
Chapter 11
Retinal Vascular Characteristics

Lukáš Semerád and Martin Drahanský

Abstract This chapter begins with a description of eye anatomy followed by the
anatomy of retinas as well as the acquisition methods for obtaining retinal images.
Our own device for capturing the vascular pattern of the retina is introduced in the
following text. This chapter presents our aim to estimate the information present in
human retina images. The next section describes the search for diseases found in
retinal images, and the last section is devoted to our method for generating synthetic
retinal images.

Keywords Synthetic retinal images · Vascular bed · Diabetic retinopathy · Hard
exudates · Age-related macular degeneration · Druses · Exudates · Bloodstream
mask · Information amounts · Bifurcations and crossings · Neural network ·
Human eye · Retina · Fundus camera · Slit lamp · Blind spot · Fovea · Device
EYRINA · Retina recognition

11.1 Introduction

Just like several other biometric characteristics, our eyes are completely unique and,
thus, can be used for biometric purposes. There are two core parts in our eyes that
even show high biometric entropy. The first is the iris and the second is the retina,
which is located at the backside of the eyeball and not observable by the naked eye.
Recognition based on these two biometric characteristics is a relatively new method
and little effort has been invested by industries.

The iris and the retina as elements inside the eye are very well protected against
damage. The iris and retina patterns are unique to every individual (this also applies to
monozygotic twins) and the structure is as follows (see Fig. 11.1) [1, 2]. The cornea
is located at the front of the eye. It is a transparent connective tissue that, along with
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Fig. 11.1 Anatomy of the human eye [42]

the lens, allows the light to break into the eye. The iris has the shape of an annulus;
it is a circularly arranged musculature that narrows/enlarges the pupil. The pupil is
an opening in the middle of the iris, regulating the amount of light coming into the
eye. The sclera is a white visible layer covering the entire eyeball, which passes into
the cornea in the front. The retina is the inner part containing cells sensitive to light.
It shows the image, much like a camera. The optic nerve carries many nerve fibres
that enter the central nervous system.

There are two scientific disciplines that deal with eye characteristics—those are
ophthalmology and biometrics. Ophthalmology is a medical discipline aimed at
analysing and treating the health of the eye and its associated areas. In the field
of biometrics (recognising an individual based on the unique biometric characteris-
tics of the human body), the unique properties of the eye are not subject to change
in time, and they are also so unique that it is possible to unequivocally identify two
distinct individuals apart from each other in order to verify the identity of that person.

11.1.1 Anatomy of the Retina

The retina is considered to be a part of the Central Nervous System (CNS) [1, 2].
This is the only part of the CNS that can be observed noninvasively. It is a light-
sensitive layer of cells located in the back of the eye with a thickness of 0.2–0.4 mm.
It is responsible for sensing the light rays that hit it through the pupil, and a lens
that turns and inverts the image. The only neurons that react directly to light are
photoreceptors. These are divided into two main types: cones and rods. For adults,
the retina covers approximately 72% of the inner eye. The entire surface of the retina
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contains about 7 million cones and 75–150 million rods. This would compare the
eye to a 157-megapixel camera. Rods are used to detect light and are capable of
responding to the impact of one to two photons by providing black-and-white vision.
Cones are used to detect colours and are divided into three types depending on which
base colour they are sensitive to (red, green, blue), but these are less sensitive to light
intensity [1, 2].

We can observe the two most distinctive points on an eye’s retina—see Fig. 11.2.
It is a blind spot (or an optical disc) and a macula (yellow spot) [1, 2]. A blind spot
is the point where the optic nerve enters the eye; it has a size of about 3 mm2 and
lacks all receptors. So if the image falls into the blind spot, it will not be visible to a
person. The brain often “guesses” how the image should look in order to fill in this
place. On the other hand, themacula (yellow spot) [1, 2] is referred to as the sharpest
vision area; it has a diameter of about 5 mm and the cones predominate it (it is less
sensitive to light). This area has the highest concentration of light-sensitive cells,
whose density decreases towards the edges. The centre of the macula is fovea, which
is the term describing receptor concentration and visual acuity. Our direct view is
reflected in this area. Interestingly enough, the macula (yellow spot) is not really
yellow, but slightly redder than the surrounding area. This attribute, however, was
given by the fact that yellow appears after the death of an individual.

The retina vessel’s apparatus is similar to the brain, where the structure and venous
tangle remain unchanged throughout life. The retina has two main sources of blood:
the retinal artery and the vessels. Larger blood flow to the retina is through the blood
vessel that nourishes its outer layer with photoreceptors. Another blood supply is
provided by the retinal artery, which primarily nourishes the inside of the retina.
This artery usually has four major branches.

Blind spot

Macula
(yellow spot)

Fig. 11.2 A snapshot of the retina taken by the fundus camera
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The retina located inside the eye is well protected from external influences. Dur-
ing life, the vessel pattern does not change and is therefore suitable for biometric
purposes.

The retina acquires an image similar to how a camera does. The beam passing
through the pupil appears in the focus of the lens on the retina, much like the film.
In the medical field, specialised optical devices are used for the visual examination
of the retina.

The iris is beyond the scope of this chapter, however, some interesting works
include [3–5].

11.1.2 History of Retinal Recognition

In 1935, ophthalmologists Carleton Simon and Isidore Goldstein discovered eye
diseases where the image of the bloodstream in two individuals in the retina was
unique for each individual. Subsequently, they published a journal article on the use
of vein imaging in the retina as a unique pattern for identification [6]. Their research
was supported by Dr. Paul Tower, who in 1955 published an article on studying
monozygotic twins [7]. He discovered that retinal vessel patterns show the least
resemblance to all the other patterns examined. At that time, the identification of the
vessel’s retina was a timeless thought.

With the concept of a simple, fully automated device capable of retrieving a snap-
shot of the retina and verifying the identity of the user, Robert Hill, who established
EyeDentify in 1975, devoted almost all of his time and effort to this development.
However, functional devices did not appear on the market for several years after [8,
9].

Several other companies attempted to use the available fundus cameras and mod-
ify them to retrieve the image of the retina for identification purposes. However, these
fundus cameras had several significant disadvantages, such as the relatively compli-
cated alignment of the optical axis, visible light spectra, making the identification
quite uncomfortable for the users, and last but not least, the cost of these cameras
was very high.

Further experiments led to the use of Infrared (IR) illumination, as these beams
are almost transparent to the choroid that reflect this radiation to create an image of
the eye’s blood vessels. IR illumination is invisible to humans, so there is also no
reduction in the pupil diameter when the eye is irradiated.

Thefirstworking prototype of the devicewas built in 1981. The devicewith an eye-
optic camera used to illuminate the IR radiationwas connected to anordinary personal
computer for image capture analysis. After extensive testing, a simple correlation
comparison algorithm was chosen to be the most appropriate.

After another four years of hard work, EyeDentify Inc. launched EyeDentification
System 7.5, where verification is performed based on the retina image and the PIN
entered by the user with the data is stored in the database [8, 9].
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The last known retinal scanning device to be manufactured by EyeDentify Inc.
was the ICAM 2001. This device might be able to store up to 3,000 subjects, having
a storage capacity of up to 3,300 history transactions [8]. Regrettably, this product
was withdrawn from the market because of user acceptance and its high price. Some
other companies like Retica Systems Inc. were working on a prototype of retinal
acquisition devices for biometric purposes that might be much easier to implement
into commercial applications and might be much more user friendly. However, even
this was a failure and the device did not succeed in the market.

11.1.3 Medical and Biometric Examination and Acquisition
Tools

First of all, we will start with the description of existing medical devices for retinal
examination and acquisition, followed by biometric devices. The medical devices
provide high-quality scans of the retina, however, the two major disadvantages are
predetermining these devices to fail within the biometric market—first, because of
their very high price, which ranges from the thousands (used devices) to the tens
of thousands of EUR; second, because of their manual or semi-automatic mode,
where medical staff is required. So far, there is no device on the market that can scan
the retina without user intervention, i.e. something that is fully automatic. We are
working on this automatic device, but its price is not yet acceptable for the biometric
market.

11.1.3.1 Medical Devices

Themost commonly used device for examining the retina is a direct ophthalmoscope.
When using an ophthalmoscope, the patient’s eye is examined from a distance of
several centimetres through the pupil. Several types of ophthalmoscopes are currently
known, but the principle is essentially the same: the eye of the investigated data
subject and the investigator is in one axis, and the retina is illuminated by a light source
from a semipermeable mirror, or a mirror with a hole located in the observation axis
at an angle of 45° [10]. The disadvantage of a direct ophthalmoscope is a relatively
small area of investigation, the need for skill when handling, and patient cooperation.

For a more thorough examination of the eye background, the so-called fundus
camera is used (as shown in Fig. 11.3), which is currently most likely to have the
greatest importance in retina examinations. It allows colour photography to capture
almost the entire surface of the retina, as can be seen in Fig. 11.2. The optical principle
of this device is based on so-called indirect ophthalmoscopy [10]. Fundus cameras
are equipped with a white light source (i.e. a laser) to illuminate the retina and then
scan it with a CCD sensor. Some types can also find the centre of the retina and
automatically focus it, using a frequency analysis of the scanned image.
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Fig. 11.3 (Left) Slit lamp example [43]; (right) example of a non-mydriatic fundus camera [44]

The main ophthalmoscopic examination methods of the anterior and posterior
parts of the eye include direct and indirect ophthalmoscopy as well as the most
widely used examination, a slit lamp (see Fig. 11.3 on the left), which makes it
possible to examine the anterior segment of the eye using so-called biomicroscopy.
A fundus camera, sometimes referred to as a retinal camera, is a special device
for displaying the posterior segment of the optic nerve, the yellow spots and the
peripheral part of the retina (see Fig. 11.3 on the right). It works on the principle
of indirect ophthalmoscopy where a source of primary white light is built inside the
instrument. The light can be modified by different types of filters, and the optical
system is focused on the data subject’s eye, where it is reflected from the retina and
points back to the fundus camera lens. There are mydriatic and non-mydriatic types
that differ in whether or not the subject’s eye must be taken into mydriasis. The
purpose of mydriasis is to extend the human eye’s pupil so that the “inlet opening” is
larger, allowing one to be able to read a larger portion of the retina. Of course, non-
mydriatic fundus cameras are preferred because the data subject can immediately
leave after the examination and can drive a motor vehicle, which is not possible
in the case of mydriasis. However, mydriasis is necessary for some subjects. The
price of these medical devices is in the order of tens of thousands of EUR, which is
determined only by medically specialised workplaces.

The mechanical construction of the optical device is a rather complex matter. It is
clear that the scanning device operates on the principle of medical eye-optic devices.
These so-called retinoscopes, or fundus cameras, are relatively complicated devices
and the price for them is quite high as well.

The principle is still the same as it is for a retinoscope, where a beam of light is
focused on the retina and the CCD camera scans the reflected light. The beam of light
from the retinoscope is adjusted so that the eye lens focuses on the surface of the
retina. This reflects a portion of the transmitted light beam back to the ophthalmic
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Fig. 11.4 The functional principle for obtaining a retinal image of the eye background

lens that then readjusts it, the beam leaving the eye at the same angle below which
the eye enters (return reflection). In this way, an image of the surface of the eye can
be obtained at about 10° around the visual axis, as shown in Fig. 11.4. The device
performed a circular snapshot of the retina, mainly due to the reflection of light from
the cornea, which would be unusable during raster scanning.

11.1.3.2 Biometric Devices

The first products from EyeDentify Inc. used a relatively complicated optical system
with rotating mirrors to cover the area of the retina—this system is described in U.S.
Pat. No. 4,620,318 [11]. To align the scan axis and the visual axis, the so-called
UV-IR cut filters (Hot Mirrors—reflect infrared light and passes through the visible
light) are used in the design. A schematic drawing of the patent is in Fig. 11.5.
The distance between the eye and the lens was about 2–3 cm from the camera. The
alignment system on the optical axis of the instrument is an important issue, and it
is described in more detail in U.S. Pat. No. 4,923,297 [12].

Newer optical systems fromEyeDentify Inc.weremuch easier and had the benefits
of repairing optical axes with less user effort than the previous systems. The key part

Fig. 11.5 The first version of the EyeDentification System 7.5 optical system [12]
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Fig. 11.6 (Left) EyeDentify [9]; (right) EyeDentificationSystem [45]

was a rotating scanning disc that carried multifocal Fresnel lenses. This construction
is described in U.S. Pat. No. 5,532,771 [13].

A pioneer in developing these identification systems is primarily EyeDentify Inc.,
who designed and manufactured the EyeDentification System 7.5 (see Fig. 11.6)
and its latest ICAM 2001 model, which was designed in 2001. Other companies
are Retinal Technologies, known since 2004 as Retica Systems, but details of their
system are not known. The company TPI (Trans Pacific Int.) has recently offered an
ICAM 2001-like sensor, but there is no longer any information about it available.

11.1.3.3 Device EYRINA

At the end of this subsection, we will devote our attention to our own construction of
an interesting and nonexistent device that can be used in both the field of biometric
systems and in the field of ophthalmology—we call it EYRINA. This device is a fully
automatic non-mydriatic fundus camera. Many years ago, we started with a simple
device (see Fig. 11.7 on the left), but over time, we came to the third generation of
the device (see Fig. 11.7 on the right). We are now working on the fourth generation

Fig. 11.7 A non-mydriatic fundus camera—first generation left, second generation middle and
third generation right
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of this device that will be completely automatic. The original concept was focused
only on the retina (a direct view in the optical axis of the eye), then we arrived
(second generation) to retrieve the retina and the iris of the eye in one device, while
the third and fourth generation is again focused solely on the retina of the eye. The
third generation can already find the eye in the camera, move the optical system to
the centre of the image (alignment of the optical axis of the eye and the camera)
and take pictures of the eye retina (in the visible spectrum) to shoot a short video
(in the infrared spectrum). The fourth generation will be able to capture almost the
entire ocular background (not just a direct view in the optical axis of the eye) and
combine the image into one file. This will, of course, be associated with software
that can already find the macula and blind spot, arteries and vessels, detect and
extract bifurcations and crossings and find areas with potential pathological findings
while we can detect exudates/druses and haemorrhages, including the calculation
of their overall area. In the future, we will focus on the reliability and accuracy of
detectors and extractors, including other types of illnesses that will be in the interest
of ophthalmologists.

The central part of the third generation built two tubes with optics that can com-
pensate the diopter distortion approx.±10D. The left tube is connected to themotion
screw and the NEMA motor, i.e. we were able to move the frontal (left) tube. The
eye is very close to the eyebrow holder. Between these two tubes, we have a semiper-
meable mirror. Under this mirror is an LED for making the look of the patient to be
fixed on a concrete position. The illumination unit is placed behind the mirror on
the covering unit. Behind the background (right) tube is a high-resolution camera.
The mainboard and PCBs are placed in the back of the fundus camera, where the
connectors and cables are placed as well. The connection is done using a USB cable
to the computer.

The image of a real eye from the second version of EYRINA could be found in
Fig. 11.8. Now, we just used an ophthalmologic eye phantom for version 3.

Version 3 was able to automatically capture a direct view to the eye, i.e. pupil
detection, focusing and taking pictures automatically; however, it is not possible to

Fig. 11.8 Retinal image of a real retina from the second version of EYRINA
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Fig. 11.9 Model of the construction of a fourth-generation device

capture images for retinal images stitching, and if the user has not centred the optical
axis of his/her eye with the optical axis of the camera system, the view to the eye is
not correct. The new version 4 has a 5-axes manipulator, which is able to find the
centred position of both optical axes (eye and camera) automatically. The other new
parts are the compensation of diopter distortion ±12 D (with additional rings for
up to ±30 D), automatic composition of scanned images, automatic recognition of
the optic disc, macula and selected pathologies, and a Wi-Fi/USB connection. The
model of the fourth version of this fundus camera is visible in Fig. 11.9. This camera
should be ready for laboratory installation in Autumn 2019.

11.1.4 Recognition Schemes

In the introductory chapter is an overview about the existing work on retina recog-
nition. There are several schemes that could be used for the recognition of retinal
images. For example, there are different approaches for retina image biometric recog-
nition. Farzin [8] and Hill [9] segment the blood vessels, from which it generates
features and stores up to 256 12-bit samples reduced to a reference record of 40 bytes
for each eye. Contrast information is stored in the time domain. Fuhrmann and Uhl
[14] extract vessels, from which the retina code is obtained. This is a binary code
that describes the vessels around the optical disc.

The first idea for recognition (described in Chap. 3.1) is based on the work of
Arakala et al. [15], where the biometric entropy of retina and recognition based on
area around the optical disc is calculated.Wehave extended this area and started using
it for identification. Our idea of localisation points to the retinal vascular bed and is
based on the similarity of the structure with the papillary lines in the fingerprints.
There, bifurcation, termination, position and direction of the minutiae are detected.
In retinas, blood vessels are not as severely terminated as in fingerprints, gradually
diminishing until lost. Therefore, we do not detect termination. On the contrary, the



11 Retinal Vascular Characteristics 319

bifurcation here is terminated. In addition, the complicated structure of the several
layers of blood vessels over one another is virtually crossing the vessels in the image.
It is not easy to know what is crossing and what is bifurcation, so we detect these
features together. We then base biometric recognition on these points.

We are also looking for the centre of the blind spot and the fovea. We created a
coordinate system with the centre in the middle of abscissa between the centre of
the blind spot and the centre of the fovea. The individual points are then represented
by the angle and distance in these units, i.e. the results are a set of vectors showing
the concrete place in the retinal image. Thus, we are invariant to the different way
of acquiring the retina, since the optical axes of the eye and the sensing device may
not always be unified.

In the retina, the situation is relatively simple because the algorithms are search-
ing the image for bifurcations and crossings of the retinal vascular system, whose
positions clearly define the biometric instance (i.e. the retina pattern). An example is
shown in Fig. 11.10. Recognition becomes problematic when a stronger pathological
phenomenon (e.g. a haemorrhage) occurs in the retina that affects the detection and
extraction of bifurcations and crossings. For biometric systems, it should be noted
that their use also includes the disclosure of information about their own health sta-
tus since, as mentioned above, a relatively large amount of information on human
health can be read from the image of an iris, and that is, especially, the case for a
retina as well. It is therefore up to each of us in regard to how much we will protect
this private information and whether or not we will use the systems. However, if the
manufacturer guarantees that the health information does not get stored, and only
the unique features are stored (not the image), then the system may be used based
on data protection legislation (e.g. GDPR).

Fig. 11.10 Extracted features (bifurcations and crossings, incl. the connection of macula and blind
spot) in the retina [37]
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11.1.5 Achieved Results Using Our Scheme

The aim of this work was to compare manually marked and automatically found
bifurcations/crossings using our application, RetinaFeatureExtractor, and find out
the success of the automatic search. First, we created a Python extract_features.py
script that reads retina images from the selected folder and uses RetinaFeatureEx-
tractor to find bifurcations/crossings for each image and save them into text files in
the same hierarchy as the source images. After obtaining a set of automatically found
bifurcations/crossings, we designed an algorithm for comparing them to manually
selected bifurcations/crossings (ground truth). We then created a Python compari-
son.py script that compares the found bifurcations.

The algorithm automatically finds bifurcations/crossings that are paired with the
manually found bifurcations/crossings. The algorithm works as follows:

• Converts the found bifurcations/crossings to the same coordinate system.
• For each manually found bifurcation/crossing, it locates around the size t candi-
dates for pairing and remembers their distance.

• If the number of manually found bifurcations/crossings and candidates for pairing
is not the same, the smaller of the sets is completed with placeholders.

• Builds a complete bipartite graph where one disjunctive set of vertices is created
by the manually found bifurcations/crossings, and the second by the candidates.
It also set the price of edges between the manually found bifurcations/crossings
and their corresponding candidates and computes the distance. For other edges, it
sets the value from the interval <t+1, ∞).

• Finds the minimum matching in the bipartite graph.
• From paired pairs, it removes those where one of the bifurcations/crossings is a
placeholder, or those pairs of them where the distance is greater than t.

• Calculates the percentage of the manually marked points that have been paired.

In both sets, the positions of the blind and yellow spot are given. It is in files
with manually marked bifurcations/crossings and the blind spot is marked with a
rectangle, and in automatically found bifurcations/crossings it is a circle. The yellow
spot is in both file types marked with a circle. Bifurcations/crossings are expressed
by r and ψ . The r is the distance from centre of the blind spot, but it is recalculated
so that the distance from the centre of blind spot to the centre of the yellow spot is
1. The ψ stands for the angle from the blind spot with zero value to the centre of
yellow spot.

We decided to convert the found bifurcations/crossings into aCartesian coordinate
system. We needed to calculate the distance between the centre of the blind spot
(hereafter CBS) and yellow spot (hereafter CYS). In the file with manually marked
bifurcations/crossings, only the centre of the rectangle indicating the blind spot had to
be calculated; in the expression of the circles, their centre was already contained. We
then calculated their Euclidean distance (hereinafter d). Afterwards, we calculated
the angle between the centres of both spots (hereafter α) according to Eq. (1.1).

α = arctg2((y.CYS − y.CBS), (x.CYS − x.CBS)). (1.1)
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Using Eq. (1.2), we calculated the bifurcation/crossing distance from the blind
spot:

v = r · d (1.2)

Then, using Eqs. (1.3) and (1.4), we calculated the coordinates dx and dy:

dx = d · cos(ψ + α), (1.3)

dy = d · sin(ψ + α). (1.4)

The resulting point of bifurcation/crossing in the Cartesian system is obtained as[
dx + x.CBS; dy + y.CBS

]
.

We saved the converted points to the list and used their position in the list that
we could use as ID to compile disjunctive sets. We assigned a placeholder ID with a
value of−1. To calculate the minimum pairing we used the fact that this problem can
be converted to the problem of integer programming [16]. After the calculation, we
obtained the edges between the individual vertices of the graphs and we could cal-
culate how many manually found bifurcations/crossings were paired. The resulting
image for the comparison is shown in Fig. 11.11.

We used three publicly available databases: Drions [17], Messidor [18] and HRF
(High-Resolution Fundus Image Database) [19].

Fig. 11.11 The resulting image for the comparison of manually and automatically found bifurca-
tions/crossings
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Table 11.1 The summarised results for manual and automatic bifurcation/crossing detection

Database Average success rate
[%]

Average marking
error [%]

Average point spacing
[px]

Drions images 62 47 5.25

HRF 66 31 4.55

Messidor (Base12) 74 65 4.25

Messidor (Base13) 79 63 5.01

Messidor (Base22) 61 45 4.65

Messidor (Base3) 82 72 4.95

Average 70.67 53.83 4.78

The Drions database consists of 110 colourised digital retinal images from the
Ophthalmology Service at Miguel Servet Hospital, Saragossa (Spain). Images are
in RGB JPG format, and the resolution is 600 × 400 with 8 bits/pixel [17]. The
Messidor database originally contains 1,200 eye fundus colour numerical images
of the posterior pole. Images were acquired by 3 ophthalmologic departments. The
images were captured using 8 bits per colour plane at 440 × 960, 240 × 488 or 304
× 536 pixels. The HRF database contains 15 images of healthy patients, 15 images
of patients with diabetic retinopathy and 15 images of glaucomatous patients.

We used images from these databases to compare our manually selected and
automatically marked bifurcations and crossings in them.

The results are summarised in Table 11.1.
At the same time, we have modified and improved our algorithm that we tested

on the VARIA database [20], which contains 233 images from 139 individuals. We
conducted a classic comparison of found bifurcations/crossings that correspond to
the fingerprint method. The DET curve is shown in Fig. 11.12.

ALG-1 is an elementary algorithm that only shrinks images to one-fifth, smoothes
them, and equalises the histogram.

ALG-3 processes images as follows: after processing ALG-1, it detects an optical
disc and fovea and then aligns the images to a uniform plane. Next, it highlights the
vessels in the image and crops the compared area around the optical disc.

ALG-2 compared to ALG-3 does not cut the image, only on the optical disc area.
Moreover, the resulting image is applied to edge detection.

Source code of algorithms is available on [21].

11.1.6 Limitations

There are some limitations in retinal biometrics that discourage greater use in bio-
metric systems. There is currently no system that can remove these shortcomings to
a greater extent [9]:
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Fig. 11.12 The DET curve for our three versions of the algorithm RetinaFeatureExtractor

• Fear of eye damage—The low level of infrared illumination used in this type of
device is completely harmless to the eye, but there is a myth among the lay public
that these devices can damage the retina. All users need to be familiar with the
system in order to gain confidence in it.

• Outdoor and indoor use—Small pupils can increase the false rejection rate. Since
the light has to pass through the pupil twice (once in the eye, then outward), the
return beam can be significantly weakened if the user’s pupil is too small.

• Ergonomics—The need to come close to the sensor may reduce the comfort of
using the device.

• Severe astigmatism—Data subjects with visual impairments (astigmatism) are
unable to focus the eye onto the point (a function comparable to measuring the
focusing ability of the eye for an ophthalmologist), thus avoiding the correct gen-
eration of the template.

• High price—It can be assumed that the price of the device, especially the retro-
viral optical device itself, will always be greater than, for example, the price of
fingerprint or voice recognition capture devices.

The use of retinal recognition is appropriate in areas with high-security require-
ments, such as nuclear development, arms development, as well as manufacturing,
government and military facilities and other critical infrastructure.

11.2 Eye Diseases

The main focus of this chapter is on ophthalmology in regard to examining the retina
of the eye, taking into account, of course, the overall health of the eye (e.g. cataracts or
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increased intraocular pressure). Within the retina is a relatively large line of diseases
and damages that interest medical doctors, but they are detailed in an encyclopaedia
of ophthalmology consisting of hundreds of pages (e.g. [22] (1,638 pages) or [23]
(2,731 pages)). The largest group is diabetes and Age-related Macular Degeneration
(ARMD). Occasionally exudates/druses or haemorrhages (bleeding or blood clots)
appear in the retina; however, as mentioned above, potential damage (e.g. perforation
or retinal detachment) or retinal disease is such a matter.

In comparison with other biometric characteristics (e.g. fingerprints, the vascular
patterns of the hand or finger), the role of diseases connected to a concrete biometric
information career (e.g. finger, hand) plays a very important role. It is not only the
ageing factor, which can bring some changes into the retinal image sample, but the
pathologies on the retina can disable the subject, making them unable to use the
biometric system. The most common disease manifestations are related to diabetes
mellitus and ARMD, whereas these pathologies (e.g. haemorrhages and aneurisms)
can change the quality of the image so much that the vascular pattern is partially
covered or completely invisible. Therefore, a short description of the most important
and the most widespread retinal diseases are mentioned and shortly described to
get the feeling of how much they can decrease the biometric performance of the
recognition algorithms. These diseases are expected to influence recognition scheme
described in the Sect. 11.1.4. The impact on biometric recognition is based on our
observations and has no empirical evidence.

Diabetes mellitus (DM, diabetes) [24] is a disease characterised by elevated blood
glucose (hyperglycemia) due to the relative or absolute lack of insulin. Chronic
hyperglycemia is associated with long-lasting damage, dysfunction and failure of
various organs in the human body—especially, the eyes, kidneys, heart and blood
vessels. Most types of diabetes [24] fall into two broader categories: type 1 and type
2.

While diabetes mellitus (diabetes) has been described in ancient times, diabetic
retinopathy [25, 26] is a disease discovered relatively late. Diabetic Retinopathy
(DR) is the most common vascular disease of the retina. It is a very common late
complication of diabetes and usually occurs after more than 10 years of having
diabetes.

Diabetic retinopathy occurs in several stages. The first stage can only be detected
by fluorophotometry. The next stage is called simple, incipient or Non-proliferative
Diabetic Retinopathy (NPDR). This is characterised by the formation of smallmicro-
aneurysms (vessel bulging), which often crack and result in another typical symp-
tom—the formation of small intrarethral or pre-renal haemorrhages. Because the
micro-aneurysms and haemorrhages include blood, their colour is very similar to the
vessel pattern colour, i.e. if larger areas in the eye are affected by these diseases, it is
expected to the biometric recognition performance drops down, because the recogni-
tion of retinal images is based on the comparison of vessel structures for both images.
Microinfarcts have a white colour, a fibrous structure, and are referred to as “cotton
stains”. If the capillary obliteration is repeated at the same site, heavy exudates arise.
These are a sign of chronic oxygen deficiency. They are yellow, sharply bounded,
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and formed by fat-filled cells. This stage is called Proliferative Diabetic Retinopathy
(PDR) [25, 26].

Micro-aneurysms (MA) [25, 26] are considered to be basic manifestations of dia-
betic retinopathy. Although micro-aneurysms are characteristic of diabetic retinopa-
thy, they cannot be considered a pathologic finding for this disease. They can, how-
ever, manifest in many other diseases. MAs are the first lesions of the DR that
are proven by biomicroscopic examination. The flowing MA leads to the forma-
tion of edema and annularly deposited exudates. Their size is between 12 μm and
100 μm. These are round dark red dots, which are very difficult to distinguish from
a micro-haemorrhage. Unlike these, they should have more bordered edges. If their
size is greater than 125 μm, it must be taken into account that they may be micro-
haemorrhages. As mentioned above, their colour is similar to the vascular pattern
and it is expected that they influence biometric recognition performance.

Depending on the location within the retina, we can distinguish haemorrhage
intraretinally and sub-retinally [25, 26]. Haemorrhages occur secondarily as a result
of the rupture of micro-aneurysms, veins and capillaries. Spotted haemorrhages are
tiny, round red dots kept at the level of capillaries and only exceptionally deeper (see
Fig. 11.13 right). Their shape is dependent on their location, but also on the origin of
the bleeding. Spontaneous haemorrhages have the characteristic appearance of stains
and their colour is light red to dark. As mentioned above, their colour is similar to
a vascular pattern and it is expected that they influence the biometric recognition
performance.

Hard exudates (Fig. 11.13 left) [25, 26] are not only characteristic of diabetic
retinopathy. They are also found in many other diseases. Hard-dotted exudates are
round, clear yellow dots. They create different clusters with a pronounced tendency
to migrate. Stubborn hard exudates are predominantly surface-shaped and have the
shape of a hump. The colour of this pathology is different from the vascular structure,
so it does not affect biometric recognition performance, but it can affect the ability
of preprocessing algorithms to prepare the image for venous structure extraction.

Soft exudates (Fig. 11.13 left) [25, 26] are considered to be a typical manifestation
of diabetic retinopathy, but it can also be found in other diseases. They result from

Fig. 11.13 (Left) Hard and soft exudates [46] and (right) haemorrhage and micro-aneurysms [47]
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arteriolar occlusions (closures) in the nervous retinal layer. They are often accom-
panied by a plague-like haemorrhage. There are often extended capillaries along
the edges. The colour of this pathology is different from the venous structure, so
it does not affect biometric recognition performance, but it can affect the ability of
preprocessing algorithms to prepare the image for venous structure extraction.

Age-related Macular Degeneration (ARMD) [27–29] is a multifactorial disease.
Theonly reliably proven cause ofARMDdevelopment is age.ARMDis characterised
by a group of lesions, among which we classically include the accumulation of
deposits in the depth of the retina—drunia, neovascularisation, fluid bleeding, fluid
accumulation and geographic atrophy.

Based on clinical manifestations, we can distinguish between dry (atrophic, non-
exudative) and wet (exudative, neovascular) disease [27–29]. The dry form affects
less than 90% of patients and is about 10% moist.

Dry form—This is caused by the extinction of the capillaries. Clinical findings
found that in the dry form of ARMD druses, there are changes in pigmentation and
some degree of atrophy. The terminal stage is called geographic atrophy. The druses
are directly visible yellowish deposits at the depth of the retina, corresponding to the
accumulation of pathological material in the inner retinal layers. The druses vary in
size, shape, appearance. Depending on the type, we can distinguish between soft and
hard druses. Soft druses are larger and have a “soft look”. They also have a distinct
thickness and a tendency to collapse. Druses that are less than half the diameter of
the vein at the edge of the target, and they are referred to as small (up to 63 μm)
and respond to hard druses. Druses ≥125 μm are large and respond to soft druses.
Hard druses are not ophthalmoscopically trapped up to 30–50 μm [30]. Geographic
atrophy is the final stage of the dry, atrophic form of ARMD—see Figs. 11.14 and
11.15. It appears as a sharp, borderline oval or a circular hypopigmentation to depig-
mentation or direct absence of retinal pigment epithelium. Initially, the atrophy is
only light, localised, and gradually spreading often in the horseshoe shape around
the fovea. The development of atrophy is related to the presence of druses and, in
particular, their collapse or disappearance [27–29].

Fig. 11.14 (Left) ARMD—soft druses [48]; (right) ARMD—hard druses [28]
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Fig. 11.15 (Left) Geographic atrophy [28]; (right) wet form with edema [49]

Moist form—This is caused by the growth of newly formed vessels from the
vasculature that spread below the Bruch membrane. Within the Bruch membrane,
cracks are created by which the newly created vessels penetrate under the pigment
tissue and later under the retina. The newly created vessels are fragile and often bleed
into the sub-retinal space [27–29].

In this case, soft and hard druses are not comparable in colour and shape with
the vascular pattern in retinal images; however, they can influence the image pre-
processing algorithms, which are preparing the image for extraction of the vascular
pattern. Herewith the biometric recognition performance can dropdown. However,
this is not a big change. All of the algorithms for retinal image preprocessing should
be adopted to treat such diseases to be able to reliably extract the vascular pattern.

The retinal detachment (see Fig. 11.16 left) of the eye occurs when a variety of
cracks appear in the retina, causing the vitreous fluid to get under the retina and lift
it up. Oftentimes, this detachment occurs at the edge of the retina, but from there it
slowly moves to the centre of vision when untreated. The ageng process can result
in small deposits within the retina, which can create a new connection between the

Fig. 11.16 (Left) Retinal detachment [48]; (right) retinal (lacquer) crack [50]
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vitreous and the retina [29, 31]. This disease completely destroys the concrete (up
the complete) parts of the retina, whereas the vascular pattern is lifted and moved in
space, i.e. the original structure before and after this disease is so different that the
subject is not be recognised when using a biometric system based on retinal images.

The retina can crack (see Fig. 11.16 right) in the eye of a person for various
reasons. This may be due to the complications of another eye disease, a degenerative
form of eye disease, or it can also occur when eye or brain injury occurs. This
cracking usually occurs if the retina is not properly perfused for a long time [29,
31]. This means that the venous system beneath the top layer of the retina begins to
intermingle, i.e. a new venous structure appears in the retinal image that is difficult
to distinguish from the top layer, disabling recognition from the originally stored
biometric template. However, it is possible to create a new biometric template in the
actual status of the disease that is adapted to the current status after every successful
biometric verification.

Retinal inflammation is also known as retinitis. Inflammation of the retina of
the eye can cause viruses and parasites, but the most common cause is bacteria.
In many cases, inflammation of the retina is not isolated and is accompanied by
the inflammation of the blood vessel, which holds the retina with blood [29, 31].
Retinitis creates new and distinctive patterns, mostly dark in colour, which greatly
complicate the extraction of the venous structure. It is expected to thus have a very
strong influence on biometric recognition performance.

Swelling of the retina, or diabetic macular edema, affects diabetics as the name
suggests. This swelling occurs after leakage of the macula by the fluid. This swelling
may occur for data subjects who suffer from long-term diabetes, or if they have too
high glucose levels during treatment. Swelling is caused by damage to the retina
and its surroundings. These catheters then release the fluid into the retina, where it
accumulates, causing swelling [29, 31]. The influence to biometric recognition per-
formance is comparable with the manifestation of retinal detachment—the structure
is changed within the space, thus having an impact on the position of vascular system
in the retinal layer.

Relatively frequent diseases of the retina are circulatory disorders, where the
retinal vessel closes. These closures arise mostly as a result of arteriosclerosis, which
is a degenerative vascular disease where it is narrowing and a lower blood supply to
tissues [29, 31].

Central vision artery occlusion causes a sudden deterioration in vision. On the
ocular background there is a narrowed artery, retinal dyspnea and swelling. Drugs
for vascular enlargement, thrombus dissolving medicines and blood clotting drugs
are applied [29, 31].

The closure of the central retinal vein is manifested by the rapid deterioration
of vision; the thrombus causes vein overpressure, vein enlargement is irregular and
retinal bleeding occurs. Drugs are used to enlarge the blood vessels and after a time,
the thrombi are absorbed, or the circulatory conditions in the retina are improved via
laser [29, 31].

Circulatory disorders always have a very significant effect on the colour of the car-
diovascular system, making the veins and arteries very difficult to detect, especially
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when the vessel is combined with its haemorrhage. In this case, it is not possible
to reliably detect and extract the venous system, thereby dramatically reducing bio-
metric recognition performance. Even image preprocessing algorithms will not cope
with this problem.

11.2.1 Automatic Detection of Druses and Exudates

The disease occurring in the retina may occasionally prevent the proper evaluation
of biometric features. Retinal disease can significantly affect the quality and per-
formance of the recognition. The subject can be warned that the quality of his/her
retina is changing and artefacts (warn to go to an ophthalmologist) appear, i.e. they
are making recognition difficult. Large areas of the retina image impacted by disease
or any disorder will lower the recognition performance, and thus retina image qual-
ity counts by rating the concepts of ISO/IEC 29794-1. At the present time, we are
focusing on detecting and delimiting the exudates/druses and haemorrhages in the
image, automatically detecting the position of the macula and blind spot. These are
the reference points by which we determine the location of pathological findings. We
associate the centre of gravity of the blind spot with the centre of gravity of the mac-
ula (yellow spot). Afterwards, we locate the centre of a given point on this abscissa,
which is the reference point for comparing and positioning not only the biometric
features in the image, but also the diseases and disorders. The greatest negative con-
sequence of vision is spread to the part called the fovea centralis, where the sharpest
vision is located. Once this area is damaged, it has a very significant impact on sight.
It is also relevant to detect the quality of blood flow within the retina. There is still a
lot to do in all areas of imaging and video processing for medical purposes, as input
data is very different.

Due to the lack of images with ARMD in the creation of this work, the images
with exudates will be used as well. Druses arising from ARMD are very similar
to those exudates that occur in diabetic retinopathy. For this reason, it is possible to
detect these findingswith the same algorithm. In both cases, there are fatty substances
deposited in the retina, which have a high-intensity yellow colour (see Fig. 11.20).
Their number, shape, size and position on the retina differ from patient to patient.

The detection of droplets and exudates works with the green channel of the default
image (Fig. 11.17 left). A normalised blur with a mask of 7 × 7 pixels is used.
This is due to the exclusion of small, unmarked areas that are sometimes difficult
to classify by an experienced ophthalmologist. This Gaussian adaptive threshold is
then superimposed on this fuzzy image, which is very effective in defining suspicious
areas. The threshold for Gauss’s adaptive threshold is calculated individually for each
pixel where this calculation is obtained by the weighted sum of the adjacent pixels of
a given pixel fromwhich a certain constant is subtracted. In this case, the surrounding
area is 5 pixels, and the reading constant is 0, so nothing is deducted. The result of
this threshold can be seen in Fig. 11.17 middle. Only now a mask containing the
areas of the bloodstream and optical disc that have already been detected earlier
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Fig. 11.17 (Left) Original image; (middle) thresholding; (right) obtained suspicious areas

can be applied. If this mask was used at the beginning, it would adversely affect
this threshold because it would create too much contrast in the image between the
excluded areas and the rest of the retina. This would cause the contours of the blood
vessels and the optical disc to be included in suspicious areas, which is undesirable.
After the mask is applied, the image is then subjected to a median smoothing with
a 5 × 5 matrix size to remove the noise. The resulting suspicious areas are captured
in Fig. 11.17 right.

Retinal images, whose bloodstream contrasts very well with the retina, cause
the contours of these vessels to be included in suspicious areas. To prevent this, it is
necessary to adjust the bloodstreammask before it is used. Editing is a dilation of this
mask in order to enlarge the blood vessels. The difference between the original and the
dilated mask is shown in Fig. 11.18 left and right. As soon as this mask is applied,
unwanted contours are excluded from the image being processed. A comparison
between suspicious areas using an untreated and modified mask can be seen in
Fig. 11.19 left and right.

The final step is to determine which of the suspected areas are druses or exu-
dates and which not. For this purpose, the HSV colour model is used, to which the
input image is converted. The HSV colour model consists of three components: hue,
saturation and value, or the amount of white light in the image.

First, the contours of the suspicious areas are determined in order to calculate their
contents. If the content of a given area is greater than 3 pixels, the corresponding

Fig. 11.18 (Left) Original mask; (right) mask after dilatation
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Fig. 11.19 (Left) Suspicious areas with untreated mask; (right) suspicious areas with a modified
mask

Table 11.2 Overview of HSVs for classification of suspicious areas

Value Limit 1 Limit 2 Limit 3

H 30–12 30–15 30–19

S 255–170 255–120 255–187

V 255–120 255–84 255–75

area in the HSV image is located. From this, the average colour tone, saturation and
brightness of this area can be calculated. Experimenting on the different images set
out the limits set out in Table 11.2. If one of the areas falls within one of these limits,
it is a druse or exudate.

Once a region has been classified as a finding, its centre of gravity is calculated
using the mathematical moments, which represents the centre from which a circle is
created to indicate the finding. Labelling is first performed on a blank image, from
which external contours are selected after checking all areas. These are plotted in the
resulting image so that individual circles do not overlap the detected findings. The
result of the detection can be seen in Fig. 11.20 (see Fig. 11.21).

11.2.2 Testing

The algorithm has been primarily designed to detect findings in Diaret databases, but
we also use images from the HRFIDB, DRIVE, and four frames from the bottom of a
camera located in the biometric laboratory at the Faculty of Information Technology,
BrnoUniversity of Technology, to test the robustness. These databases differ in image
quality, which greatly affects the accuracy of detection. Table 11.3 shows their basic
characteristics. In the initial testing of other databases, the algorithm seemed entirely
unusable. After analysng the problem of incorrect detection, the parameters were
modified and the algorithm achieved better results.
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Fig. 11.20 Detection result

Fig. 11.21 Haemorrhage (left), detection of suspected areas (centre) and haemorrhage (right)

Table 11.3 Database characteristics

Database Number of frames Format Size Camera FOV

DIARETDB 0 89 PNG 1,500 × 1,152 – 50°

DIARETDB 1 130 PNG 1,500 × 1,152 – 50°

HRFIDB 16 JPG 3,504 × 2,336 Canon CR-1 45°

DRIVE 20 TIF 565 × 584 Canon CR5 45°

BUT retinal
database

4 PNG 3,888 × 2,592 Canon CR-1 –
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To evaluate the success of detecting the background mask, optical disc and fovea,
an ophthalmologist is not required. These parts of the retina may also be determined
by a layman after initial training on the basic anatomy of the retina. However, to
evaluate the accuracy of detection, it is necessary to compare these results with the
actual results, where detection was performed by a manual physician, optimally
an ophthalmologist. These findings are relatively difficult to identify and detection
requires practice. Evaluating images is also time consuming. Determination of the
findings was carried out manually on the basis of a test program in the presence of a
student at the Faculty ofMedicine at theMasaryk University in Brno. In addition, the
DIARETBD0 and DIARETDB1 databases are attached to diaretdb0_groundtruths
and diaretdb1_groundtruths, where there is information about what symptoms are
found in the image (red small dots, haemorrhages, hard exudates, soft exudates,
neovascularisation).

In order to detect micro-aneurysms, haemorrhages, exudates and druses, a test
program has been developed to speed up and automatically evaluate this process.
The test program will display two windows to the user. The first window will display
an original image with automatically marked holes through which the matrix is
placed. On this matrix, you can click through the cursor to pixels (30 × 30) that
we want to mark as finds. In the second window there is an original image from the
database—see Fig. 11.22.

The output from the test program provides four types of data: true positive, false
positive, true negative, false negative. We obtain these values by comparing ground
truth and automatically evaluated areas for each frame. The resulting values are
averaged from all images in order to determine overall sensitivity and specificity.
Sensitivity for us, in this case, represents the percentage of the actually affected parts
of the retina classified by automatic detection as affected. The true positive rate is
obtained using the formula:

TPR = TP

TP + FN
. (2.1)

Fig. 11.22 Making ground truths of diseases
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Specificity, or true negative rate in our case, means the percentage of healthy parts
classified by automatic detection as a healthy retina. We will calculate it according
to this relationship:

TNR = TN

TN + FP
. (2.2)

As we can see in Table 11.4, the optical disc was misidentified in eight cases.
Incorrect optical disc detection is caused by poor image quality; these shots contain
shadows or light reflections from the bottom of the camera. In one case, incorrect
detection causes an exudate of the same size and intensity as the optical disc.

The following two tables show the results of individual flaw detection tests
(Tables 11.5 and 11.6).

To test the possibility of using the algorithm for other fundus cameras, we use
images from the HRFIDB [19] and DRIVE [32] databases, along with four frames
from the BUT retinal database. In the first test, the algorithm over these databases
showed zero usability. This result causes a different image quality. Table 11.7 shows
the success of optical disc detection. The best results were obtained over theHRFIDB
database and on the pictures from the BUT database. These pictures are of good
quality and do not contain significant disease manifestations.

The following tables show the success of detecting findings: exudates, druses,
micro-aneurysms, haemorrhages (Tables 11.8 and 11.9).

There were no signs in the pictures taken from the school camera (Table 11.10).

Table 11.4 Optical disc

Database True positive False positive Success rate [%]

DIARETDB0 85 4 95.29

DIARETDB1 126 4 96.82

Table 11.5 Results of DIARETDB0

Diaretdb0 Sensitivity [%] Specificity [%] Success rate [%]

Exudates and druses 94.26 99.41 99.65

Microanalysis and haemorrhage 92.66 99.24 99.24

Table 11.6 Results of DIARETDB1

Diaretdb1 Sensitivity [%] Specificity [%] Success rate [%]

Exudates and druses 90.28 99.32 99.65

Microanalysis and haemorrhage 91.46 99.35 99.42
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Table 11.7 Results of OD detection

Database True positive False positive Success rate [%]

HRFIDB 16 0 100.00

DRIVE 19 1 94.73

BUT retinal database 4 0 100.00

Table 11.8 Results of HRFIDB

HRFIDB Sensitivity [%] Specificity [%] Success rate [%]

Exudates and druses 69.81 98.76 98.36

Micro-aneurysm and haemorrhage 18.30 99.87 99.51

Table 11.9 Results—DRIVE

Drive Sensitivity [%] Specificity [%] Success rate [%]

Exudates and druses 63.63 99.70 99.70

Micro-aneurysm and haemorrhage NA 98.63 98.53

Table 11.10 Results—BUT retinal database

BUT retinal database Sensitivity [%] Specificity [%] Success rate [%]

Exudates and druses NA 99.93 99.93

Micro-aneurysm and haemorrhage NA 99.97 99.95

11.3 Biometric Information Amounts in the Retina

The third part of this chapter summarises our research in computing the amount of
information in retinal images. We analysed the available databases on the Internet
and on our own, we computed the amount of bifurcations and crossings there are,
and made a first model of the occurrence of these points in the retina. Based on this
result we are working on computing a theoretical model for estimating the amount
of information (the maximum amount of embedded information in the retina). The
grid with occurrence probability distribution is shown in the figures as the end of this
section.

In the future, we want to start determining entropy in retina images. Entropy is
sometimes also referred to as a system disorder. It is one of the basic concepts in
many scientific fields. Information entropy is also called Shannon entropy. In the
following lines, the entropy term will always mean information entropy. We will
count entropy as a combination of possible variants. For example, fingerprinting
methods can be used to calculate retinal biometric entropy. The entropy counting
of the biological properties of the eye itself is limited by the sensing device. The
resulting entropy is then related to the available resolution. The reason why we want
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to estimate the maximum, average and minimal entropy is to get the idea of how
precise the recognition could be and how many people we can use this technology
for. It is believed that the retinal biometric entropy is corresponding to 10 times more
then our population has, however, this has not been proven until today.

Estimations for eye biometric entropy were done by several researchers. Daug-
man [33] analysed binary iris features, on which the Hamming distance is used for
comparing all subjects of a database to each other. He related the score distribution
to a Bernoulli Experiment having N = μ(1−μ)

σ 2 degrees of freedom, where μ is the
observed Hamming distance mean value and σ 2 is the variance, respectively.

Adler et al. [34] referred to the biometric information as biometric uniqueness
measurement. The approaches are based on a brute force estimate of collision, esti-
mating the number of independent bits on binarised feature vectors and the relative
entropy between genuine and impostor subspaces.

Nauch et al. [35] analysed the entropy of i-vector feature spaces in speaker
recognition. They compared the duration-variable p subspaces (Gaussian distri-
bution p(x) ∼ N

(−→μp, �p
)
) with the full-duration q spaces (Gaussian distribution

q(x) ∼ N
(−→μq, �q

)
), simulating the automatic recognition case for the analytic pur-

poses of estimating the biometric information of state-of-the-art speaker recognition
in a duration-sensitive manner.

Arakala et al. [15] used an enrollment scheme based on individual vessels around
the blind spot. Each vein line is represented by a triple position thickness angle,
where the position is the angle in degrees to the centre of the blind spot, the thick-
ness of the vessel is again in degrees and the angle is the slope of the vessel against
the thought line passing through the centre of the blind spot. It was found that the
position attribute corresponds to a uniform distribution of probability, the distribu-
tion of the angles corresponded to a normal distribution with a centre at 90° and a
mean deviation of 7.5°. Two peaks appeared in thickness, so the description of the
probability distribution was divided into peak and normal distributions. The study
resulted in an approximate entropy value of 17 bits.

11.3.1 Theoretical Determination of Biometric Information
in Retina

Based on the previously mentioned work [15], we try to count biometric entropy
in a wider area around the blind spot. First, we mark the ring area with a radius of
distance between the blind spot and fovea and cut off the blind spot. Then we mark
crossings and bifurcations. The resulting region we unfold from polar coordinates to
Cartesian ones. The resulting rectangle is then used for easier indexing of the place.

Using this principle, we expect deployment at any point of area. Then, using the
combinatorial Eq. (3.1), we calculate the maximum (theoretical) number of feature
points. We simulate all combinations of points in area. In this equation, we are
particularly interested in the position of the points, then the angle at which the



11 Retinal Vascular Characteristics 337

Fig. 11.23 Unfolding interest area

individual vessels are at the centre of the blind spot, and finally their thickness.

� =
(
p · r
n

)
·
(

ω + 2
3

)
·
(
t + 1
2

)
, (3.1)

where r is the width of the ring in pixels, p is the width in pixels of the expanded ring
around the blind spot, n is the average number of features (crossings and bifurcations)
in the image, ω is the number of possible angles that the vessels enclose with each
other and t (in the Fig. 11.23) is the maximum vessel thickness. The first part of
the formula expresses the possible location of features. It is a combination without
repetition—two features cannot occur in the same place. The angles ω usually have
a value of about 120°, as their sum will always be 360°. Angles can be repeated, so
a repeat combination is used in the formula. Likewise for the last part. The vessel
thicknesses of two out of three will be used for their resolution. The third thickness
is usually the same as one of the two previous ones.

When adding derived parameters from several retina samples, we can approxi-
mately calculate how many combinations of all parameters are within their limits.
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= 6.2×1080. (3.2)

11.3.2 Used Databases and Applications

For the purpose described at the beginning of this section, we used three pub-
licly available databases: Messidor [18], e-ophtha [36] and High-Resolution Fun-
dus (HRF) [19]. TheMessidor database contains 1,200 eye fundus colour numerical
images of the posterior pole. Images were acquired by three ophthalmologic depart-
ments using a colour video 3CCD camera on a Topcon TRC NW6 non-mydriatic
retinographwith a 45° field of view. The images were captured using 8 bits per colour
plane, at 440 × 960, 240 × 488 or 304 × 536 pixels. 800 images were captured with
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pupil dilation (one drop of Tropicamide at 0.5%) and 400 without dilation. The e-
ophtha database contains 47 images with exudates and 35 images with no lesions.
TheHRF database contains 15 images of healthy patients, 15 images of patients with
diabetic retinopathy and 15 images of glaucomatous patients. Binary gold standard
vessel segmentation images are available for each image. Additionally, the masks
determining Field of View (FOV) are provided for particular datasets. The gold stan-
dard data is generated by a group of experts working in the field of retinal image
analysis and medical staff from the cooperating ophthalmology clinics.

We randomly selected 460 images fromMessidor, 160 images from e-ophtha and
50 images from HRF. In the selected retinal images, both left and right eye images
were available. Images were reduced to a resolution of about 1 Mpx in order to fit
images on screen.

We developed three application software modules (marked as SW1, SW2 and
SW3). SW1 was developed for manually marking blind spots, yellow spots and
features as well as determining their polar coordinates. We marked all retinal images
via SW1 one by one. At first, we marked the boundary of the blind spot and then
the centre of the yellow spot. SW1 considered the blind spot as the pole and the
line between the blind spot to the yellow spot as the polar axis. Therefore, the angle
between the two spots was 0°. SW1 considered the distance between two spots as the
unit distance. Usually, the distance in pixels was not equal for two different retinal
images. However, SW1 considered distance as one unit for each image. Therefore,
the position of the yellow spot in every image was (1, 0°) in polar coordinates. After
marking two spots, we marked each feature by a single click. SW1 estimated the
polar coordinates of each feature by increasing clockwise and scaling distance.

SW2 was developed to conduct the marking process automatically and to com-
pare its detection accuracy with the manually marked-up results. The details of this
software were summarised in one master thesis [37].

SW3 was developed to estimate the number of features in different regions as
shown inFig. 11.23. SW3 loaded allmarked retinal images one byone andmapped the
polar coordinates of features to Cartesian coordinates. After that, SW3 presented the
intensity of occurring features in the area of 5× 5 pixels by a range of varying shades
of grey. The darker shade represented the higher occurrence of features, whereas the
lighter shade represented a lower occurrence. Then SW3 drew two circles in order to
show the boundary of the location of features, where the inner circle covered a 90%
area of the outer circle. Two circles were split up into four sectors by a horizontal
line and a vertical line. Radiuses were drawn every 18°, which split each sector into
five regions. The percentage of the occurrence of features in each region was written
outside of the outer circle. SW3 also drew two ellipses, Eblind and Eyellow, in order
to show the region surrounding the blind spot and the yellow spot, respectively. The
sizes of the ellipses were dependent on a threshold value δ1. That means the size
of a single ellipse was increased until the number of features inside that ellipse did
not cross the δ1 value. SW3 also drew an arc along the x-axis. The width of the arc
was decided by a threshold value of δ2. We set δ1 to 10 and δ2 to 500, based on the
number of labelled points in all retinae.
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11.3.3 Results

On average, we found 48 features on each image. The success rates of locating blind
spots and the yellow spot automatically were 92.97% and 94.05%, respectively. The
wrong localisation of spotswas caused primarily because of spots thatwere too bright
or too dark. The average deviation of a feature marked by SW1 and SW2 was about
5 pixels [37]. Eblind occupied 2.040% of the retina area, whereas Eyellow occupied
2.728% of the retina area, as shown in Fig. 11.24. The number of features is very
low inside Eblind and Eyellow, especially inside Eyellow. Therefore, Eyellow was bigger
than Eblind. On the real retinal image, near the yellow spot, the branches were so
small and the blood vessels were so thin that they were not captured by the fundus
camera. Therefore, a wide empty space can be seen near Eyellow in Fig. 11.24. We
also noticed that the major blood vessels often directed to four main directions from
the blind spot.

By creating a bifurcation and crossings scheme, we can now start generating
formulas for calculating the biometric entropy of retinal images using our biometric
recognition method. In the Fig. 11.24, there are areas around the blind spot and the
fovea where almost no markers are present. The area between the maximum edge
(grey in the picture) of the points and the (green) inner circle is eliminated from the
calculation. It’s a part that did not have to be seen in most of the pictures.

Fig. 11.24 Merged all bifurcations and crossings from the marked images
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11.4 Synthetic Retinal Images

The last section of this chapter will be devoted to our generator of synthetic reti-
nal images. We are able to generate a synthetic retinal image, including the blind
spot, macula and vascular patterns with randomly generated or predefined features
(crossings and bifurcations). Nowwe are working on the additional features that will
decrease the quality of such images, e.g. reflections, diseases. We are also working
on supplementing that with something that will generate diseases and damage on the
image of retina, so we can create a unique database for deep learning.

The main reason for a such generator is that it is very difficult to get a large-
scale database(s) with thousands of retinal images. To collect retinal images from
subjects, you need the appropriate equipment (minimally digital ophthalmoscope or
even better a fundus camera) and you need to find the volunteers who will be willing
to let their retinas get acquired. The best way, comparably with fingerprint areas in
biometric systems (synthetic image generators SFinGe, Anguli and SyFDaS), is to
use a generator of synthetic images. With that it is possible to generate any large-
scale database, where you can predefine (in a configuration file) the setting, i.e. how
many images with which background, distortions and features should be generated.
Therefore, this part is very important for biometric systems, because with this way
the training and testing of algorithms for biometric retinal recognition could be done
on large-scale databases. It is important that the quality of the images correspond to
the real images, i.e. some work is still ahead of us.

First, a basic idea of how the generator will work and how its main parts are identi-
fied is described. Furthermore, the designs of the individual parts of the generator are
described in greater detail and are intended to create partial sections of the resulting
image. The aim is to design the generator so that it generates images as close as
possible to real images of the retina. Real images often have a very different look in
terms of colour distribution or detail. One of the test options which we compare the
reality of created images is using the bifurcation and crossing searching described
in Sect. 11.1.4.

The generator is able to create the desired number of randomly generated synthetic
retinal images at the selected resolution and the selected general properties, such as
the image angle or the zoom rate according to the specified parameters.

The generator can then generate a large number of images of the retina, where it
is possible to train and test various algorithms. If we add a disease creation module
to the generator, we can also test algorithms for further detection.

11.4.1 Vascular Bed Layer

The retinal vasculature of the retina consists of the arterial and venous channels.
Both of these beds can be divided into upper and lower branches, which are further
divided into nasal and temporal branches.
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When generating the texture of this layer, the generator uses pre-generated branch-
ing positions for the arterial and vein branches. The method for generating these
positions is described in Sect. 11.4.4. Generally, the generator first creates separate
textures of the arterial and venous channels, which then merge into one final tex-
ture (see Fig. 11.25). This division is necessary due to the way the vascular bed is
rendered. It counts that blood vessels do not cross each other.

Partial textures aremerged so thatwhen the artery andvein are in the sameposition,
a new value of the colour and transparency of the texture is calculated at that position.
In this calculation, both original colours are used with respect to transparency, with
the unified textured vein being drawn above the artery. If only the artery or vein is at
the given position, it will be redrawn into the resulting texture unchanged. If there is
no vessel in the position, this position remains transparent on the resulting texture.

Partial textures then arise through the gradual plotting of the individual branches
of the arterial or venous passages.

In order for a natural resulting vessel shape, it is necessary that the connectors
between the individual branches of the branch take the form of a curve without
significant sharp breaks at the branching points. Because the curve is the link between
the sequences of points, it cannot be divided into several parts at one point. Therefore,
the branched tree of the given branch is plotted sequentially, as shown in Fig. 11.26.
A description of this plotting is given in Chap. 4.4.

Gradual rendering takes place by gradually forming a curve from the initial point
of the branch of the vascular stream, which passes through the following branches
of branching, where it continues with a wider vessel at any one of the endpoints of
the vascular bed. As soon as the vessel is drawn from the beginning to the end, a

Fig. 11.25 (Left) Arterial fluid texture; (middle) vein texture; (right) resulting vascular fluid texture

Fig. 11.26 Gradual rendering of the upper temporal branch
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Fig. 11.27 Connecting the new vessel to the already depicted vessel at the branch point

new starting point is chosen as one of the already drawn branch points, in which the
beginning has the widest still unrefined vessel. The vessel with this starting point
will be drawn in the same way as the first vessel. This procedure is repeated until all
the blood vessels of the branch are drawn. To plot the vessel the cubic Bézier curve
is used: see [38].

The vessel is plotted sequentially from the starting point to the endpoint following
the pair of branching points running consecutively. For each point’s pair and the
relevant control points that affect the shape of the curve between them, the partial
points of the curve are then calculated.

CalculatedBézier curve points are then linked by lineswhose points are calculated
using the Bresenham algorithm. A texture of the blood vessel is drawn around this
curve, consisting of partial segments. For each point of the curve, a semicircle is
drawn in the direction of the line below which the point belongs. The Bresenham
algorithm is also used to draw this semicircle, with the radius of the circle (line
length) equal to half the width of the vessel at that point. In this rendering process,
all points belonging to the texture of the vessel are rendered, but for one point its
colour is calculated several times with different parameters. The resulting colour
is selected as the colour whose individual components have the highest value. The
lightest and least transparent colour corresponds to the smallest distance from the
centre of the vessel.

This method of selecting the resulting point colour is the reason why arteries and
veins have to be plotted separately and then combined into one texture in another
way. However, it is used when plotting a new vessel to connect this vessel to the
already drawn vessel at the branch point: see Fig. 11.27.

The basic RGB colour of the texture is in the artery (160, 15, 15) and in the
vein (150, 5, 15). The individual colour components are adjusted for each frame by
multiplying by rand (0.99, 1.01).

11.4.2 Layers

When looking at the real images of retinas, it is possible to easily identify four
different parts of the image that can be generated separately and then be combined
into a final image. These subparts are represented as image layers in the generator,
where the lowermost layer contains the background texture of the retina. Here, the
layer containing the texture of the optic nerve target overlaps. Both of these layers
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are covered by another layer containing the texture of the vascular bed. All layers
then overlay the textured frame layer. Figure 11.28 shows the plot of the individual
layers in the given order.

The layer has the shape of a square surface on which the texture is applied. The
side size of this area is equal to the shorter side of the rendering window, which
is multiplied by two scaling parameters. The centre of the layer is aligned to the
centre of the rendering window, with only the parts of the generated text within the
rendering window being included in the resulting image.

Because of the layer size and texture variable applied to it, the generator uses a
custom coordinate system to create textures, where it then maps the individual pixels
of the texture.

Scaling, shifting and rotating the layer and the texture are designed to be inde-
pendent of texture generation. While scaling modifies the layer size and does not
manipulate the coordinate system, rotation and displacement do not change the posi-
tion of the layer but are applied to the coordinate system.

As can be seen in the real frames shown in the earlier sections of this work, the
images of the retina do not always occupy the whole area of the image, or sometimes
they are partially cut-off. Therefore,we resize the layer so that the size of the rendering
window does not change, as well as the resolution of the resulting image.

As with the first case, but this time without changing the frame texture layer size,
it is possible to choose howmuch of the retina is presented in the image, so be sure to
choose the pixel size of the fundus camera that would capture such a frame. Different
settings for this parameter are shown in Fig. 11.29.

Real motion capture is not always ideal. The image is more or less rotated and
possibly slightly shifted. The displacement may also be deliberate if another part
of the retina is being captured. For this reason, these transformations also allow the
proposed generator. Both transformations are applied to the coordinate system, not
to the layer itself. First, a shift is made followed by rotation. For each layer, it is
possible to set the own rotation and displacement size with both layers transforming
over layers. Thus, when the background is rotated and shifted, the target of the optic
nerve and the vascular bed is shifted. Further transformation at the optic nerve target
layer can then change its position relative to the background. Likewise, the position of
the vascular bed can be changed to the lower two layers. Since these transformations

Fig. 11.28 A gradual render of layers. (left) Background layer; (left middle) adding a layer of the
optic nerve target; (right middle) adding a vascular bed layer; (right) adding a layer of frame
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Fig. 11.29 The different sizes of the retrieved part of the retina: (left) maximal zoom; (middle)
central zoom; (right) no zoom

are intended to simulate a different eye position when capturing the retina, they are
not applied to the frame layer.

11.4.3 Background Layers

The retina background is mostly reddish; the fovea and ex-macular periphery are
darker. The area between the fovea and the border of the macular area is then lighter.
In amore detailed view, smaller objects of different colours and intensities are visible
throughout the area, creating a dense vascular network of the cavity.

The generated background texture is opaque to basic RGB colour (200, 60, 40).
Figure 11.30 shows the resulting background texture.

This function describes the randomness of the background texture and is generated
by the shadowing choroid. It uses Perlin noise, which has three octaves, frequency
and amplitude set to 1, and returning values from interval <−1;1>. Perlin noise is
also initialised by a random number, making it different for each frame.

Fig. 11.30 (Left) The resulting background texture without a noise function; (right) with a noise
function
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Graphically, the function is depicted in Fig. 11.31 where the dark areas indicate
the positive values of the noise and the light areas of the negative values. When the
dark area is getting lighter, the closer value of the function is to 1 and when the light
area is getting lighter, the function’s value is closer to −1. At the transition of dark
and light areas, the function has a value of 0.

The texture of the Optic Disc (OD) target is largely transparent except the ellipse-
shaped area that contains the texture of the OD target itself. When generating a
texture inside this ellipse, the base colour of the RGB value is again returned (250,
250, 150). Each folder is multiplied by the function rand (0.98, 1.02), as well as
background textures to ensure the variability of the base colour for different images.

Figure 11.32 shows the resultant texture of the OD target (cut from the overall
layer texture) together with the individual colour components from which it was
composed. However, the colour of the texture still changes in the final rendering, and
because of its partial transparency, its colour also affects the colour of the background
texture beneath it.

For each image, the final position of the OD is slightly different due to accidental
slight rotation and displacement. When the left-eye image is generated, the rotation
is 180°.

Fig. 11.31 Noise function

Fig. 11.32 The texture of the optic nerve target and its parts: (left) red texture colour component;
(left middle) green; (middle) blue; (right middle) texture transparency; (right) resulting texture
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11.4.4 Generating a Vascular Bed

Before drawing a vascular bed, it is first necessary to generate the branch positions of
the blood vessels and properties of these points needed for plotting. These points are
generated separately for each of the major branches of the artery and vein. Branching
points are generated for all branches by the same algorithm with different values of
some parameters. Their generation is divided into two parts. First, a tree of branch
points is generated, and then the positions of individual points are gradually cal-
culated with respect to the already calculated positions of the other points in the
tree.

Each branch point has several properties that need to be generated:

• Point position (counted later),
• Distance from previous point—length of line between these two points,
• Vessel width—value from interval <0;1> , where 1 has a vessel at the starting
point of a given branch, and a value of 0 has the endpoints of a given branch.

• Point type

– Y-branching—the vessel is divided into two approximately equallywide vessels,
– T-branching—the vessel is divided into a wide and narrow vessel,
– no branching—the vessel is not split, just passing through the point,
– end of vessel.

• Types of vessel (see Fig. 11.33)

Fig. 11.33 Colour illustration of different types of vessels
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– left and right strong blood vessels (blue),
– left/right wider weak blood vessel emerging from the left/right strong blood
vessel (green),

– other blood vessels (red).

The root of the branch tree is the point located at the centre of the optic nerve
target. It creates one of the following branching points, and then generates the tree
recursively so that each new branching point generates the following two branch
points. Generation ends when the vessel’s width at the newly created point is ≤0.
The properties of the following branch points are also calculated, and the design of
the method of calculating some of them was based on the information published in
[39].

The distance from the previous point d is calculated for the following two points
according to the vessel width wa at the current point as follows:

d =
{
rand(0.15, 0.05) forwa > 0.15

rand(0.05, 0.02) else
. (4.1)

This has the consequence of the narrow blood vessels having more branches.
First, depending on the type of branch of the current point, the ratio is calculated

to which the right and left successor are divided. If it is the current point Y-branch,
the ratio of right and left successors is calculated as r: (1 – r), where r = rand (0.45,
0.55). In case of T-branching, it is 50% probability r = rand (0.95, 0.99), otherwise
r = rand (0.01, 0.05).

If the current point is a part of the leftmost or rightmost strong blood vessel, this
probability is altered in the T-branch, such that the weaker T-branch branches are
generated towards the boundary of the quadrant. In the beginning, there is a 70%
probability that the weaker vessel is generated towards the boundary of the quadrant.
If this happens, this probability will decrease by 10% for the type of vessel (left or
right); if not, the probability will increase by 10%.

The value of the vessel’s width is then calculated for both of the following branch
points using their distance from the actual point, the vessel width at the current point,
and the division ratio as follows:

wr = (
wa × √

r
) −

(
wa × dr

10

)
− dr

20
, (4.2)

wl =
(
wa × √

1 − r
)

−
(
wa × dl

10

)
− dl

20
. (4.3)

If the width of the calculated vessel at the next point is not positive, this point
is marked as the vessel endpoint. If the calculated width is negative, the distance of
that point from the previous point is adjusted to the width of the vessel, which at that
point is equal to zero.

In other cases, it is decided whether the following point will be a Y-branch or a
T-branch. One of the auxiliary features of a point is the probability of selecting the
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Y-Branch for its following branching points, that is, at the starting point, set to 20%.
If the selected branch type of the next branch is the Y-branch, then this probability
is set to 0% at this next point. If the T-branch is selected and the next point is the
weaker T-branch of the current point, the probability for this next point is set to 40%.
Otherwise, the probability is increased by 25%.

First, the position of the leftmost and rightmost points of thick blood vessels
(type 1) is calculated, then it points the position of the left/right wider weak blood
vessels resulting from vascular type 1 (type 2) and finally, the position of the other
vessel (type 3). Within these types of vessels, the order of points in the calculation of
the positions is given by the width of the vessel at a given point, with the positions
of the wider vessels being counted first. Point positions are counted in this order
because not all tree branch points generated will eventually be used.

When calculating the position of a particular branch point, the set of positions
on which this point may be located is first determined. From the beginning, these
are the positions around the previous branch point at the distance that this particular
point has generated as a property. Then, depending on the direction of the vessel at
the previous point, this set is limited by the interval of angles in which the position
of the point may be. For each of the remaining positions, the weight of the position
is calculated based on the deviation from the centre of the interval.

On the real images, the observed part of the retina is circular and the rest of
square image is black. A majority of the right-hand portion of the image tends to see
a smaller part of the retina in the shape of a semicircle or rectangle. This is to know
where the picture is; for example, if it is not turned.

The generator allows you to choose which quadrant the mark will be in, and also
whether the mark will have the shape of a semicircle or rectangle. The generated
texture has a black colour and, depending on the coordinates, only the transparency
of the texture changes.

11.4.5 Testing

We are now comparing the created synthetic retinal images with our ground truth.
We use manually marked, real retinal images to create a density map, where there
are the most bifurcation and crossing points. Using the same procedure, we want to
automatically create a density map for synthetic retinal images and compare both
results.

We developed the applications SW1 and SW2 (see Sect. 11.3.2). SW1 was devel-
oped for manually marking blind spots, yellow spots and features, as well as deter-
mining their polar coordinates. We marked all retinal images via SW1 one by one.

SW2 was developed to estimate the number of feature points in different regions.
SW2 loaded all marked retinal images one by one and mapped polar coordinates of
feature points to Cartesian coordinates. After that, SW2 presented the intensity of
occurring features in 5 × 5 pixels by a range of shades of grey. The darker shade
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Fig. 11.34 (Left) Density occurrence of summarised real retinas; (right) density in synthetically
generated retinas

represented higher occurrence of features, whereas the lighter shade represented
lower occurrence.

Using the application described in the previous chapters, 1,000 imageswere gener-
ated in which the crossover and bifurcation were found. The occurrence frequencies
were merged with the SW2 described in Sect. 11.2.2 and graphically represented
result seen in Fig. 11.34 left.

It was then possible to visually compare the results of synthetic and real retinal
images. In Fig. 11.34 right, there are visible features on the blind spot. It’s a side
effect. On real retinas, there were no marked features inside the blind spot.

Figure 11.34 shows the summarised occurrences of crosses and bifurcations for
real (left) and synthetic (right) retinal images. Picture (left) is marked manually and
picture (right) ismarked automatically. Both pictures aremade up of about a thousand
retinas. The shades’ range of the right picture is expanded because automated search
for markers included features inside the blind spot. Features inside the blind spot
in the left image were removed during manual labelling. Although the application
generates blood vessels in the synthetic retina symmetrically, some similarities with
the summation from the real retina can be traced.

The application is composed only of basic algorithms. As a result, there could
be regular shapes seen in Fig. 11.34 right. We assume that, based on real retinas
research, we can better specify the distribution of crossings and bifurcations in the
model.

11.4.6 Generating Synthetic Images Via Neural Network

In another application, we first generate healthy images, where we can train algo-
rithms for detection and extraction of the optical disc and fovea. Furthermore, we
generate diseased retinal images with manifestations of ARMD and diabetes, e.g.
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Fig. 11.35 Comparison of synthetic image and the closest training image from the database

haemorrhages, exudates. The neural network learns such images, which we have in
the training set. At the moment, we only have images only for ARMD and diabetes;
however, new images are stored in the database, i.e. it is possible to add new features
representing new ophthalmologic diseases.

In biometric systems, it is often the case that a damaged image does not pass
through the recognition.However, there is often not enough training data for detecting
algorithms. Therefore, it is advisable to create large databases of synthetic meshes
damaged by disease.

We have trained Generative Adversarial Networks (GANs) [40] to generate syn-
thesised retinal images. A GANs-based retinal image synthesiser consists of two
neural networks: a Generator (G) and a Discriminator (D). We have not used any
extra information (such as blood vessel trees) to generate retinal images usingGANs.
However, we have emphasised maintaining a balance between the two competitors
(i.e. G) and (D) during training. We have found that if this balance is not kept, G
may end up generating only blurry retina images without high-level structures, such
as blood vessel trees, optic discs, macula, etc.

Algorithm of GANs-based Retinal Synthesiser is as follows:

• For k times

– Prepare a mini-batch of retinal images
{(
x, x̂

)m
i=1

}kn
where m is the mini-batch

size.
– Update D using

{(
x, x̂

)m
i=1

}kn
.

• For r times

– Prepare a mini-batch of noise vectors,
{
(z)mi=1

}rn
.

– Update G using
{
(z)mi=1

}rn
.

We have used 1,200 images from the public databaseMessidor [18]. These images
were acquired by three ophthalmologic departments using a colour video 3CCD
camera on a Topcon TRC NW6 non-mydriatic retinograph with a 45-degree field of
view. The images were captured using 8 bits per colour plane. Among these 1,200
images, 588 imageswere 960× 1440, 400 imageswere 1488× 2240 and 212 images
were 1536 × 2304. In our experiments, we resized all of the images to the same size
(i.e. 256 × 256) by bicubic interpolation.
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Fig. 11.36 Examples of generated synthetic retinal images

We have followed the deep convolutional neural network-based architecture sug-
gested in [41]withminormodifications. Table 2 shows themodel architecture for 256
× 256-sized images. The mini-batch size was set to 32 (i.e. m = 32). Noise vectors
were drawn from the uniform distribution. As a loss function, binary cross-entropy
was used. As an optimiser, RMSProp with a learning rate of 0:0001 and a decay of
3e−8 was used. The dropout value was set to 0:5. For batch normalisation, momen-
tum was set to 0:5 instead of default value 0:99. For LeakyReLU, it was set to 0.2
instead of the default value of 0:3. For all convolutional and transposed convolutional
layers, stride = 2, kernel size = 5 and padding = same was used. l2 regularisation
was applied only for weights and biases of the transposed convolutional layers. For
all other settings, the default values of Tensor Flow’s Keras API were used.

After training, the generator is used to generate synthesised retinal images from
noise vectors. The Structural SIMilarity (SSIM) measure shows how similar the
synthesised images are to the training data. SSM = 0 means there is no similarity
and SSIM = 1 means that two images are the same. You can see some achieved
results from this GAN generator of synthetic retinal images in Figs. 11.35 and 11.36.
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A sample database of generated images is available at https://strade.fit.vutbr.cz/
databases/synthetic_retina.

The database is separated into two parts: healthy images and disease-affected
images, which is especially diabetes and ARMD.
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