which correspond to skin ridges or flexion creases. Palm principal ridges
and creases can be considered as part of the biometric pattern and are difficult to
remove completely. However, our experiments have shown that removing the short
to medium spurs after the detection of vertices and edges improves the process of
registration and comparison. See [8] for details. Wrist vessel skeletons often have
segments running perpendicular to the main direction of the vessels, some of which
are due to flexion creases, but as some are vessels, these segments are not removed [6].

Feature points are extracted from the 1-pixel-wide skeleton by counting neigh-
bouring pixels in a standard 3 x 3 pixel window moving across the skeleton. One
neighbour indicates a termination pixel, two neighbours indicate a vessel pixel,
three neighbours indicate a bifurcation pixel and four or more neighbours indicate a
crossover pixel. As a consequence of image noise, neighbouring pixels in the same
3 x 3 pixel region may be labelled as bifurcation points. To handle this, if a central
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pixel is a bifurcation point and there are two or more neighbours which are bifurca-
tion points on different sides of the central pixel, then only the central pixel is listed
as the bifurcation point.

A much faster method of extracting feature points from the vessel skeleton, which
may be preferable to the above, is the use of convolutional kernels as in [1].

The vertex and edge labels form the basic biometric template. Additional attributes
can be extracted from the skeleton to create richer templates. Vertex attributes can
include type (termination, branching or crossover). Edge attributes can include the
length (as a pixel count) of the skeleton segment between two feature points and the
vessel segment average width (or calibre) which can be measured before thinning
the skeleton.

Figure 12.1 shows typical vascular pattern images from the databases of each of
the four modalities we have investigated and their corresponding Biometric Graphs,
extracted as above.

Biometric Graphs have been similarly extracted from skeletons of finger vessels
by Nibbelke [23] and from skeletons of face vessels by Gouru [16]. Whilst skeleton
tracing is probably the best technique in current use for identifying adjacent feature
points in the image skeleton, it is possible that alternatives may prove useful. Khakzar
and Pourghassem [19], working with retina images, determine for each pair of feature
points whether they are adjacent or not by deleting the two points from the skeleton
and checking if the remaining connected components of the skeleton all contain
feature points. Existence of a component without feature points means the two points
are connected in the skeleton, otherwise they are not. Connectivity is recorded in (the
upper half of) an adjacency matrix. However, edge attributes aren’t extracted in this
approach, and since the adjacency matrix can be found immediately from the edges
found by skeleton tracing, it is not clear if the approach has advantages over skeleton
tracing.

(a) Palm Image (b) Wrist Image (c) Hand Image (d) Retina Image

(e) Palm Graph (f) Wrist Graph (g) Hand Graph (h) Retina Graph

Fig. 12.1 Vascular patterns from four modalities a Palm b Wrist ¢ Hand and d Retina vessels and
their corresponding spatial graphs in (e-h)
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12.3 The Biometric Graph Comparison Algorithm

In this section, we present a formal description of the Biometric Graph Comparison
Algorithm. The algorithm has two parts: BGR (Registration) which requires 4 steps;
and BGC (Comparison), in which the 3 steps are finding the graph edit distance,
identifying the Maximum Common Subgraph (MCS) and scoring comparisons using
graph-based difference measures.

In our opinion, graph registration is the key component of the algorithm, and
is more critical than the graph comparison component. Although it can often be
assumed that the capture mechanism enforces an approximate alignment of biometric
images in the first place, experience tells us that alignment is seldom ideal, and large
differences can occur between captures from the same person, particularly as the
time between captures increases. Unless two extracted BGs from the same biometric
instance can be aligned well, comparison cannot be effective. Essentially this is
because we need a good similarity score for a genuine match, in order to minimise
the number of false non-matches. The variance of genuine similarity scores across a
population tends to be higher than the variance of impostor similarity scores, which
have a distribution of low scores that is roughly independent of registration.

Alignment on a point pattern, such as the set of vertices in a BG, is a standard
matching technique. Commonly used methods are the Iterative Closest Point (ICP)
algorithm and the Modified Hausdortf Distance (MHD) algorithm. Registration using
point pattern alignment algorithms has been previously studied for hand and palm
vasculature. In 2009, Chen et al. [10] showed that ICP provided better alignment
and consequently superior recognition results than either MHD or point-to-point
comparison for palm veins.

In 2014, we showed [21] that for hand veins, registering on edges of BGs using
our Biometric Graph Registration (BGR) algorithm gives as good or better recogni-
tion performance than either ICP or MHD applied to the point patterns of vertices,
especially when the BGs are small. Subsequently, we have modified BGR to permit
registration on structures larger than single edges.

12.3.1 BGR-Biometric Graph Registration

Our registration algorithm, in essence, a greedy RANSAC algorithm, looks for struc-
tural similarities in a pair of graphs on which to align them, so that the two graphs
are in the same spatial frame, free from the effects of translation and rotation of their
images during capture.

There is no restriction on what type of structure (i.e. subgraph) can be used for
alignment within a particular modality and database. For instance, the algorithm
could be tested on a database for different choices of alignment structure, so that
the structure giving the best performance could be identified. Or, the frequency of
occurrence of different types of structure within the database could be used to select
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a preferred structure. Or, if a particular structure was found to be characteristic of
a database, appearing more frequently than might be expected in a random spatial
graph with comparable numbers of vertices and edges such a “motif” structure could
be identified and chosen to align on. Or, it is possible that for a particular modality,
each biometric instance exhibits a characteristic structure in most of its images, and
such an “anchor” structure could be used for registration.

If the modality possesses an intrinsic coordinate system which can be identified
in each database image, registration by the structure might not be required.

To take advantage of the additional structural information in a BG, we align on
an edge, or a more complex subgraph such as a claw’ (a degree 3 vertex plus its 3
adjacent edges and 3 neighbouring vertices), a pair of claws joined by a common edge
(which we call a two-claw), or we could choose a cycle of length 3 or 4. In theory
there is no restriction to the type of subgraph chosen for alignment, but computational
limits, time constraints and the smaller number of more complex structures present
in a BG usually dictate that simpler structures are preferable.

The BGR algorithm is described in more detail in Appendix 2. The algorithm is
flexible so that any structure could be used for alignment. It has four steps which
are outlined in the following subsection. The four design parameters in the BGR
algorithm are a structure S, a similarity score function f depending on the structure
selected, a structure pair shortlist length L and a vertex comparison tolerance €. The
structures S we have used are: Edges (E), Claws (C) and Two-claws (T). If we need
to specify the parameters we denote the algorithm by BGR (S, f, L, ¢).

Our initial implementation of BGR in 2011 was for BGR (E, f, L, €) [7]. This has
undergone some modification in the intervening years, so that in 2015 we introduced
an improved shortlisting mechanism [8] for edge pairs in Step 3 of BGR rather than
simply selecting the L highest scoring pairs. We discovered that most edge pairs
(in palm BGs) were short and often scored a high rank compared to longer pairs.
This prevented longer pairs that gave a better registration from appearing in the top
L shortlist. To overcome this, for BGR (E, f, L, €) we split the set of edge pairs
into long and short edge pairs. The mean of the medians of the edge lengths in the
two graphs is selected as the threshold. If both edges of an edge pair are longer
than this threshold, the edge pair is categorised as long. All other edge pairs are
labelled as short. The shortlist consists of the L/2 top scoring long edge pairs and
the L/2 top scoring short edge pairs. This modification ensures that long edge pairs
that potentially give better alignment can be included in the shortlist to get a better
registration of the graphs. This modification implies that lines 13—19 in the general
algorithm in Appendix 2 are run twice, once each for the L/2 long and L/2 short
edges.

In our earlier work [5-8, 20, 21] we assumed that the images in a database
are roughly pre-aligned. Here, to provide the most generally applicable registration
algorithm, we have modified the similarity scoring of edge pairs in Step 2 of BGR
to remove any dependence on pre-alignment. This modification means that in lines

Zpreviously we called this a star, inaccurately, as it is formally a 3-star: an n-star is a vertex of
degree n > 1, plus its adjacent edges and neighbouring vertices.
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29-31 of the algorithm in Appendix 2, only the edge lengths are used and edge slopes
are not.

12.3.1.1 BGR Algorithm Outline

Step 1: Initialisation Select S, f, L and ¢. The two graphs g and g’ to be registered
are inputs to the algorithm. The registration process begins by identifying and
listing all the structures of the selected type S in each graph.

Step 2: Similarity scoring structure pairs Each structure in the first graph g and
structure in the second graph g’ is compared using f to obtain a similarity score.
The similarity function chosen depends on the structure. For example, when edge
pairs are compared they are scored based on the similarity of their lengths only (if
no pre-alignment is assumed) or of their lengths and slopes (if some pre-alignment
is assumed). When claw pairs are compared they are scored based on the similarity
of the lengths of their three edges and two included angles. When two-claw pairs
are compared, the similarity of the corresponding claw structures and connecting
edges determines the score.

Step 3: Shortlisting structure pairs and aligning on them The structure pairs
are ordered based on decreasing order of similarity score. The top L high scoring
structure pairs (for S = C or S = T) or the top L/2 short and top L/2 long edges
(for S = E) are shortlisted for further processing. For every shortlisted structure
pair, the two graphs are translated and rotated so that a specific part of the structure
becomes the origin of the reference frame. For example, if edges are used, the
vertex with smaller x coordinate becomes the centre of the coordinate system and
the other vertex defines the direction of the positive x-axis. If claws are used, the
centre of the claw becomes the origin while the longest edge defines the direc-
tion of the positive x-axis. If two-claws are used, the connecting edge defines the
coordinate system, again taking the vertex with smaller x coordinate as the origin
of the reference frame.

Step 4: Pair alignment scoring and graph registration = With both graphs in the
same coordinate system, aligned on a shortlisted pair, each vertex in the first graph
g is matched to a vertex in the second graph g’ by finding the first vertex in g’
that is within ¢ pixels from it. If a vertex in g does not find a corresponding vertex
in g’ within ¢ pixels of it, it will not be matched. The total number of matched
vertices is normalized by the geometric mean of the number of vertices in the two
graphs to provide a rough measure of alignment we call QuickScore (QS). That
is, if g has n vertices, g’ has n’ vertices and the aligned graphs have ¢ matched
vertices within tolerance ¢, the distance between g and g’ is calculated to be

0S(g.g) =1— ——. 12.1)

nxn

The pair of structures that gives the smallest score is chosen to register g and g'.
The resulting registered graphs are denoted g, and g/,.
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12.3.1.2 Other Approaches to Registration of BGs

Dengetal. [12] in 2010, working with retina BGs, used a two-stage process for regis-
tration, also based on edge-to-edge correspondence. Their first (global) registration
stage is also a RANSAC variant, where a vertex plus its neighbours in g is com-
pared in g’. In practice, they restrict to degree 2 and 3 vertices, which corresponds
to us choosing 2-stars and claws, respectively, as the structure (Their second stage
registers vessel shape so is not in the scope of BGR). Using the BG vertex set, they
compare the registration performance of several spatial topological graph structures
commonly used in computer vision and graph-matching research: the Delaunay tri-
angulation graph (DT), the minimum spanning tree of the DT graph, the k-nearest
neighbour graph (KNN) and the minimum spanning tree of the KNN graph. They
show that the BG technique substantially outperforms these other topological graph
structures in graph registration, and state this is because BG characterises anatomical
properties of the retinal vessels while the others do not.

Lupascu et al. [22], working with manually extracted retina BGs and S = F,
enlarge the feature vector describing each edge from 2 to 9 dimensions by adding
further spatial information relating to end vertices and midpoint of the edge, and
vary f to be the Euclidean distance in 9-dimensional space. They set L = 30 to test
g against g’ and also test g’ against g, choosing only the edge pairs which appear
in both lists. Then they use a quadric model to estimate the global transformation
between the images using the endpoints of the matched edges.

Nibbelke [23], works with the earlier version of BGR (E, f, L, ¢) for finger
vessel BGs. He systematically tests alternatives to steps 2 and 3 of the algorithm.
First, he tries to improve the rough pre-orientation of images provided by the capture
system by testing if the midline of the finger provides an intrinsic reference frame,
but finds this not to be robust, leading to worse recognition performance than BGR
in several experiments. Orienting all edges in the same direction before comparison
does improve performance, as does sorting edge pairs using only their 1-dimensional
difference in slope (i.e. using f = A6 and ignoring their difference in length). He
also varies f to include weighting the difference in slope, to overcome the same
problem of not finding the best edges for registration in the top L. His best results
are found for f = A6.

If an intrinsic reference frame does exist for pre-alignment in a particular vascular
modality, it can be used to register the BGs. We have used this approach effectively
with retina BGs in [5] (see Sect. 12.5) taking the centre of the optic disc as the centre
of the graph coordinate system while the frame orientation is kept the same.

If no intrinsic reference frame exists for pre-alignment in a particular vascular
modality, and we cannot even assume rough pre-alignment by virtue of the capture
mechanism, then the BG may provide topological information we can use instead.
We investigate this approach in our search for “anchors” in Sect. 12.5.
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12.3.2 BGC-Biometric Graph Comparison

The second part of our algorithm is noisy graph comparison, to quantify the similarity
between a pair g, and g/, of registered BGs. If we take advantage of the topology of
the BGs in both the registration and noisy graph comparison algorithms, the speed
and accuracy of graph comparison can be greatly enhanced.

The algorithm we use is based on using edges as structures as in [20], which
is generalised in [6], and further generalised here. The BGC algorithm is flexible,
so that any structure can be used. It has three steps: determination of the minimum
graph edit path between g, and g/, construction of the Maximum Common Subgraph
(MCS) of g, and g/, and finally, measurement of the difference between g, and g/,
using the MCS.

We have previously demonstrated that the topology of MCSs generated from pairs
of graphs from the same biometric instance (mated comparison) is different from that
of MCSs generated from graphs from different instances (non-mathed comparison)
[6, 21].

The four design parameters in the BGC algorithm are: a structure S, cost matrix
weights o) and «; used in the edit distance computation and measure d for scoring
the distinctiveness or difference of g, and g/. The structures S we have used are
Vertices (V), Edges (E), Claws (C) and Two-claws (T). If we need to specify the
parameters, we denote the algorithm by BGC(S, a1, oz, d).

12.3.2.1 BGC Algorithm Outline

Step 1: Graph Edit Distance The comparison process assumes that we have
identified and listed all the structures of the selected type S in each registered
graph. The registered graphs are compared using an inexact graph matching tech-
nique that computes the minimum cost graph edit path that converts g, to g/,. To
do this, we use the Hungarian algorithm based method proposed by Riesen and
Bunke [26]. One graph can be converted to another by 3 types of edit operations—
insertions, deletions and substitutions. Each edit operation will incur a cost and
the graph edit distance is the sum of the edit costs.

Selection of the right costs for these operations is critical to getting a meaningful
measure of edit distance. The form of cost matrix we use is

GG
C= [C3 CJ (12.2)

and depends on the choice of S. If the number of structures in g, ism andin g/, is m’,
Cisa (m+m') x (m" 4+ m) square matrix, Cy = [¢;;|1 <i <m, 1 < j <m']
and ¢;; represents the the cost of substituting structure u; of g, with structure
v; of g/. The sub-matrices C, and Cj3 are square m x m and m’ x m' matrices,
respectively, with all elements outside the main diagonal equal to co. The diagonal
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elements, ¢;5 of C; and c;; of C3 indicate the cost of deleting structure i from g,
and inserting structure j into g/, respectively. Cy4 is an all zero matrix.

Cost matrix C is fed into the suboptimal optimisation algorithm, which finds a
local minimum edit cost. Output will be this lowest cost of converting g, to g/,
and the list of edit operations that achieve it. The larger the number of structures
in each pair of graphs, the bigger the matrices will be and the longer it will take
the Hungarian algorithm to compute the optimum result.

The cost matrix entries we use depend on structure S and two weights o) and «».
The case S = V appears below as Example 12.1. Cost matrices for other structures
are defined on similar lines (see Appendix 3) , where o, will be weighted by the
sum of the degrees of all the vertices in the structures.

Example 12.1 (Vertex-based cost matrix, i.e. m = |V|,m' = |V’|.) Denote the
degree of a vertex by D(.) and the Euclidean distance between two vertex labels
(spatial coordinates) by ||.||. The cost of substituting a vertex v; of g, with a vertex
v’ of g, is given by

cij = i, Vil + @i (12.3)

where @;; is the cheapest cost obtained as output when applying the Hungarian
algorithm on a cost matrix for subgraphs g, and g/, (see [7] for details). These
J

subgraphs are constructed from the vertices v; and v; and their first-hop neighbour-
hoods, respectively. The total cost of deleting a vertex will be the sum of the cost of
deleting the vertex itself (o) and the cost of deleting its neighbourhood vertices («;
for each neighbouring vertex),

cis =a1 + (aa x D(v;)) . (12.4)
Similarly, the cost of inserting a vertex is
csj = ap + (o X D(v})). (12.5)

Step 2: Maximum Common Subgraph  We use the locally optimal edit path out-
put by the Hungarian algorithm to define a subgraph of g/,. It includes all those
structures of g/, that are included in the list of substitutions. The structures deleted
from g, and the structures inserted into g/, are excluded, but any additional cor-
responding edges are included. This subgraph is called the Maximum Common
Subgraph (MCS) of g, and g/, as it represents all those structures in g/, that are
“matched” to structures in g,. We also call it an S-induced subgraph of g, as
the subgraph is induced by the substituted structures in g/, (Note that defining the
MCS as a subgraph of g, is equivalent.).

Definition 12.2 Assume BGC(S, a;, a3, —) has been applied to registered graphs
g, and g/ in Step 1 above. Their (S-induced) Maximum Common Subgraph (MCS)
is the subgraph of g/, consisting of all structures in g/, that are included in the list of
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Fig. 12.2 This figure shows
the Maximum Common
Subgraph between the palm
vessel graphs in a and b
resulting from applying BGC
with the structure S to be ¢
vertices, d edges, e claws
and f two-claws. Vertex- and
edge-induced MCSs are
bigger than claw- and
two-claw-induced MCSs as
the conditions for the
structures to match in the
former cases are not as strict
as in the latter
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substitutions, fogether with any edges that exist between these substituted structures
in g/, for which a corresponding edge exists in g,.

Depending on the structure used, the MCS can be vertex induced, edge induced, claw
induced or two-claw induced. Figure 12.2 shows each type of MCS for a typical pair
of palm BGs from the same biometric instance. The edge induced MCS is the most
connected with the richest structure of the four. As S gets more complex than E,
the corresponding MCS will be sparser, but the nodes and edges that form part of
the MCS will be more reliable. In our experience, the node-induced subgraph tends
to miss out on some of the structure that is present in the edge-induced subgraph.
Therefore, overall for the biometric graphs in the databases we studied, we prefer S

to be edges.
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Table 12.1 Difference measures between g; and g», determined by counts of structures in their

MCS

d dy d, d; deycy Pey
M [Vinl [Emn| [Ton| Vel +1Ve,| | 1E¢|
N; or N [Vil |Ei |7:| Vil Ve,

Step 3: Difference Measures The MCS topology is used to define difference mea-
sures between g, and g/,. There are many potential score functions to separate
genuine and impostor comparisons. We have tested 20 which are described in
Sect. 12.4.3. A selection of 5, that have proved the most effective, is presented in
Table 12.1. One of them, the Bunke—Shearer metric d, , is already known [9].
Call the two aligned graphs being compared g, = (V), E}) and g, = (V,, E»),
with g,, = (V,,, E,,) as their MCS. All sets from g;, i € {1, 2, m}, are sub-
scripted with i. Corresponding sets used to define the measures are the vertex
set V;, the edge set E; and the set of two-claws 7;. We are also interested in
¢i =V, E;), i =1,2, the first and second largest connected components of
gm- The measures have two forms, a distance

M
d=1— ——— 12.6
/\/N1XN2 ( )

or density
o=M/N 12.7)

as detailed in Table 12.1.

The previous Sections have dealt with the formal aspects of vascular Biometric
Graph Comparison. In the next Section, we summarise the performance and practical
advantages and disadvantages already discovered using BGC.

12.4 Results

This section will describe the public vascular databases used for BGC so far and
compare key BG statistics across them. We summarise experimental results we have
obtained by applying BGC to BGs from databases of the four modalities we have
studied. The important outcomes from this work are

e that using graph structure in the registration algorithm can increase the speed and
accuracy of registration;

e that graph structure in the MCS can be exploited to increase recognition accuracys;
and

e that using multiple graph structures can improve similarity scores over single
structures.
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12.4.1 Vascular Databases

To our knowledge, the BGC algorithm has been tested on five vascular modalities:
Palm vessels representing the vascular pattern under the palm of the hand; Wrist
vessels representing the vascular pattern on the inside of the wrists; Hand vessels
representing the vascular pattern under the skin on the back (dorsal surface) of the
hand; Retina vessels representing the vascular pattern supplying blood to the retina;
and Finger vessels representing the vascular pattern under the skin of the finger.
We have tested the first four modalities. Finger vessel has been tested by Nibbelke
[23], who found that in this case BGC was not competitive with standard point
pattern comparison techniques. Gouru [16] in his work on Face vessels representing
the vascular pattern under the skin of the face, uses a database collected by the
University of Houston and extracts BGs. He claims to test BGC but no details are
given in [16].

Details of the databases used are summarised in Table 12.2. All are either avail-
able for download or on request from the researchers who collected them. The palm
and wrist image databases are obtainable from the Poznan University of Technology
(PUT) [18] and can be downloaded at http://biometrics.put.poznan.pl/vein-dataset.
The hand image databases are from Singapore’s Nanyang Technical University [27]
with images captured in the near-infrared (SNIR) and far-infrared (SFIR) wave-
lengths over three sessions each separated by a week. This database exemplifies the
kind of variation that can be expected in captures taken across sessions. This is typical
of a biometric scenario, where translation and rotation of the images occur between
captures due to human factors. Access to this database was obtained by emailing the
authors of [27]. Retina images are from the publicly available VARIA database [24]
accessible at http://www.varpa.es/research/biometrics.html. In Sect.12.5 we also
refer to the ESRID retina database collected by RMIT University (c.f. [2]). This
database can be accessed by emailing the second author of [2]. The finger image
database used by Nibbelke [23] is from the University of Twente (UT) and can be
accessed by emailing the lead author of [23].

12.4.2 Comparison of Graph Topology Across Databases

In principle, there is no restriction on the structure used by the BG registration
and comparison algorithms. In practice, there are restrictions imposed by both the
physical form of the vasculature and by the limitations of image resolution and image
processing. How do we know what range of options is available?

We have already noted the visible similarity of vascular graphs to trees or lad-
ders. This results from the way the vasculature forms physically. Its purpose is to
deliver blood to and from tissues, with the capillaries forming the very fine vessels
connecting the arterial system to the venous system. Capillaries are so fine that this
interconnection is lost in many images, and vessels appear to terminate rather than
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Table 12.2 Vessel image databases used for BGC

Database Subjects x No. of sessions Samples/session | Total samples
instances

PUT palm 50 x 2 (left, 3 4 600
right)

PUT wrist 50 x 2 (left, 3 4 600
right)

SFIR hand? 34 1 >2 173

SNIR hand? 123 1 >2 732

VARIA retina® 37 1 >2 97

ESRID retina 46 1 9 414

UT finger 60 x 6 (different |2 2 1440
fingers)

2Subset obtained after removal of subjects who had only 1 sample present

rejoin. Typically, vessels do not branch into more than two sub-branches at the same
point. As well, while distinct principal veins and arteries might enter the biometric
ROI at separate points, all of the vasculature derived from each such vessel will be
connected. No sub-branches will actually be disconnected from a parent vessel.

Consequently, in a BG that is perfectly extracted from a high-quality two-
dimensional vascular image, there will be relatively few cycles, which will mostly
result from vessel crossovers. Vertices will have a low degree (most likely <4 with
maximum degree 4 occurring at crossovers). There will be no isolated vertices (i.e.
minimum degree will be 1) and the ratio of edges to vertices (the density of the BG)
will be similar to that of a tree and so, close to 1. The BG will be connected.

In practice, the image quality will affect the connectivity of the BG, as the image
processing algorithm will be unable to extract features from poor quality regions
of the image. The more complex the structure of interest, the greater the chance
that an occurrence of it will not be extracted in the BG from a particular image,
because a component vertex or edge is missing as a result of noise in the image, or
suboptimal sensing or image processing. For this reason we are also interested in the
largest connected component C; of the BG. The size of the largest component is an
indication of the amount of noise in the image that has not been compensated for by
the image processing.

12.4.2.1 BG Statistics

A very basic question is how much the underlying BG statistics vary for different
databases for the same modality, as well as how much they vary for different modal-
ities. In Table 12.3, we record fundamental statistics for different BG databases:
numbers of vertices, edges, claws and two-claws, density and number of vertices in
the largest connected component C; of the BG.
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Table 12.3 Mean (standard deviation) of BG topologies for each database. All data except for the
last row appear in [6]. Here V is the vertex set, E the edge set, C the claw set, V C; the vertex set
of the largest connected component Cy, and T the two-claw set

Database v |E| IE/|V] el tel 7|
PalmLeft | 103 (27.9) 109.9 (19.47) | 1.05(0.03) 93.7(21.68) | 37.6(7.97) | 28.21(8.39)
Palm Right | 98.5 (18.8) 104.1 (20.75) | 1.05 (0.03) 89.5(21.35) | 35.4(8.3) 26.39 (8.53)
Wrist Left | 83.07 (16.66) | 86.2(18.61) | 1.03 (0.04) 72.1(19.76) | 27.01(7.85) | 19.18 (8.14)
Wrist Right | 81.4 (16.11) | 83.9(17.82) | 1.02 (0.04) 70.5(19.43) | 25.6(7.31) 17.66 (7.54)
Hand SFIR | 51.7 (9.38) 48.8 (9.6) 0.94 (0.06) 34.6(12.94) | 21.6(5.35) 19.94 (6.59)
Hand SNIR | 39.4 (13.07) | 37.6 (13.1) 0.95 (0.03) 279(11.76) | 17.3(6.38) 15.36 (6.47)
Ret. VARIA | 70.3 (27.9) 67.1(29.23) | 0.94(0.07) 48.6 (20.98) | 289(13.7) | 29.65(15.28)
Ret. ESRID | 1462 (86.7) | 152.6 (92.7) | 1.03(0.04) 109 (68.9) 733(45.1) | 754 (48.7)

Table 12.3 shows some interesting differences and similarities between the dif-
ferent vascular graphs. All the graphs have density quite close to 1, reflecting their
similarity to trees, as expected. The maximum degree of a vertex for each BG was
also determined but not recorded here as for every database the mode of the maxi-
mum degrees is 3. Between 30 and 40% of vertices in the BGs on average in every
database form claws. This indicates that bifurcations are commonplace in our vas-
cular modalities while crossovers are not as commonly seen.

Within modalities, the far-infrared images (SFIR) for hand vessels are superior
to the near-infrared (SNIR) as far as being able to extract BGs with usable structure
is concerned. With retina, the ESRID graphs are much larger and more connected
than VARIA graphs. There is also a large variation across the sizes of the graphs in
ESRID when compared to VARIA. The probability of finding a two-claw structure
in a retina BG is higher on average than for the other modalities.

The hand BGs are, nonetheless, the smallest and least structured of all modalities,
with lower connectivity evidenced by only 70% of their vertices belonging to the
largest component. The palm BGs are the second largest (after retina BGs) and most
structured, with a higher connectivity than the other graphs demonstrated both by
density and the fact that over 90% of the vertices belong to the largest component.

12.4.2.2 Proximity Graphs

Another topological measure we use to characterise the different BG modalities is
the distance a BG is from a proximity graph on the same vertex set. Proximity graphs
were defined by Davis et al. [11]. A proximity graph p. on spatial vertex set V is one
where a pair of vertices in V have an edge between them if and only if they are less
than ¢ units apart. That is, for a proximity graph, the edges are completely defined
by the spatial arrangement of its vertices. The closer a graph is to a proximity graph,
the more predictable its edges are.
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Table 12.4 [6] The mean

o . Database Proximity graph distance
(standard deviation) distance
of a BG to its nearest Palm 0.017 (0.004)
proximity graph Wrist 0.022 (0.006)
Hand SFIR 0.032 (0.007)
Hand SNIR 0.046 (0.018)
Retina VARIA 0.031 (0.010)

Thus, if g =(V,E, u,v, A) is a BG there is a family of proximity graphs
{pe, e = 0} defined by V. For each ¢, a normalised distance between g and p,
can be determined from their adjacency matrices, using formulas described in [11].
The value of the proximity graph distance varies from 0 to 1, where zero implies that
the graph is a proximity graph. The minimum of these distances over the available
range of ¢ decides the specific value of the bound ¢ and the closest proximity graph
pe to g. Table 12.4 shows the average and standard deviation of this distance from a
BG to its nearest proximity graph, for each of the databases.

The BGs from palm and wrist vessels have the lowest average distances to a
proximity graph, implying that their edges are more predictable than the other BG
modalities. Edges are more likely to occur between nearby vertices in palm and wrist
BGs than for other modalities, which suggests that the relational information in the
graph representation is less surprising (has lower entropy). In principle, the higher
the distance, the more promising the vascular pattern is as a biometric modality.

12.4.3 Comparison of MCS Topology in BGC

In previous work [6-8, 20, 21], we have investigated many potential structures and
graph statistics in MCSs for their usefulness in BGC for finding information that
will satisfactorily separate genuine MCSs from impostor MCSs. Genuine MCSs
usually look quite different from impostor MCSs, the latter appearing fragmented
and broken as seen in Fig. 12.3. We have attempted in numerous ways to find measures
that capture this visually striking difference.

Here, we summarise our findings and discuss reasons for restricting to the struc-
tures and corresponding similarity score measures we now use.

Our initial application of BGC [7] was to the retina modality, which has been
repeatedly shown (on very small databases) to have high accuracy, with complete
separation of genuine and impostor scores typically being demonstrated for vertex
comparison approaches. In [7], with manually extracted BGs from the VARIA retina
database, we introduced the original BGC (with S = V in the comparison step). We
tested 8 measures based on the MCSs for both genuine and impostor comparisons.
The 6 normalised quantities were d,, d, and the differences n2, n3, p2, p3 using
Eq. (12.6) corresponding to numbers of vertices of degree >2, vertices of degree
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samples from the same retina I

e 2
v S

samples from different retina I

graph 1 | graph 2 | |optic disk registered graphs | | mcs |

Fig.12.3 This is an example of the BGC algorithm when two samples from the same retina instance
are compared (genuine comparison) versus when two samples from different retina instances are
compared (impostor comparison). Note the MCSs are visually different, with the genuine MCS
having more vertices and a more complex structure than the impostor MCS

>3, paths of length 2 and paths of length 3 in g, g» and g,,, respectively. The 2 un-
normalised quantities were the density p,, = |E,,|/| V| of g, and the variance 012) of
the degree distribution of g,,. Of these, the score distances for genuine comparisons
using vertices of degree >3 and paths of length 3 were too high to warrant further
use. Vertices of degree >2 and paths of length 2 were also not further considered, as
they correlated too highly with either d, or d,.

Score fusion using d, and d, gave better, but not significantly better, performance
than either single measure, probably because these measures are highly correlated.
In fact the least correlated measures are d,,, p,, and aé. These measures completely
separated scores in two or three dimensions, an improvement on separation in one
dimension which is expected to become significant in larger retina databases.

In [20], we developed the first full BGC system to automatically extract retina
BGs and compare them, again using the VARIA database. Our intention was to see if
the results of [7] could be improved using automatic extraction of BGs. We retained
the measure d,, introduced d,,., based on the two largest connected components of
gm, and replaced aé by the maximum degree D,,,, of a vertex in g, (another un-
normalised quantity). Again we showed that using d, alone gave complete separation
in the training set. Using two or all three measures in a combination of an SVM
classifier and KDE curves [20] or surfaces gave dramatic improvements in False
Match rate (FMR) (up to several orders of magnitude), when False Non-Match Rate
(FNMR) was very low.

For hand vessel BGs using the SNIR and SFIR databases in [21], we tested the
7 measures d,, de, |Ve, 1, [ Vel + 1 Ve, |, ULZ), D,,qx and, for the first time, the average
degree pp of the vertices in the MCS. The best-separating individual measures
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were d,, d, and |V,,| + |V,,|, but as d, and d, are highly correlated, the relatively
uncorrelated measures d,,, | V., | + | V,,| and 0'[2) were tested to see if multidimensional
scoring would improve performance over individual measures. In contrast to the case
for retina, we found little advantage in increasing the number of measures used. We
attribute this to the fact that hand BGs are appreciably smaller and more fragmented
than retina BGs (see Table 12.3 and [21, Fig.3]) and will have correspondingly less
available topology in their MCSs to exploit.

As a consequence of these experiments, the measures we focussed on were d,,
de, dc,cy» Pm; and d., and d.,, the measures using Eq. (12.6) corresponding to the
number of vertices in ¢; and c;, respectively.

For the larger palm vessel BGs, in [8] we test these 6 measures® and a further 4:
Oc,; the ratio of the number of isolated vertices I to the number of connected vertices;
the normalised total length d, of the edges in c;; and the ratio n4 of the number of
vertices with degree >4 in g,,, to | V,,|. Equal Error rates using single measures were
competitive (under 5%) for within session comparisons for the measures d,, d,, d.,,
de,c,, p and dy, with three of these, d,, d, and d_,,, having competitive EERs across
sessions as well. The measure d, outperformed all others. Testing score pairs showed
that pairing d, with any of d.,, d.,., and d; improved performance over the single
score d,, with (d,, dy) having the maximum gain.

In [6], we tested our ideas on all four modalities using a uniform approach. Our
results are outlined in the Sect. 12.4.4, which explains the selection of difference
measures in Table 12.1.

e Our attempts to quantify our observation that higher degree vertices occur more
frequently in genuine MCSs than in impostor MCSs (n2,n3, up, O’é, n4) coalesced
in the single measure d¢ of claws (i.e. of degree 3 vertices).

e Our efforts to quantify our observation that connected components are larger in
genuine MCSs than in impostor MCSs led to the measures d,, d,, d,c,, d; .

e Our wish to capture some spatial information rather than counts alone resulted
in dy and a new measure d, found using Eq. (12.6) from the area of the smallest
rectangle containing the entire graph.

e Our efforts to quantify our observation that genuine MCSs have higher complexity
than impostor MCSs led us to use p,;, Oc,» Dmax and a new measure d; using Eq.
(12.6) for the number of two-claws.

For convenience this subsection is summarised in Table 12.5. Measures that we have
only tested once before 2017 (p2, p3, up, n4) are not included. Plainly this topic is
by no means exhausted.

12.4.4 Comparison of BGC Performance Across Databases

In this subsection, we outline the results and conclusions of our paper [6], in which we
evaluated the performance of BGC for the databases of Sect. 12.4.1. The individuals

3In fact the corresponding similarity measure 1 — d was used for the normalised measures.
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Table 12.5 Difference measures used in BGC

Year Mode dy |de |dc | dejcy dey |dey | pm | pey | O [2) Dpax di |dg |da |dr
2011 [7] Retina |v |v |v? v v

2013 Retina v v v

[20]

2014 | Hand |v |V v vb v | v

[21]

2015 [8]] Palm v v v v |v v v Ve v

2017 [6] Ald v v v | v v o |v v v v v v v | v

2n2 and n3 count the degree >2 and >3 vertices. d¢ counts the degree 3 vertices (or claws)
bUn-normalised counts used

“Ratio of I to number of connected vertices, rather than normalised using Eq. (12.6)
dRetina, hand, palm, wrist

in each of the five databases (2 for hand) were divided in two, with BGs for one half
used for training and the other for testing, to maintain independence. For full details
of the experiments, see [6].

The first training experiment was to tune for BGR: to identify the best structure
S e {E, C, T} for graph registration for each database, the optimal pair shortlist
length L and the tolerance ¢. This list was selected based on observation. Foreach S, L
was varied by steps of 40 through the range [20, 220]. Because accurate registration is
crucial to the performance of BGC, we selected the L leading to highest registration
accuracy. There is a consequent trade-off in speed versus accuracy, as Table 12.6
demonstrates.

The second training experiment was to tune the parameters of BGC: the structure
S e{V, E, C, T} and parameters «;, o, for the graph edit computations and the
difference measure d for scoring MCSs. The parameters were each stepped by 2 in
the range [3, 9]. For each database, a subset of 1000 genuine and 1000 impostor
comparisons was selected at random and their MCSs computed and scored with the
13 graph measures (see Table 12.5) to find the values giving optimal separation. To
check if any combination of measures would improve separation, we combined all
13 measures and used LDA to check this, but found no significant improvement over
single measures. For all databases, selecting V for the cost matrix structure and d,

Table 12.6 [6] The chosen registration structures S and shortlist values L for each database and
the average registration times

Database S L Time (s)
Palm E 220 20
Wrist E 60 7

Hand SFIR T 60 0.8
Hand SNIR E 60 1.9
Retina VARIA T 100 1.8
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Table 12.7 [6] The graph matching parameters chosen based on best performance on the training

set

Database o] o) Bestd 2nd best d 3rd best d
Palm 5 3 d, dy Pey

Wrist 3 7 d. d, Py

SFIR Hand 3 7 dy d, d;

SNIR Hand 3 5 d, d, Pey
Retina VARIA | 3 9 d, d, deyc,

Table 12.8 [6] Comparison performance using BGC on the test set at 2 specific thresholds obtained
from the training set experiments—FMR100 and FMR1000

Threshold Palm Wrist Hand—SFIR | Hand—SNIR | Retina
FNMR % FNMR % FNMR % FNMR % FNMR %

FMR100 3.63 26.9 4.39 0.54 0.07

FMR1000 6.242 44.06 8.79 99.72 0.86

or d, gave the best separation. Table 12.7 summarises the results. The five graph
measures on the MCS that we found to be the best difference measures, are d,, d,,
Pers deyc, and dy.

After tuning, we tested BGC on the remaining half of the individuals and deter-
mined FMR and FNMR of comparisons at three distance thresholds chosen from the
training experiments—EER, FMR 100 and FMR1000. ROCs for the SNIR Handvein
database training set do not appear in [6] and are given in Appendix 4. All databases
other than the wrist, gave error rates under 5% at the EER threshold. Those for
palm, hand and retina were comparable with our previous results or the literature.
Table 12.8 records our results.

We have already shown for hand vessels [21] that including edge information in
BGC improves recognition performance over point pattern comparison. Our final
experiment was to apply ICP to register graph pairs, then apply Step 4 of BGR
to count matched vertices in the two graphs, again scoring using QuickScore (Eq.
(12.1)) for consistency. In all cases, BGC outperformed point pattern comparison
using ICP registration. See Table 6 of [6] for exact values.

12.5 Anchors for a BGC Approach to Template Protection

The purpose of biometric authentication is to link a subject unequivocally to the
authentication token. The biometric template used to form the token comprises per-
sonal and sensitive information and is often encrypted when stored. However, as
biometric data is noisy, comparison with an incoming biometric sample cannot be
done in the encrypted domain using cryptographic hash functions as these require
exactness of data. Consequently, most authentication systems decrypt the stored bio-



12 Vascular Biometric Graph Comparison: Theory and Performance 377

metric data, compare the unencrypted templates and make an authentication decision.
This makes the biometric template vulnerable during comparison.

Thus, finding a template protection scheme which permits direct comparison
of protected templates is desirable. In any such scheme, performance degradation
over unprotected comparison must be marginal. Further, the ISO/IEC 24745:2011
standard [25] states the following two criteria to protect biometric information: (a)
Irreversibility where the biometric raw data cannot be retrieved from the template
or token, and (b) Unlinkability where multiple independent instances of a subject
cannot be linked to identify the subject.

We are interested in the possibility of using biometric graphs in a template pro-
tection scheme based on a dissimilarity vector model.

12.5.1 Dissimilarity Vector Templates for Biometric Graphs

We want to investigate the feasibility of protecting a BG template by representing
it as a vector of dissimilarities from a fixed set of reference BGs extracted from a
separate, external set of instances. Such reference graphs are termed “cohorts”. The
reason that cohort-based dissimilarity vectors may be a solution to having template-
protected biometric comparison for automatic identity authentication is that the bio-
metric sample data need not be stored. Only the cohort graphs and the dissimilarity
vector are required for authentication. On the face of it, neither of these reveal any
direct information about the biometric sample data of enrolled individuals.

In preliminary work [5], we use retina as an example to conduct the first step of
this investigation: to test if the comparison performance of the dissimilarity vector
templates is similar to that of unprotected template comparison.

Cohorts are typically not used in existing dissimilarity vector implementations
because of the expectation that graphs which are not a member of any class will be
dissimilar to all classes and hence not useful for classification. Contrary to this, we
found that when retina graphs are registered on the optic disc then graphs extracted
from images of the same retina are surprisingly and consistently dissimilar, or similar,
to other retina graphs external to the classification set, when the dissimilarity is
defined by the BGC algorithm with slack graph comparison parameters.

Figure 12.4 shows an example of a dissimilarity vector for a retina graph.

‘We have shown that the dissimilarity vector approach is accurately able to compare
and verify samples with only a small loss in performance over direct comparison using
BGC. Once performance is established, the next step would be to establish rigorous
security bounds on irreversability and unlinkability as conducted by Gomez-Barrero
etal. [14, 15]. This is an area of future work.

12.5.2 Anchors for Registration

Amongst the modalities presented here, retinae have an intrinsic reference frame
defined by the location of optic disk and fovea. Palm vein patterns have a reference
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COHORT , ) ) - )
REFERENCE i 5 5 Iy I
GRAPHS d=043 ¢,=052 d,=030 dy, =048 d =051

g Y v=(d,d,d,..,d,,d), whered =d (g,

Fig. 12.4 An example of a dissimilarity vector for a retina graph g in ESRID from a set of cohort
graphs in VARIA. The dissimilarity vectorv = (d, da, - - - , dy) is the vector of dissimilarities from
the ordered set of cohort graphs (rq, r2, - - - , ry).Eachd; V1 <i < Niscalculatedasd; = d.(g, ri),
where d, is some measure of dissimilarity between graphs g and r;

frame defined by the hand contour. For other vascular patterns, an intrinsic reference
frame has not been identified (for finger graphs, the midline of the finger was found by
Nibbelke [23] not to be robust), and because of the noise associated with presentation
of a biometric sample and graph extraction, graphs extracted from images from the
same individual do not consistently register with reference graphs in the same way
when using BGR and are not consistently dissimilar. The retina graphs in both the
ESRID and VARIA databases are roughly pre-aligned because the presentation of
the retina is always with the head upright, and so a common reference frame for a pair
of retina graphs extracted from these images can be found by centring each graph on
the centre of the optic disk (also extracted from the associated retina image).

Hence, a barrier to generalising the dissimilarity vector approach to template
protection to other vascular graphs is the ability to register presentations of a vascular
pattern from the same individual in the same way so that their dissimilarity from a
set of reference graphs has the possibility to be consistent. The alternative, which is
to use BGR, gives a set of scores that are essentially drawn from a distribution of
impostor comparison scores and are different from one sample to the next.

In an attempt to achieve consistent registration, we consider identifying subgraphs
of a smaller size that are consistently extracted in multiple presentations of a subject’s
biometric data despite the noise in the image presentation and extraction process. We
term this small subgraph, should it exist, the anchor for a set of biometric graphs
from an individual.

Definition 12.3 A BG anchor for an individual is a small connected subgraph that
appears consistently in BGs extracted from multiple good samples from the individual
and that does not by itself reveal identifying information about the individual.
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Whether such an anchor exists for every enrolled subject is the first question,
which we attempt to answer here for two of the databases we have studied. Whether
registration on such an anchor then leads to dissimilarity vectors that can be used for
accurate classification is a separate question and is future work.

12.5.3 The Search for Anchors

The BGC algorithm can be used recursively to find anchors. Let g;, g2, ..., g, be
the BGs of the n samples of a subject for which we need to find an anchor.

The first step is to use the BGC algorithm to find the MCS between a pair of
graphs. Let m, be the MCS of the graphs g; and g,. BGC is then used to find the
MCS between m |, and the third graph in the list g3. Let this be denoted by m1,3. This
is the common graph between g, g» and gs. If we continue this process, the common
graph between the n graphs gi, g2, ..., g, is the MCS between m33...,,—; and g,
and is denoted by m,3. ,. This graph represents the graph structure that is common
to the n samples from a subject. If the graph samples are of high quality, we often
find this common graph to be large with significant amount of structure. Therefore,
the entire common graph would be inappropriate to use as an anchor associated with
a template protection scheme. On the basis of observation and experimentation, we
have isolated two criteria to derive an anchor from m 53 _,:

e It is the largest connected component of m53..., that has a minimum of at least 5
vertices and maximum of 10 vertices. This criteria ensures that the anchor is not
so large as to reveal significant structure of a subject’s BG.

e This connected component must have at least one claw. In cases where there was
an absence of a claw (i.e. the component was a path) we observed that the anchor
was not uniquely found.

One way to satisfy the above two criteria is to vary the weights «; and «; in
the cost matrix C of the BGC algorithm used when finding anchors. When «; and
oy are small, the MCS returned will be very small and sparse. As we want to have
recursively generated MCSes to have a bit more structure, we found it beneficial to
recursively slacken «; until we find a common graph of the n graphs that will give
an anchor that satisfies the above two conditions.

To study the possibility of finding anchors and the various factors that impact this
for a database, we need a database that has multiple samples of the same subject. The
PUT datasets of palm and wrist vessels had 12 samples per subject across 3 sessions
and were satisfactory for our experiments.

For both databases we chose n, the number of graphs of a subject used to find
an anchor, as n = 6. We used the remaining 6 samples as test samples to determine
if an anchor can be found in a new incoming sample. We set «; = 1 in the cost
matrix C and recursively increased «; from 4 to 16 in steps of 2 in the anchor-finding
algorithm.
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Fig. 12.5 This figure shows the common graphs and the final anchor obtained when BGC is used
recursively, pairwise on a set of BGs from an individual in the PUT palm database to create the
anchor for that individual. Observe that as expected, the size of the common graph as we increase
the number of BGs gets smaller. f shows the extracted anchor (Graphs are not on the same scale)

Figure 12.5a—e shows the process of recursively applying the BGC algorithm to
obtain a common graph among 6 BGs of a subject in the PUT Palm database. We
observe that as the number of samples used increases, the common graph tends to get
smaller and sparser compared to previous common graphs. For a graph to become
part of the common graph it must exist in all the BGs used to form it. The criteria get
harder to satisfy as the number of BGs increase. Figure 12.5f and shows the anchor,
a subgraph of m ;3456 in Fig. 12.5e, which is the largest connected component of
maximum order 10 with at least one claw.

12.5.4 Queries and Discoveries for Anchors

To understand if the use of anchors is practical for registering BGs, we used the palm
and wrist databases to investigate the following questions:

1. How likely is it that an anchor cannot be found for a subject in the database and
what are the possible reasons for failure to find an anchor?

2. If an anchor is generated using a few samples of a subject, how do we determine
if it exists in a new probe sample of the same subject. How reliable is this anchor?
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3. How often will an anchor fail to be found in a new probe sample of an enrolled
subject? If this happens, what are the causes?

For both databases, we chose 6 BGs from the 12 BGs of each subject in 4 ways
giving 4 different attempts at finding an anchor. As the PUT database had 50 subjects,
we had 200 trials to find an anchor and we noted the number of trials that failed to
find an anchor (first column of Table 12.9).

Once an anchor is found, it needs to be reliably found in a new sample of the
same subject. The existence of an anchor in a larger graph can be determined using
the BGR algorithm described in Sect. 12.3.1.1. The BGR algorithm will attempt to
find an aligning edge between the anchor and a BG of an individual. Anchor overlap
is defined as the fraction of vertices in the anchor that found a comparison vertex
in the BG. 100% overlap indicates the anchor has been exactly found in the BG
and can be reliably used to establish a coordinate frame of registration. Figure 12.6
shows an anchor and its overlap in a new probe sample for the palm and wrist BGs.
Figure 12.6b, d show an example where the anchor overlap is less than 50%. These
are both situations when the anchor has not been found as the anchor just did not
exist in the BG. The mean and standard deviation anchor overlap for the palm and
wrist databases is shown in column 2 of Table 12.9.

Based on the distribution of anchor overlap in a database, it is possible to choose
a minimum value O, for the anchor overlap to consider an anchor to be reliable.
Choosing a specific O, for each database, we measure for each individual, the number
of times in the 6 BGs where the anchor is reliably found. This result is shown in
column 3 of Table 12.9.

The distributions of anchor overlap and success rates of finding an anchor reliably
for both databases is shown in Fig.12.8. The source code for the anchor-finding
algorithms are available at [3].

12.5.5 Results

Column 1 of Table 12.9 shows that BGs of an individual in the palm database had
a greater chance of generating an anchor than BGs of an individual in the wrist
database. Anchors are not generated when the BGs from the samples of the individual
fail to find a common subgraph among all of them. This happens if even one BG
does not have enough common area of capture amongst the six. Figure 12.7a shows
an example where 6 BGs from the wrist vein graph could not generate an anchor.
Figure 12.7b shows the BGC applied recursively to get a common graph that did not
satisfy the two conditions for an anchor, i.e. there was no component of size between
5 and 10 that had at least one claw.

We next wanted to test, if for every failure in getting an anchor, when the selection
of BGs changed, would we be able to get an anchor for the individual? We found that
out of the 10 individuals whose trials failed to give an anchor in the palm database,
only 2 of the individuals failed again when the selection of BGs changed. For the
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Table 12.9 Results from experiments on finding anchors in the PUT palm and wrist databases

Database PUT Trials that failed to Anchor overlap across | Number of reliable
generate anchors (%) | the database (%) anchor registrations
per person
Palm 6 75.17 (16.94) 3.68 (1.96)
Wrist 14 76.6 (14.6) 3.96 (1.64)
.

p %‘

(a) Palm BG with 100% anchor overlap (b) Palm BG with 44% anchor overlap

=

—

T -
e

(c) Wrist BG with 100% anchor overlap (d) Wrist BG with 44% anchor overlap

Fig. 12.6 This figure shows examples of Palm and Wrist BGs where the overlap is 100% (a) and
(c), and where the overlap is less than 50% (b) and (d). The anchors are in green and the BGs are
in blue

wrist database, 21 individuals failed in a trial to get an anchor, out of them only 3
failed again when the BGs selected were changed. This shows that in practice, if an
anchor is not found in a set of samples, it is possible to get an individual to re-enrol
until their set of enrolled BGs can give an anchor.

Figure 12.8a, ¢ show the distribution of the anchor overlap measure in the palm
and wrist databases. Table 12.9 shows that the mean value of the overlap is over 75%
for both. Based on this distribution, we choose O; to be 70% and measure the number
of times we could reliably find an anchor among the remaining 6 BGs that were not
used to get the anchor. Figure 12.8b, d show the distribution of number of times the
anchor is found reliably in the remaining samples of an individual in the palm and
wrist databases, when Oy is set to be 70%. Table 12.9 shows that while the palm
BGs were more successful overall in finding anchors, once anchors were found, the
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(a) Set of 6 wrist BGs that failed to give an anchor
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(b) BGC recursively applied to get common graphs

Fig. 12.7 This figure illustrates how 6 wrist BGs can fail to give an anchor. The final common
graph did not have a component of maximum size 10 with at least one claw

wrist BGs had a greater chance of finding the anchor in the remaining BGs from the
individual. In practice, it would be possible to request resubmission of the biometric
sample if the previously identified anchor wasn’t found.

12.5.6 Conclusion

This chapter has explained the basic foundations of representing vascular biometric
samples as formal graphs. It has generalised the graph registration and compari-
son algorithms, BGR and BGC, respectively, and summarised our findings from
testing the efficiency and effectiveness of BGR and BGC on 4 different modalities—
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Fig. 12.8 This figure shows the histograms of the anchor overlap in the palm and wrist databases.
Once an anchor is found, the number of reliable registrations of the anchor per subject, when
O; = 70% is also shown for both databases. Here test set denotes those 6 BGs not used to get the
anchor

palm, wrist, hand and retina. The results show that the relational information in
BGs provides better recognition accuracy compared to point pattern approaches. We
introduced a modification of BGC with the potential to create a template protection
scheme using dissimilarity vectors. We also introduced the concept of anchors, a
method to register a BG with a consistent reference frame when, unlike retina, there
is no intrinsic reference frame. The choice of anchor and structural restrictions are
necessary for them to be used to implement biometric template protection using the
dissimilarity vector paradigm. We tested the ease of finding anchors and the likeli-
hood for one to be found reliably in BGs that were not used to identify the anchor.
The results show us that with proper selection of BGs, we can always find an anchor
for an individual.

In the future we want to apply the concept of anchors to test the accuracy of the
dissimilarity vector representation for other modalities like palm vein and hand vein.
We also plan to conduct a thorough security analysis of the dissimilarity vector rep-
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7/ \ . :
7
"))

Fig.12.9 The extraction of a Biometric Graph from a section of fingerprint image. Note that the BG
edges represent the ridgeline connectivity relationships between pairs of minutiae, not the ridgeline
itself

resentation as a template protection scheme by establishing empirical and theoretical
bounds on the irreversibility and unlinkability of the templates on the lines of work
conducted by Gomez et al. [14, 15].
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Appendix 1

Here is an example of the original Biometric Graph, as introduced in [17] (Fig. 12.9).

Appendix 2

This section gives the pseudocode for the BGR algorithm described in Sect. 12.3.1.
Itis a corrected and updated version of the algorithm in [6]. The source code for the
BGR and BGC algorithms is available at [4].

Require: Graphs g and g’ with vertex sets V.={v;, v, - v, } and V' ={v], v}, - -,
v/} and vertex sets E ={ej, ez, - -+, ¢,} and E' ={e], ¢}, - - -, €/, }, respectively.
Let L be the number of structure pairs to shortlist and let ¢ be the tolerance to
match vertex pairs.

Ensure: Aligned graphs g, and g/, having same edge links as g and g’ but with new
spatial coordinates.
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I: g, < @and g, < @. o Initialise the registered graphs that will be returned at
the end of the algorithm

: S ={s1,s2,---,8, }is the list of structures in g.
S’ ={s{,85,---,s, }isthe list of structures in g’.
s Myisi <0 > Initialise a matrix of size n x n’ with zeros.
:fora =1tondo
for b =1ton' do
d,», = STRUCTDIST(s,, Sp, F) > This
function returns the distance between the two structures. The flag F indicates if
the structure is an edge, claw or two-claw.
Mgisila, b] < dgp
end for
10: end for

11: Sort the contents of My;y, in increasing order.
12: Myporiis: 18 @ matrix with 3 columns.
Every row m; stores the 3-tuple (dyp;, a;, b; ).
dgp; 1s taken from the sorted M ;s with the first row of Mpop41i5:, 1 having dyp 1,
the smallest distance.
a; and b; indicate the corresponding row and column of d,; in M;y;.

13: dgtruer <— (0,0, -+ ,0) 1,1 > A vector to store the distances between graphs
when aligned on each of the shortlisted structure pairs

14: for i = 1to L do

15 a=a;, b =>b; where m; € Mjo11i:

16: g, = TRANSROT(g, e,). > Translate and rotate g with respect to the
specific edge in the shortlisted structure

17: g, = TRANSROT(g', ¢}).

18: dstruct[i] = QUICKSCORE( g,, g,, € ) > Compute a distance based on vertex
correspondence between the translated and rotated graphs

19: end for

20: dmin = MIN (dslrucl)'
21: ayin and by;, are the row and column in Myj,,1i5; corresponding to dip-
22: g, = TRANSROT(g, e, )-
23: g, = TRANSROT(g, e, ).
return g,, g, and dy;y.

'min

24: function EUCDIST( A = (a1, aa, -+ ,a.) , B= (b1, by, -+ ,b.))
25:  d=+/(ay—b)>+ (a2 — b2)> + .....(a, — b.)? return d
26: end function

27: function STRUCTDIST(S,, Sy, F) dstruct pair < &
28:  if F =="edge” then >
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29: E, <~ (,,06, > The length and slope of the edge

30: Eb < (ll/y’ 92,)

31: dstruct Pair = WEUCDIST(EQ, Ep) > The Euclidean distance
DaTl,

between the lengths [ and /” and slopes 0 and 6’ of the vertex pair.
32:  end if
33:  if F =="“claw” then

34: L, < (li4, 124, 13,) > The three edges of the claw in decreasing order of
edge length

35: ®, < (0124, 623,) > The angles between first and second vertex and the
second and third vertex.

36: Ly, < (I3,,15,,15,)

37: Op < (615 033,)

38: Is <~ EUCDIST(L,, L})

39: as < EUCDIST(®,, ©))

40: d =I5+ as

41: dxtructPair =d

42:  end if

43:  if F ==“two-claw” then > A two-claw has two-claw structures connected
by a common edge

44; L, <~ (llaylZa’l3a’l4a’15avléa)

> [; and /4 are the longest edges of the first and second claw structures. The
other two edges follow the longest edge in decreasing order of length.

45: O, < (0124, 0234, 0154, 056,) > The four internal angles, two each from
each of the two-claws.

46: 1., 1s the length of the connecting edge between the two-claws in structure
a where x € {1,2,3,4,5, 6}.

47: Ly, < iy, by by Ly Usy L)

48: O < (B1ap> 0334 Oisy,» O565)

49: I}, is the length of the connecting edge between the two-claws in structure
b where x € {1,2,3,4,5, 6}.

50: dy = BEUCDIST( L,[1 : 3], Ly[1 : 3]) + EUCDIST(O,[1 : 3], ®;[1 : 3])

51 dr = EUCDIST( L[4 : 6], L}[4 : 6] ) + EUCDIST(®,[4 : 6] , ©,[4 : 6])

52: dy = BEUuCDIST( Ly, I, ).

53: dsiructpair = di +do + d3

54:  end if

return dslruct Pair
55: end function

56: function TRANSROT(g, ¢ )

57: 8 < &

58:  The vertex of e with the smaller x coordinate will be the origin of the coor-
dinate system.

59:  The edge e will be define the positive direction of the x-axis.
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60:  Recalculate all the vertex attributes of g, in the new coordinate system.
return g,.
61: end function

62: function QUICKSCORE(g, g/, €)
63:  Label all vertices of g and g’ as unmatched.

64: C=0 > Counter for number of vertex pair matches between g and g’

65: fori =1tomdo

66: for j = 1tom’ do

67: if v; is labelled unmatched and v} is labelled unmatched and EU-
CDIST( ¢;, q; ) < ¢ then

68: C=C+1. > v; matches with v}.

69: Label v; and v;. as matched. > q; = (q1;, q2;) is the vertex
attribute of v; and ¢/ is the vertex attribute of v; .

70: end if

71: end for

72:  end for

73 d=1- \/ﬁ return d.

74: end function

Appendix 3

This section presents details of the cost matrices that use complex structures like
edges (E), claws (C) and two-claws (T') as structures, as described in Sect. 12.3.2.

Edge-based cost matrix:

Let u;, v; be the start and end vertices of ¢; in g and u;, v} be the start and end vertices
of ¢} in g'. The cost of substituting e; with ¢’; given by

cij = g, wl] + vi, Vi (12.8)

where ||.|| denotes Euclidean distance between the spatial coordinates of the vertices.
The cost of deleting e; is

cis = a1 + (o2 X (D(u;) + D(v))) (12.9)
The cost of inserting €/ is

csj = a1 + (a2 x (D(u;) + D(v))) (12.10)
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where D() denotes vertex degree. «; denotes the cost for deleting or inserting an
vertex. ap denotes the cost for deleting or inserting the vertices neighbouring the
start and end vertices of the vertex. The cost matrix will have size |E| x |E’|, where
|.| denotes cardinality of the set.

Claw-based cost matrix:

Let ¢; and c/j be the centres of the claws s; and s;. in g and g'. Let u;, v;, w; and
u;., v;., w;. be the end vertices of the three vertices ordered in decreasing order of
length for each of the claw structures.

The cost of substituting 5; with s’; given by

cij = e, €411 Mg 11+ Hvi VL e, w| (12.11)

where ||.|| denotes Euclidean distance between the spatial coordinates of the vertices.
The cost of deleting s; is

cis = a1 + (a2 X (D(u;) + D(vi) + D(w;))) (12.12)
The cost of inserting s’ is
csj = a1 + (a2 X (D(up) + D(v;) + D(w)))) (12.13)

where D() denotes vertex degree. «; denotes the cost for deleting or inserting a claw.
o, denotes the cost for deleting or inserting the vertices neighbouring the end vertices
of the claw. The cost matrix will have size |S| x |S’|, where |.| denotes cardinality
of the set.

Two-claw-based cost matrix:

Let ¢; and t;- be two-claw structures in g and g’. Each two-claw structures has two-
claws connected by a common vertex. Let b; and ¢; be the centre vertices of #; and
u;, vi, Wi, Xi, yi, Z; be the 6 end vertices of two-claw structures ordered on vertex
length. u; and x; will represent the longest vertices of the claw structures cen-
tred on b; and c;. Similarly let b_/]. and c;. represent the centres of the claws and
'y, v, wh, x%, vz, represent the end vertices of the vertices belonging #}. The cost
of substituting #; with t} given by

cij = i D11+ Hleis 51+ Nag a1 4 11vi V311w whll -+ i 51+ i Yl i, 2511
(12.14)

where ||.|| denotes Euclidean distance between the spatial coordinates of the vertices.
The cost of deleting ¢; is

cis = a1 + (o2 X (D(u;) + D(vi) + D(yi) + D(zi))) (12.15)

where the u;, v;, y;, z; represent the vertices that do not connect the two-claw centres.
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The cost of inserting 7 is

csj = o + (o X (D(u}) + D(v;) + D(y)) + D(z}))) (12.16)
where D() denotes vertex degree. u’j, v}, y}, z’j represent the vertices that do not
connect /', and ¢’;. &y denotes the cost for deleting or inserting a two-claw. a; denotes
the cost for deleting or inserting the vertices neighbouring the end vertices of the two-

claw vertices. The cost matrix will have size |T'| x |T’|, where |.| denotes cardinality
of the set.

Appendix 4

In [6] we compared the performance of BGC with standard point pattern based
comparison algorithms. Each vascular database was divided into a training and

Training Set DET curves for Handvein - SNIR

0.500 1.000

0.050 0.100 0.200

FNMR (log scale)

0.005 0.010 0.020

I I
0.005 0.010 0.020 0.050 0.100 0.200
FMR (log scale)

0.500 1.000

Fig. 12.10 DET curve for the top 3 best performing distance measures in the SNIR handvein
training dataset. The performance of each distance measure is compared to that obtained when
combining the 3 features using an LDA classifier. Results showed that combining the features did
not cause a significant improvement in performance over the best performing measure d,
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testing set. The training set was used to determine the best structure for registration,
parameters for the graph comparison algorithm and the best distance measure. Once
these parameters were picked they were used to test the performance on the testing
database at three thresholds corresponding to three specific points from the training
database Detection Error Tradeoff (DET) curves—EER, FMR100 and FMR1000.
Figure 12.10 shows the DET curves from the SNIR Handvein training dataset. This
was not published in [6]. The DETs for all other modalities are available in Fig.7
in [6].
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