
Chapter 1
State of the Art in Vascular Biometrics

Andreas Uhl

Abstract The investigation of vascular biometric traits has become increasingly
popular during the last years. This book chapter provides a comprehensive discus-
sion of the respective state of the art, covering hand-oriented techniques (finger vein,
palm vein, (dorsal) hand vein andwrist vein recognition) aswell as eye-oriented tech-
niques (retina and sclera recognition). We discuss commercial sensors and systems,
major algorithmic approaches in the recognition toolchain, available datasets, public
competitions and open-source software, template protection schemes, presentation
attack(s) (detection), sample quality assessment, mobile acquisition and acquisition
on the move, and finally eventual disease impact on recognition and template privacy
issues.

Keywords Vascular biometrics · Finger vein recognition · Hand vein recognition ·
Palm vein recognition · Retina recognition · Sclera recognition · Near-infrared

1.1 Introduction

As the name suggests, vascular biometrics are based on vascular patterns, formed by
the blood vessel structure inside the human body.

Historically, Andreas Vesalius already suggested in 1543 that the vessels in the
extremities of the body are highly variable in their location and structure. Some
350years later, a professor of forensicmedicine at PaduaUniversity,ArrigoTamassia,
stated that no two vessel patterns seen on the back of the hand seem to be identical
in any two individuals [23].

This pattern has to be made visible and captured by a suitable biometric scan-
ner device in order to be able to conduct biometric recognition. Two parts of the
human body (typically not covered by clothing in practical recognition situations)
are the major source to extract vascular patterns for biometric purposes: The human

A. Uhl (B)
Department of Computer Sciences, University of Salzburg, Jakob-Haringer-Str. 2,
5020 Salzburg, Austria
e-mail: uhl@cs.sbg.ac.at

© The Author(s) 2020
A. Uhl et al. (eds.), Handbook of Vascular Biometrics, Advances in Computer Vision
and Pattern Recognition, https://doi.org/10.1007/978-3-030-27731-4_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27731-4_1&domain=pdf
mailto:uhl@cs.sbg.ac.at
https://doi.org/10.1007/978-3-030-27731-4_1


4 A. Uhl

hand [151, 275] (used in finger vein [59, 120, 234, 247, 250, 300] as well as in
hand/palm/wrist vein [1, 226] recognition) and the human eye (used in retina [97,
166] and sclera [44] recognition), respectively.

The imaging principles used, however, are fairly different for those biometric
modalities. Vasculature in the human hand is at least covered by skin layers and
also by other tissue types eventually (depending on the vasculatures’ position depth
wrt. skin surface). Therefore, Visible Light (VIS) imaging does not reveal the vessel
structures properly.

1.1.1 Imaging Hand-Based Vascular Biometric Traits

In principle, high-precision imaging of human vascular structures, including those
inside the human hand, is a solved problem. Figure1.1a displays corresponding
vessels using a Magnetic Resonance Angiography (MRA) medical imaging device,
while Fig. 1.1b shows the result of applying hyperspectral imaging using a STEM-
MER IMAGING device using their Perception Studio software to visualise the data
captured in the range 900–1700nm. However, biometric sensors have a limitation in
terms of their costs. For practical deployment in real-world authentication solutions,
the technologies used to produce the images in Fig. 1.1 are not an option for this rea-
son. The solution is much simpler and thus more cost-effective Near-Infrared (NIR)
imaging.

JoeRice (the author of the Foreword of thisHandbook) patented hisNIR-imaging-
based “Veincheck” system in the early 1980s which is often seen as the birth of
hand-based vascular biometrics. After the expiry of that patent, Hitachi, Fujitsu and
Techsphere launched security products relying onvein biometrics (all holding various
patents in this area now). Joe Rice is still involved in this business, as he is partnering
with the Swiss company BiowatchID producing wrist vein-based mobile recognition
technology (see Sect. 1.2).

(a) Magnetic Resonance Angiography (MRA) (b) Hyper-spectral Imaging

Fig. 1.1 Visualising hand vascular structures
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The physiological background of this imaging technique is as follows. The
haemoglobin in the bloodstream absorbs NIR light. The haemoglobin is the pig-
ment in the blood which is primarily composed of iron, which carries the oxygen.
Haemoglobin is known to absorb NIR light. This is why vessels appear as dark
structures under NIR illumination, while the surrounding tissue has a much lower
light absorption coefficient in that spectrum and thus appears bright. The blood in
veins obviously contains a higher amount of deoxygenated haemoglobin as com-
pared to blood in arteries. Oxygenated and deoxygenated haemoglobin absorb NIR
light equally at 800nm,whereas at 760nmabsorption is primarily fromdeoxygenated
haemoglobinwhile above 800nmoxygenated haemoglobin exhibits stronger absorp-
tion [68, 161]. Thus, the vascular pattern inside the hand can be rendered visible with
the help of an NIR light source in combination with an NIR-sensitive image sensor.
Depending on the used wavelength of illumination, either both or only a single type
of vessels is captured predominantly.

The absorbing property of deoxygenated haemoglobin is also the reason for
terming these hand-basedmodalities as finger vein and hand/palm/wrist vein recogni-
tion, while it is actually never demonstrated that it is really only veins and not arteries
that are acquired by the corresponding sensors. Finger vein recognition deals with
the vascular pattern inside the human fingers (this is the most recent trait in this class,
and often [126] is assumed to be its origin), while hand/palm/wrist vein recognition
visualises and acquires the pattern of the vessels of the central area (or wrist area)
of the hand. Figure1.2 displays example sample data from public datasets for palm
vein, wrist vein and finger vein.

The positioning of the light source relative to the camera and the subject’s finger
or hand plays an important role. Here, we distinguish between reflected light and
transillumination imaging. Reflected light means that the light source and the camera
are placed on the same side of the hand and the light emitted by the source is reflected
back to the camera. In transillumination, the light source and the camera are on the
opposite side of the hand, i.e. the light penetrates skin and tissue of the hand before it
is captured by the camera. Figure1.3 compares these two imaging principles for the
backside of the hand. A further distinction is made (mostly in reflected light imaging)

(a) Vera Palm Vein (b) PUT Wrist Vein (c) SDUMLA Finger Vein

Fig. 1.2 Example sample data
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(a) Reflected light (b) Transillumination

Fig. 1.3 Example sample data: PROTECTVein hand veins

whether the palmar or ventral (i.e. inner) side of the hand (or finger) is acquired,
or if the dorsal side is subject to image acquisition. Still, also in transillumination
imaging, it is possible to discriminate between palmar and dorsal acquisition (where
in palmar acquisition, the camera is placed so to acquire the palmar side of the hand
while the light is positioned at the dorsal side). Acquisition for wrist vein recognition
is limited to reflected light illumination of the palmar side of the wrist.

1.1.2 Imaging Eye-Based Vascular Biometric Traits

For the eye-based modalities, VIS imaging is applied to capture vessel structures.
The retina is the innermost, light-sensitive layer or “coat”, of shell tissue of the eye.
The optic disc or optic nerve head is the point of exit for ganglion cell axons leaving
the eye. Because there are no rods or cones covering the optic disc, it corresponds
to a small blind spot in each eye. The ophthalmic artery bifurcates and supplies the
retina via two distinct vascular networks: The choroidal network, which supplies
the choroid and the outer retina, and the retinal network, which supplies the retina’s
inner layer. The bifurcations and other physical characteristics of the inner retinal
vascular network are known to vary among individuals, which is exploited in retina
recognition. Imaging this vascular network is accomplished by fundus photogra-
phy, i.e. capturing a photograph of the back of the eye, the fundus (which is the
interior surface of the eye opposite the lens and includes the retina, optic disc, mac-
ula, fovea and posterior pole). Specialised fundus cameras as developed for usage
in ophthalmology (thus being a medical device) consist of an intricate microscope
(up to 5× magnification) attached to a flash-enabled camera, where the annulus-
shaped illumination passes through the camera objective lens and through the cornea
onto the retina. The light reflected from the retina passes through the un-illuminated
hole in the doughnut-shaped illumination system. Illumination is done with white
light and acquisition is done either in full colour or employing a green-pass filter
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(a) VARIA - Retina (b) UBIRISv1 - Sclera

Fig. 1.4 Example sample data

(≈540–570nm) toblockout redwavelengths resulting inhigher contrast. Inmedicine,
fundus photography is used tomonitor, e.g. macular degeneration, retinal neoplasms,
choroid disturbances and diabetic retinopathy.

Finally, for sclera recognition, high-resolution VIS eye imagery is required in
order to properly depict the fine vessel network being present. Optimal visibility of
the vessel network is obtained from two off-angle images in which the eyes look
into two directions. Figure1.4 displays example sample data from public datasets
for retina and sclera biometric traits.

1.1.3 Pros and Cons of Vascular Biometric Traits

Vascular biometrics exhibit certain advantages as compared to other biometricmodal-
ities as we shall discuss in the following. However, these modalities have seen com-
mercial deployments to a relatively small extent so far, especially when compared
to fingerprint or face recognition-based systems. This might be attributed to some
disadvantages also being present for these modalities, which will be also consid-
ered subsequently. Of course, not all advantages or disadvantages are shared among
all types of vascular biometric modalities, so certain aspects need to be discussed
separately and we again discriminate between hand- and eye-based traits.

• Advantages of hand-based vascular biometrics (finger, hand, and wrist vein recog-
nition):Comparisons aremostly done against fingerprint andpalmprint recognition
(and against techniques relying on hand geometry to some extent).

– Vascular biometrics are expected to be insensitive to skin surface conditions
(dryness, dirt, lotions) and abrasion (cuts, scars). While the imaging principle
strongly suggests this property, so far no empirical evidence has been given to
support this.

– Vascular biometrics enable contactless sensing as there is no necessity to touch
the acquiring camera. However, in finger vein recognition, all commercial sys-
tems and almost all other sensors being built require the user to place the finger
directly on some sensor plate. This is done to ensure position normalisation
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to some extent and to avoid the camera being dazzled in case of a mal-placed
finger (in the transillumination case, the light source could directly illuminate
the sensing camera).

– Vascular biometrics are more resistant against forgeries (i.e. spoofing, presenta-
tion attacks) as the vessels are only visible in infrared light. So on the one hand, it
is virtually impossible to capture these biometric traits without user consent and
from a distance and, on the other hand, it is more difficult to fabricate artefacts
to be used in presentation attacks (as these need to be visible in NIR).

– Liveness detection is easily possible due to detectable blood flow. However, this
requires NIR video acquisition and subsequent video analysis and not much
work has been done to actually demonstrate this benefit.

• Disadvantages

– In transillumination imaging (as typically applied for finger veins), the capturing
devices need to be built rather large.

– Images exhibit low contrast and low quality overall caused by the scattering of
NIR rays in human tissue. The sharpness of the vessel layout ismuch lower com-
pared to vessels acquired by retina or sclera imaging.Medical imaging principles
like Magnetic Resonance Angiography (MRA) produce high-quality imagery
depicting vessels inside the human body; however, these imaging techniques
have prohibitive cost for biometric applications.

– The vascular structure may be influenced by temperature, physical activity, as
well as by ageing and injuries/diseases; however, there is almost no empirical
evidence that this applies to vessels inside the human hand (see for effects caused
by meteorological variance [317]). This book contains a chapter investigating
the influence of varying acquisition conditions on finger vein recognition to lay
first foundations towards understanding these effects [122].

– Current commercial sensors do not allow to access, output and store imagery
for further investigations and processing. Thus, all available evaluations of these
systems have to rely on a black-box principle and only commercial recognition
software of the same manufacturer can be used. This situation has motivated the
construction of many prototypical devices for research purposes.

– Thesemodalities cannot be acquired from a distance (which is also an advantage
in terms of privacy protection), and it is fairly difficult to acquire them on the
move. While at least the first property is beneficial for privacy protection, the
combination of both properties excludes hand-based vascular biometrics from
free-flow, on-the-move-type application scenarios. However, at least for on-the-
move acquisition, advances can be expected in the future [164].

• Advantages of eye-based vascular biometrics (sclera and retina recognition): Com-
parisons are mostly done against iris, periocular and face recognition.

– As compared to iris recognition, there is no need to use NIR illumination and
imaging. For both modalities, VIS imaging is used.
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– As compared to periocular and face recognition, retina and sclera vascular pat-
terns are much less influenced by intended (e.g. make-up, occlusion like scarfs,
etc.) and unintended (e.g. ageing) alterations of the facial area.

– It is almost impossible to conduct presentation attacks against thesemodalities—
entire eyes cannot be replaced as suggested by the entertainment industry (e.g.
“Minority Report”). Full facial masks cannot be used for realistic sclera spoof-
ing.

– Liveness detection should be easily possible due to detectable blood flow (e.g.
video analysis of retina imagery) and pulse detection in sclera video.

– Not to be counted as an isolated advantage, but sclera-related features can be
extracted and fused with other facial related modalities given the visual data is
of sufficiently high quality.

• Disadvantages

– Retina vessel capturing requires to illuminate the background of the eye which
is not well received by users. Data acquisition feels like ophthalmological treat-
ment.

– Vessel structure/vessel width in both retina [171] and sclera [56] is influenced
by certain diseases or pathological conditions.

– Retina capturing devices originate from ophthalmology and thus have a rather
high cost (as it is common for medical devices).

– Currently, there are no commercial solutions available that could prove the
practicality of these two biometric modalities.

– For bothmodalities, data capture is not possible from a distance (as noted before,
this can also be seen as an advantage in terms of privacy protection). For retina
recognition, data acquisition is also definitely not possible on-the-move (while
this could be an option for sclera given top-end imaging systems in place).

In the subsequent sections, we will discuss the following topics for eachmodality:

• Commercial sensors and systems;
• Major algorithmic approaches for preprocessing, feature extraction, template com-
parison and fusion (published in high-quality scientific outlets);

• Used datasets (publicly available), competitions and open-source software;
• Template protection schemes;
• Presentation attacks, presentation attack detection techniques and sample quality;
• Mobile acquisition and acquisition on the move.
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(a) Hitachi (b) Mofiria (c) YannanTech

Fig. 1.5 Commercial finger vein sensors

1.2 Commercial Sensors and Systems

1.2.1 Hand-Based Vascular Traits

The area of commercial systems for hand-based vein biometrics is dominated by the
two Japanese companies Hitachi and Fujitsu which hold patents for many technical
details of the corresponding commercial solutions. This book contains two chapters
authored by leading personnel of these two companies [88, 237]. Only in the last few
years, competitors have entered the market. Figure1.5 displays the three currently
available finger vein sensors. As clearly visible, the Hitachi sensor is based on a pure
transillumination principle, while the other two sensors illuminate the finger from the
side while capturing is conducted from below (all sensors capture the palmar side of
the finger). Yannan Tech has close connections to a startup from Peking University.

With respect to commercial hand vein systems, the market is evenmore restricted.
Figure1.6 shows three variants of the Fujitsu PalmSecure system: The “pure” sensor
(a), the sensor equipped with a supporting frame to stabilise the hand and restrict the
possible positions relative to the sensor (b) and the sensor integrated into a larger
device for access control (integration done by a Fujitsu partner company) (c). When
comparing the two types of systems, it gets clear that the PalmSecure system can
be configured to operate in touchless/contactless manner (where the support frame
is suspected to improve in particular genuine comparison scores), while finger vein
scanners all require the finger to be placed on the surface of the scanner. While
this would not be required in principle, this approach limits the extent of finger
rotation and guarantees a rather correct placement of the finger relative to the sensors’
acquisition device. So while it is understandable to choose this design principle, the
potential benefit of contactless operation, especially in comparison to fingerprint
scanners, is lost.

Techsphere,1 being in the business almost right from the start of vascular bio-
metrics, produces dorsal hand vein readers. BiowatchID,2 a recent startup, produces
a bracelet that is able to read out the wrist pattern and supports various types of

1http://www.vascularscanner.com/.
2https://biowatchid.com/.

http://www.vascularscanner.com/
https://biowatchid.com/
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(a) Fujitsu (b) Fujitsu (c) Sensometrix

Fig. 1.6 Commercial hand vein sensors

(a) Barclays (b) Homebanking BPH Bank (c) Fingervein ATM

Fig. 1.7 Finger vein recognition in banking

authentication solutions. Contrasting to a stationary sensor, this approach represents
a per-semobile solution permanently attached to the person subject to authentication.

Although hand vein-based sensors have been readily available for years, deploy-
ments are not seen as frequently as compared to the leading biometric modalities,
i.e. face and fingerprint recognition. The most widespread application field of finger
vein recognition technology can be observed in finance industry (some examples
are illustrated in Fig. 1.7). On the one hand, several financial institutions offer their
clients finger vein sensors for secure authentication in home banking. On the other
hand, major finger vein equipped ATM roll-outs have been conducted in several
countries, e.g. Japan, Poland, Turkey and Hong Kong. The PalmSecure system is
mainly used for authentication on Fujitsu-built devices like laptops and tablets and
in access control systems.

1.2.2 Eye-Based Vascular Traits

For vascular biometrics based on retina, commercialisation has not yet reached a
mature state (in contrast, first commercial systemshavedisappeared from themarket).
Starting very early, the first retina scanners were launched in 1985 by the company
EyeDentify and subsequently the company almost established a monopoly in this
area. The most recent scanner is the model ICAM 2001, and it seems that this
apparatus can still be acquired.3 In the first decade of this century, the company

3http://www.raycosecurity.com/biometrics/EyeDentify.html.

http://www.raycosecurity.com/biometrics/EyeDentify.html
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Retica Systems Inc. even provided some insight into their template structure called
retina code (“Multi-Radius Digital Pattern”,4 website no longer active), which has
been analysed in earlier work [67]. The proposed template seemed to indicate a low
potential for high variability (since the generation is not explained in detail, a reliable
statement on this issue is not possible of course). Recall that Retica Systems Inc.
claimed a template size of 20–100 bytes, whereas the smallest template investigated
in [67] had 225 bytes and did not exhibit sufficient inter-class variability. Deployment
of retina recognition technology has been seen mostly in US governmental agencies
like CIA, FBI, NASA,5 which is a difficult business model for sustainable company
development (which might represent a major reason for the low penetration of this
technology).

For sclera biometrics, the startup EyeVerify (founded 2012) termed their sclera
recognition technology “Eyeprint ID” for which the company also acquired the cor-
responding patent. After the inclusion of the technology into several mobile banking
applications, the company was acquired by Ant Financial, the financial services arm
of Alibaba Group in 2016 (their website http://eyeverify.com/ is no longer active).

1.3 Algorithms in the Recognition Toolchain

Typically, the recognition toolchain consists of several distinct stages, most of which
are identical across most vascular traits:

1. Acquisition: Commercial sensors are described in Sect. 1.2, while references to
custom developments are given in the tables describing publicly available datasets
in Sect. 1.4. The two chapters in this handbook describing sensor technologies
provide further details on this topic [113, 258].

2. Image quality assessment: Techniques for this important topic (as required to
assess sample quality to demand another acquisition process in case of poor
quality or to conduct quality-weighted fusion) are described in Sect. 1.6 for all
considered vascular modalities separately.

3. Preprocessing: Typically describes low-level image processing techniques
(including normalisation and a variety of enhancement techniques) to cope with
varying acquisition conditions, poor contrast, noise and blur. These operations
depend on the target modality and are typically even sensor specific. They might
also be conducted after the stage mentioned subsequently, but do often assist in
RoI determination so that in most cases, the order as suggested here is the typical
one.

4. Region of Interest (RoI) determination: This operation describes the process to
determine the area in the sample image which is further subjected to feature
extraction. In finger vein recognition, the actual finger texture has to be deter-
mined, while in palm vein recognition in most cases a rectangular central area

4http://www.retica.com/site/images/howitworks.pdf.
5https://www.bayometric.com/retinal-vs-iris-recognition/.

http://eyeverify.com/
http://www.retica.com/site/images/howitworks.pdf
https://www.bayometric.com/retinal-vs-iris-recognition/
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of the palm is extracted. For hand and wrist vein recognition, respectively, RoI
extraction is hardly consistently done across different methods; still, the RoI is
concentrated to contain visual data corresponding to hand tissue only. For retina
recognition, the RoI is typically defined by the imaging device and is often a circle
of normalised radius around the blind spot. In sclera recognition, this process is
of highest importance and is called sclera segmentation, as it segments the sclera
area from iris and eyelids.

5. Feature extraction: The ultimate aim of feature extraction is to produce a compact
biometric identifier, i.e. the biometric template. As all imagery involving vascular
biometrics contain visualised vascular structure, there are basically two options
for feature extraction: First, feature extraction directly employs extracted vessel
structures, relying on binary images representing these structures, skeletonised
versions thereof, graph representations of the generated skeletons or using vein
minutiae in the sense of vessel bifurcations or vessel endings. The second option
relies on interpreting the RoI as texture patch which is used to extract discrimi-
nating features, in many cases key point-related techniques are employed. Deep-
learning-based techniques are categorised into this second type of techniques
except for those which explicitly extract vascular structure in a segmentation
approach. A clear tendency may be observed: The better the quality of the sam-
ples and thus the clarity of the vessel structure, the more likely it is to see vein
minutiae being used as features. In fundus images with their clear structure, ves-
sels can be identified with high reliability, thus, vessel minutiae are used in most
proposals (as fingerprint minutiae-based comparison techniques can be used). On
the other hand, sclera vessels are very fine-grained and detailed structures which
are difficult to explicitly extract from imagery. Therefore, in many cases, sclera
features are more related to texture properties rather than to explicit vascular
structure. Hand-based vascular biometrics are somewhat in between, so we see
both strategies being applied.

6. Biometric comparison: Two different variants are often seen in literature: The
first (and often more efficient) computes distance among extracted templates and
compares the found distance to the decision threshold for identifying the correct
user, and the second approach applies a classifier to assign a template to the correct
class (i.e. the correct user) as stored in the biometric database. This book contains
a chapter on efficient template indexing and template comparison in large-scale
vein-based identification systems [178].

In most papers on biometric recognition, stages (3)–(5) of this toolchain are pre-
sented, discussed, and evaluated. Often, those papers rely on some public (or private)
datasets and do not discuss sensor issues. Also, quality assessment is often left out
or discussed in separate papers (see Sect. 1.6). A minority of papers discusses cer-
tain stages in isolated manner, as also evaluation is more difficult in this setting
(e.g. manuscripts on sensor construction, as also contained in this handbook [113,
258], sample quality (see Sect. 1.6), or RoI determination (e.g. on sclera segmenta-
tion [217])). In the following, we separately discuss the recognition toolchain of the
considered vascular biometric traits and provide many pointers into literature.
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A discussion and comparison of the overall recognition performance of vascular
biometric traits turns out to be difficult. First, no major commercial players take part
in open competitions in this field (contrasting to e.g. fingerprint or face recogni-
tion), so the relation between documented recognition accuracy as achieved in these
competitions and claimed performance of commercial solutions is not clear. Second,
many scientific papers in the field still conduct experiments on private datasets and/or
do not release the underlying software for independent verification of the results. As
a consequence, many different results are reported and depending on the used dataset
and the employed algorithm, reported results sometimes differ by several orders of
magnitude (among many examples, see e.g. [114, 258]). Thus, there is urgent need
for reproducible research in this field to enable a sensible assessment of vascular
traits and a comparison to other biometric modalities.

1.3.1 Finger Vein Recognition Toolchain

An excellent recent survey covering a significant number ofmanuscripts in the area of
finger vein recognition is [234]. Two other resources provide an overview of hand-
based vascular biometrics [151, 275] (where the latter is a monograph) including
also finger vein recognition, and also less recent or less comprehensive surveys of
finger vein recognition do exist [59, 120, 247, 250, 300] (which still contain a useful
collection and description of work in the area).

A review of finger vein preprocessing techniques is provided in [114]. A selec-
tion of manuscripts dedicated to this topic is discussed as follows. Yang and Shi
[288] analyse the intrinsic factors causing the degradation of finger vein images
and propose a simple but effective scattering removal method to improve visibility
of the vessel structure. In order to handle the enhancement problem in areas with
vasculature effectively, a directional filtering method based on a family of Gabor
filters is proposed. The use of Gabor filter in vessel boundary enhancement is almost
omnipresent: Multichannel Gabor filters are used to prominently protrude vein ves-
sel information with variances in widths and orientations in images [298]. The vein
information in different scales and orientations of Gabor filters is then combined
together to generate an enhanced finger vein image. Grey-Level Grouping (GLG)
and Circular Gabor Filters (CGF) are proposed for image enhancement [314] by
using GLG to reduce illumination fluctuation and improve the contrast of finger vein
images, while the CGF strengthens vein ridges in the images. Haze removal tech-
niques based on the Koschmieder’s law can approximatively solve the biological
scattering problem as observed in finger vein imagery [236]. Another, yet related
approach, is based on a Biological Optical Model (BOM [297]) specific to finger
vein imaging according to the principle of light propagation in biological tissues.
Based on BOM, the light scattering component is properly estimated and removed
for finger vein image restoration.

Techniques forRoI determination are typically described in the context of descrip-
tions of the entire recognition toolchain. There are hardly papers dedicated to this
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Table 1.1 Finger vein feature extraction techniques focussing on vascular structure

Method class References

Binary vascular structure [32, 130, 174, 175, 244, 248, 326]

Binary vascular structure with
deformation/rotation compensation

[76, 94, 163, 203, 209, 299]

Binary vascular structure using semantic
segmentation CNNs

[91, 100–102]

Minutiae [84, 148, 293]

issue separately. A typical example is [287], where an inter-phalangeal joint prior is
used for finger vein RoI localisation and haze removal methods with the subsequent
application of Gabor filters are used for improving visibility of the vascular structure.
The determination of the finger boundaries using a simple 20 × 4 mask is proposed
in [139], containing two rows of one followed by two rows of −1 for the upper
boundary and a horizontally mirrored one for the lower boundary. This approach is
further refined in [94], where the finger edges are used to fit a straight line between
the detected edges. The parameters of this line are then used to perform an affine
transformation which aligns the finger to the centre of the image. A slightly different
method is to compute the orientation of the binarised finger RoI using second-order
moments and to compensate for the orientation in rotational alignment [130].

The vast majority of papers in the area of finger vein recognition covers the
toolchain stages (3)–(5). The systematisation used in the following groups the pro-
posed schemes according to the employed type of features. We start by first dis-
cussing feature extraction schemes focusing at the vascular structures in the finger
vein imagery, see Table1.1 for a summarising overview of the existing approaches.

Classical techniques resulting in a binary layout of the vascular network (which
is typically used as template and is subject to correlation-based template comparison
employing alignment compensation) include repeated line tracking [174],maximum
curvature [175], principle curvature [32],mean curvature [244] andwide line detec-
tion [94] (where the latter technique proposes a finger rotation compensating template
comparison stage). A collection of these features (including the use of spectral minu-
tiae) has also been applied to the dorsal finger side [219] and has been found to be
superior to global features such as ordinal codes. Binary finger vein patterns gen-
erated using these techniques have been extracted from both the dorsal and palmar
finger sides in a comparison [112].

The simplest possible binarisation strategy is adaptive local binarisation, which
has been proposed together with a Fourier-domain computation of matching pixels
from the resulting vessel structure [248]. Matched filters as well as Gabor filters with
subsequent binarisation andmorphological post-processing have also been suggested
to generate binary vessel structure templates [130]. A repetitive scanning of the
images in steps of 15 degrees for strong edges after applying a Sobel edge detector
is proposed in combination with superposition of the strong edge responses and
subsequent thinning [326]. A fusion of the results when applying this process to
several samples leads to the final template.
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The more recent techniques focusing on the entire vascular structure take care of
potential deformations andmisalignment of the vascular network.Amatchedfiltering
at various scales is applied to the sample [76], and subsequently local and global
characteristics of enhanced vein images are fused to obtain an accurate vein pattern.
The extracted structure is then subjected to a geometric deformation compensating
template comparison process. Also, [163] introduces a template comparison process,
inwhich afinger-shapedmodel and non-rigid registrationmethod are used to correct a
deformation caused by the finger-posture change. Vessel feature points are extracted
based on curvature of image intensity profiles. Another approach considers two
levels of vascular structures which are extracted from the orientation map-guided
curvature based on the valley- or half valley-shaped cross-sectional profile [299].
After thinning, the reliable vessel branches are defined as vein backbone, which is
used to align two images to overcome finger displacement effects. Actual comparison
uses elastic matching between the two entire vessel patterns and the degree of overlap
between the corresponding vein backbones. A local approach computing vascular
pattern in corresponding localised patches instead of the entire images is proposed
in [209], template comparison is done in local patches and results are fused. The
corresponding patches are identified using mated SIFT key points. Longitudinal
rotation correction in both directions using a predefined angle combined with score-
level fusion is proposed and successfully applied in [203].

A different approach not explicitly leading to a binary vascular network as tem-
plate is the employment of a set of Spatial Curve Filters (SCFs) with variations in
curvature and orientation [292]. Thus the vascular network consists of vessel curve
segments. As finger vessels vary in diameters naturally, a Curve Length Field (CLF)
estimation method is proposed to make weighted SCFs adaptive to vein width varia-
tions. Finally, with CLF constraints, a vein vector field is built and used to represent
the vascular structure used in template comparison.

Subsequentwork uses veinminutiae (vessel bifurcations and endings) to represent
the vascular structure. In [293], it is proposed to extract each bifurcation point and
its local vein branches, named tri-branch vein structure, from the vascular pattern.
As these features are particularly well suited to identify imposter mismatches, these
are used as first stage in a serial fusion before conducting a second comparison stage
using the entire vascular structure. Minutiae pairs are the basis of another feature
extraction approach [148],which consists ofminutiae pairing based on anSVD-based
decomposition of the correlation-weighted proximitymatrix. False pairs are removed
based on an LBP variant applied locally, and template comparison is conducted based
on average similarity degree of the remaining pairs. A fixed-length minutiae-based
template representation originating in fingerprint recognition, i.e. minutiae cylinder
codes, have also been applied successfully to finger vein imagery [84].

Finally, semantic segmentation convolutional neural networks have been used
to extract binary vascular structures subsequently used in classical binary template
comparison. The first documented approach uses a combination of vein pixel clas-
sifier and a shallow segmentation network [91], while subsequent approaches rely
on fully fledged deep segmentation networks and deal with the issue of training data
generation regarding the impact of training data quality [100] and a joint training
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Table 1.2 Finger vein feature extraction techniques not focussing on vascular structure

Method class References

Texture descriptors [11, 31, 114, 138, 139, 157, 279, 289, 290]

Learned binary codes [78, 280]

Deep learning (entire toolchain) learning
subject classes

[30, 40, 60, 98, 144, 228]

Deep learning (entire toolchain) learning
sample similarity

[89, 284]

with manually labelled and automatically generated training data [101]. This book
contains a chapter extending the latter two approaches [102].

Secondly, we discuss feature extraction schemes interpreting the finger vein sam-
ple images as texture image without specific vascular properties. See Table1.2 for a
summarising overview of the existing approaches.

An approachwithmain emphasis on alignment conducts a fuzzy contrast enhance-
ment algorithm as first stage with subsequent mutual information and affine
transformation-based registration technique [11]. Template comparison is conducted
by simple correlation assessment. LBP is among themost prominent texture-oriented
feature extraction schemes, also for finger vein data. Classical LBP is applied before
a fusion of the results of different fingers [290] and the determination of personalised
best bits frommultiple enrollment samples [289]. Another approach based on classi-
cal LBP features applies a vasculature-minutiae-based alignment as first stage [139].
In [138], a Gaussian HP filter is applied before a binarisation with LBP and LDP. Fur-
ther texture-oriented feature extraction techniques include correlating Fourier phase
information of two samples while omitting the high-frequency parts [157] and the
development of personalised feature subsets (employing a sparse weight vector) of
Pyramid Histograms of Grey, Texture and Orientation Gradients (PHGTOG) [279].
SIFT/SURF keypoints are used for direct template comparison in finger vein samples
[114]. A more advanced technique, introducing a deformable finger vein recognition
framework [31], extracts PCA-SIFT features and applies bidirectional deformable
spatial pyramid comparison.

One of the latest developments is the development usage of learned binary codes
of learned binary codes. The first variant [78] is based onmultidirectional pixel differ-
ence vectors (which are basically simple co-occurrence matrices) which are mapped
into low-dimensional binary codes byminimising the information loss between orig-
inal codes and learned vectors and by conducting a Fisher discriminant analysis (the
between-class variation of the local binary features is maximised and the within-
class variation of the local binary features is minimised). Each finger vein image is
represented as a histogram feature by clustering and pooling these binary codes. A
second variant [280] is based on a subject relation graph which captures correlations
among subjects. Based on this graph, binary templates are transformed in an opti-
misation process, in which the distance between templates from different subjects is
maximised and templates provide maximal information about subjects.
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The topic of learned codes naturally leads to the consideration of deep learning
techniques in finger vein recognition. The simplest approach is to extract features
from certain layers of pretrained classification networks and to feed those features
into a classifier to determine vein pattern similarity to result in a recognition scheme
[40, 144]. A corresponding dual-network approach based on combining a Deep
Belief Network (FBF-DBN) and a Convolutional Neural Network (CNN) and using
vessel feature point image data as input is introduced in [30].

Another approach to apply traditional classification networks is to train the net-
work with the available enrollment data of certain classes (i.e. subjects). A model
of a reduced complexity, four-layered CNN classifier with fused convolutional-
subsampling architecture for finger vein recognition is proposed for this [228],
besides a CNN classifier of similar structure [98]. More advanced is a lightweight
two-channel network [60] that has only three convolution layers for finger vein
verification. A mini-RoI is extracted from the original images to better solve the
displacement problem and used in a second channel of the network. Finally, a two-
stream network is presented to integrate the original image and the mini-RoI. This
approach, however, has significant drawbacks in case new users have to be enrolled
as the networks have to be re-trained, which is not practical.

A more sensible approach is to employ fine-tuned pretrained models of VGG-
16, VGG-19, and VGG-face classifiers to determine whether a pair of input images
belongs to the same subject or not [89]. Thus, authors eliminated the need for training
in case of new enrollment. Similarly, a recent approach [284] uses several known
CNN models (namely, light CNN (LCNN), LCNN with triplet similarity loss func-
tion, and a modified version of VGG-16) to learn useful feature representations and
compare the similarity between finger vein images.

Finally, we aim to discuss certain specific topics in the area of finger vein recog-
nition. It has been suggested to incorporate user individuality, i.e. user role and user
gullibility, into the traditional cost-sensitive learning model to further lower mis-
recognition cost in a finger vein recognition scheme [301]. A study on the individu-
ality of finger vein templates [304] analysing large-scale datasets and corresponding
imposter scores showed that at least the considered finger vein templates are suffi-
ciently unique to distinguish one person from another in such large scale datasets.
This book contains a chapter [128] on assessing the amount of discriminatory infor-
mation in finger vein templates. Fusion has been considered in multiple contexts.
Different feature extractions schemes have been combined in score-level fusion [114]
as well as feature-level fusion [110], while the recognition scores of several fingers
have also been combined [290] ([318] aims to identify the finger suited best for
finger vein recognition). Multimodal fusion has been enabled by the development
of dedicated sensors for this application context, see e.g. for combined fingerprint
and finger vein recognition [140, 222]. A fusion of finger vein and finger image
features is suggested in [130, 302], where the former technique uses the vascular fin-
ger vein structure and normalised texture which are fused into a feature image from
which block-based texture is extracted, while the latter fuses the vascular structure
binary features at score level with texture features extracted by Radon transform and
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Gabor filters. Finger vein feature comparison scores (using phase-only correlation)
and finger geometry scores (using centroid contour distance) are fused in [10].

A topic of current intensive research is template comparison techniques (and
suited feature representations) enabling the compensation of finger rotation and fin-
ger deformation [76, 94, 163, 203, 204, 299]. Somewhat related is the consideration
multi-perspective finger vein recognition, where two [153] and multiple [205] per-
spectives are fused to improve recognition results of single-perspective schemes. A
chapter in this handbook contains the proposal of a dedicated three-view finger vein
scanner [258], while an in-depth analysis of multi-perspective fusion techniques is
provided in another one [206].

1.3.2 Palm Vein Recognition Toolchain

Palm vein recognition techniques are reviewed in [1, 226], while [151, 275] review
work on various types of hand-based vein recognition techniques including palm
veins. The palm vein recognition toolchain has different requirements compared to
the finger vein one, which is also expressed by different techniques being applied.
In particular, finger vein sensors typically require the finger to be placed directly
on the sensor (not contactless), while palm vein sensors (at least the more recent
models) often facilitate a real contactless acquisition. As a consequence, the vari-
ability with respect to relative position between hand and sensor can be high, and
especially the relative position of sensor plane and hand plane in 3D space may vary
significantly causing at least affine changes in the textural representation of the palm
vein RoI imagery. Also, RoI extraction is less straightforward compared to finger
veins; however, in many cases we see techniques borrowed from palmprint recogni-
tion (i.e. extracting a central rectangular area defined by a line found by connecting
inter-phalangeal joints). However, it has to be pointed out that most public palm vein
datasets do not exhibit these positional variations so that recognition results of many
techniques are quite well, but many of these cannot be transferred to real contact-
less acquisition. We shall notice that the amount of work attempting to rely on the
vascular structure directly is much lower, while we see more papers applying local
descriptors compared to the finger vein field, see Table1.3 for an overview of the
proposed techniques.

Table 1.3 Palm vein feature extraction techniques

Method class References

Binary vasculature structure [141, 154, 277]

Models of vascular structure [9, 263]

Local descriptors [72, 108, 133, 172, 173, 187, 193, 266, 286, 320, 325]

Discriminant analysis and CNNs [57, 309]
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We start by describing approaches targeting the vascular structure. Based on an
area maximisation strategy for the RoI, [154] propose a novel parameter selection
scheme for Gabor filters used in extracting the vascular network. A directional filter
bank involving different orientations is designed to extract the vein pattern [277];
subsequently, theMinimumDirectional Code (MDC) is employed to encode the line-
based vein features. The imbalance among vessel and non-vessel pixels is considered
by evaluating the Directional FilteringMagnitude (DFM) and considered in the code
construction to obtain better balance of the binary values. A similar idea based on
2-D Gabor filtering [141] proposes a robust directional coding technique entitled
“VeinCode” allowing for compact template representation and fast comparison. The
“Junction Points” (JP) set [263], which is formed by the line segments extracted
from the sample data, contains position and orientation information of detected line
segments and is used as feature. Finally, [9] rely on their approach of applying the
Biometric Graph Matching (BGM) to graphs derived from skeletons of the vascular
network. See a chapter in this book for a recent overview of this type of methodology
[8].

Another group of papers applies local descriptors, obviously with the intention to
achieve robustness against positional variations as described before. SIFT features
are extracted from registered multiple samples after hierarchical image enhancement
and feature-level fusion is applied to result in the final template [286]. Also, [133]
applies SIFT to binarised patterns after enhancement, while [193] employs SIFT,
SURF and Affine-SIFT as feature extraction to histogram equalised sample data. An
approach related to histogram of gradients (HOG) is applied in [72, 187], where after
the application of matched filters localised histograms encoding vessel directions
(denoted as “histogram of vectors”) are generated as features. It is important to note
that this work is based on a custom sensor device which is able to apply reflected
light as well as transillumination imaging [72]. Another reflected light palm vein
sensor prototype is presented in [238]. After a scaling normalisation of the RoI,
[172, 173] apply LBP and LDP for local feature encoding. An improved mutual
foreground LBP method is presented [108] in which the LBP extraction process is
restricted to neighbourhoods of vessels only by first extracting the vascular network
using the principle curvature approach. Multiscale vessel enhancement is targeted
in [320, 325] which is implemented by a Hessian-phase-based approach in which
the eigenvalues of the second-order derivative of the normalised palm vein images
are analysed and used as features. In addition, a localised Radon transform is used
as feature extraction and (successfully) compared to the “Laplacianpalm” approach
(which finds an embedding that preserves local information by basically computing
a local variant of PCA [266]).

Finally, a wavelet scattering approach is suggested [57] with subsequent Spectral
Regression Kernel Discriminant Analysis (SRKDA) for dimensionality reduction of
the generated templates. A ResNet CNN [309] is proposed for feature extraction on
a custom dataset of palm vein imagery with preceding classical RoI detection.

Several authors propose to apply multimodal recognition combining palmprint
and palm vein biometrics. In [79], a multispectral fusion of multiscale coefficients of
image pairs acquired in different bands (e.g. VIS and NIR) is proposed. The recon-
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structed images are evaluated in terms of quality but unfortunately no recognition
experimentation is conducted. A feature-level fusion of their techniques applied to
palm vein and palmprint data is proposed in [187, 263, 266]. The mentioned ResNet
approach [309] is also applied to both modalities with subsequent feature fusion.

1.3.3 (Dorsal) Hand Vein Recognition Toolchain

There are no specific review articles on (dorsal) hand vein recognition, but [151,
275] review work on various types of hand-based vein recognition techniques. Con-
trasting to the traits discussed so far, there is no commercial sensor available dedi-
cated to acquire dorsal hand vein imagery. Besides the devices used to capture the
publicly available datasets, several sensor prototypes have been constructed. For
example, [35] use a hyperspectral imaging system to identify the spectral bands
suited best to represent the vessel structure. Based on PCA applied to different spec-
tral bands, authors were able to identify two bands which optimise the detection of
the dorsal veins. Transillumination is compared to reflected light imaging [115] in
a recognition context employing several classical recognition toolchains (for most
configurations the reflected light approach was superior due to the more uniform
illumination—light intensity varies more due to changing thickness of the tissue
layers in transillumination). With respect to preprocessing, [316] propose a combi-
nation of high-frequency emphasis filtering and histogram equalisation, which has
also been successfully applied to finger vein data [114].

Concerning feature extraction, Table1.4 provides an overview of the existing
techniques. We first discuss techniques relying on the extracted vascular structure.
Lee et al. [143] use a directional filter bank involving different orientations to extract
vein patterns, and the minimum directional code is employed to encode line-based
vein features into a binary code. Explicit background treatment is applied similar
to the techniques used in [277] for palm veins. The knuckle tips are used as key
points for the image normalisation and extraction of the RoI [131]. Comparison
scores are generated by a hierarchical comparison score from the four topologies of
triangulation in the binarised vein structures, which are generated by Gabor filtering.

Classical vessel minutiae are used as features in [271], while [33] adds dynamic
pattern tree comparison to accelerate recognition performance to the minutiae repre-

Table 1.4 Hand vein feature extraction techniques

Method class References

Binary vessel structure [131, 143]

Minutiae (points and network) [33, 86, 93, 271, 307, 310]

Local texture descriptors [28, 92, 150, 168, 249, 262, 267, 270, 311]

CNN-based feature extraction [144]
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sentation. A fixed-length minutiae-based representation originating from fingerprint
biometrics, i.e. spectral minutiae [82], is applied successfully to represent dorsal
hand vein minutiae in a corresponding recognition scheme. Biometric graph com-
parison, as already described before in the context of other vascular modalities, is
also applied to graphs constructed from skeletonised dorsal hand vascular networks.
Zhang et al. [310] extend the basic graphmodel consisting of the minutiae of the vein
network and their connecting lines to a more detailed one by increasing the number
of vertices, describing the profile of the vein shape more accurately. PCA features
of patches around minutiae are used as templates in this approach, and thus this is
an approach combining vascular structure information with local texture descrip-
tion. This idea is also followed in [93], however, employing different technologies:
A novel shape representation methodology is proposed to describe the geometrical
structure of the vascular network by integrating both local and holistic aspects and
finally combined with LPB texture description. Also, [307] combine geometry and
appearance methods and apply these to the Bosphorus dataset which is presented
the first time in this work. [86] use an ICA representation of the vascular network
obtained by thresholding-based binarisation and several post-processing stages.

Texture-oriented feature extraction techniques are treated subsequently. Among
them, again key point-based schemes are the most prominent option. A typical
toolchain description including the imaging device used, image processing methods
proposed for geometric correction, region of interest extraction, image enhancement
and vein pattern segmentation, and finally the application of SIFT key point extrac-
tion and comparisonwith several enrollment samples is described in [267]. Similarly,
[150] uses contrast enhancement with subsequent application of SIFT in the compar-
ison stage. Hierarchical key points’ selection and mismatch removal is required due
to excessive key point generation caused by the enhancement procedure. SIFT with
improved key point detection is proposed [262] as the NIR dorsal hand images do not
contain many key points. Also, an improved comparison stage is introduced as com-
pared to traditional SIFT key point comparison. Another approach to improve the
key point detection stage is taken by [311], where key points are randomly selected
and using SIFT descriptors an improved, fine-grained SIFT descriptor comparison
is suggested. Alternatively, [249] conduct key point detection by Harris-Laplace and
Hessian-Laplace detectors and SIFT descriptors, and corresponding comparison is
applied. [270] propose a fusion of multiple sets of SIFT key points which aims at
reducing information redundancies and improving the discrimination power, respec-
tively. Different types of key points are proposed to be used by [92], namely, based on
Harris corner-ness measurement, Hessian blob-ness measurement and detection of
curvature extrema by operating the DoG detector on a human vision inspired image
representation (so-called oriented gradient maps).

Also, other types of texture descriptors have been used. A custom acquisition
device and LBP feature description is proposed in [268]. Gabor filtering using eight
encoding masks is proposed [168] to extract four types of features, which are derived
from the magnitude, phase, real and imaginary components of the dorsal hand vein
image after Gabor filtering, respectively, and which are then concatenated into fea-
ture histograms. Block-based pattern comparison introduced with a Fisher linear
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discriminant adopts a “divide and conquer” strategy to alleviate the effect of noise
and to enhance the discriminative power. A localised (i.e. block-based) statistical
texture descriptor denoted as “Gaussian membership function” is employed in [28].
Also, classical CNN architectures have been suggested for feature extraction [144].

Dual-view acquisition has been introduced [215, 216, 315] resulting in a 3D
point cloud representations of hand veins. Qi et al. [215, 216] propose a 3D point
cloud registration for multi-pose acquisition before the point cloud matching vein
recognition process based on a kernel correlation method. In [315], both the 3D point
clouds of hand veins and knuckle shape are obtained. Edges of the hand veins and
knuckle shape are used as key points instead of other feature descriptors because they
are representing the spatial structure of hand vein patterns and significantly increase
the amount of key points. A kernel correlation analysis approach is used to register
the point clouds.

Multimodal fusion techniques have been used, e.g. [86] use dorsal hand veins
as well as palm veins while [28] fuse palmprint, palm–phalanges print and dorsal
hand vein recognition. The knuckle tips have been used as key points for the image
normalisation and extraction of region of interest in [131]. The comparison subsystem
combines the dorsal hand vein scheme [131] and the geometrical features consisting
of knuckle point perimeter distances in the acquired images.

1.3.4 Wrist Vein Recognition Toolchain

There are no specific review articles on wrist vein recognition, but [151, 275] review
work on various types of hand-based vein recognition techniques. Overall, the litera-
ture on wrist vein recognition is sparse. A low-cost device to capture wrist vein data
is introduced [195] with good results when applying standard recognition techniques
to the acquired data as described subsequently. Using vascular pattern-related feature
extraction, [177] propose the fusion of left and rightwrist data; a classical preprocess-
ing cascade is used and binary images resulting from local and global thresholding
are fused for each hand.A fast computation of cross-correlation comparison of binary
vascular structureswith shift compensation is derived in [186]. Another low-cost sen-
sor device is proposed in [221]. Experimentation with the acquired data reveals Log
Gabor filtering and a sparse representation classifier to be the best of 10 considered
techniques. The fixed-length spectral minutiae representation has been identified to
work well on minutiae extracted from the vascular pattern [82].

With respect to texture-oriented feature representation, [49] employs a preprocess-
ing consisting of adaptive histogram equalisation and enhancement using a discrete
Meyer wavelet. Subsequently, LBP is extracted from patches with subsequent BoF
representation in a spatial pyramid.
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1.3.5 Retina Recognition Toolchain

Survey-type contributions on retina recognition can be found in [97, 166] where
especially the latter manuscript is a very recent one. Fundus imagery exhibits very
different properties as compared to the sample data acquired from hand-related vas-
culature as shown in Fig. 1.4a. In particular, the vascular network is depicted with
high clarity and with far more details with respect to the detailed representation
of fine vessels. As the vessels are situated at the surface of the retina, illumina-
tion does not have to penetrate tissue and thus no scattering is observed. This has
significant impact on the type of feature representations that are mainly used—as
the vascular pattern can be extracted with high reliability, the typical features used
as templates and in biometric comparisons are based on vascular minutiae. On the
other hand, we hardly see texture-oriented techniques being applied. With respect
to alignment, only rotational compensation needs to be considered, in case the head
or the capturing instrument (in case of mobile capturing) is being rotated. Interest-
ingly, retina recognition is not limited to the authentication of human beings. Barron
et al. [15] investigate retinal identification of sheep. The influence of lighting and
different human operators is assessed for a commercially available retina biometric
technology for sheep identification.

As fundus imaging is used as an important diagnostic tool in (human) medicine
(see Sect. 1.8), where the vascular network is mainly targeted as the entity diagnosis
is based on, a significant corpus of medical literature exists on techniques to reliably
extract the vessel structure (see [260] for a performance comparison of publicly
available retinal blood vessel segmentation methods). A wide variety of techniques
has been developed, e.g.

• Wavelet decomposition with subsequent edge location refinement [12],
• 2-D Gabor filtering and supervised classification of vessel outlines [241],
• Ridge-based vessel segmentation where the direction of the surface curvature is
estimated by the Hessian matrix with additional pixel grouping [245],

• Frangi vessel enhancement in a multiresolution framework [26],
• Application ofmatched filters, afterwards a piecewise threshold probing for longer
edge segments is conducted on the filter responses [90],

• Neural network-based pixel classification after application of edge detection and
subsequent PCA [240],

• Laplace-based edge detectionwith thresholding applied to detected edges followed
by a pixel classification step [259],

• Wavelet transform and morphological post-processing of detail sub-band coeffi-
cients [137], and

• Supervised multilevel deep segmentation networks [180].

Also, the distinction among arterial and venous vessels in the retina has been
addressed in a medical context [95], which could also exploited by using this addi-
tional label in vascular pattern comparison.
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When looking at techniques for the recognition toolchain, one of the exceptions
not relying on vascular minutiae is represented by an approach relying on Hill’s algo-
rithm [25] in which fundus pixels are averaged in some neighbourhood along scan
circles, typically centred around the blind spot. The resulting waveforms (extracted
from the green channel) are contrast-enhanced and post-processed in Fourier space.
Combining these data for different radii lead to “retina codes” as described in [67].
Another texture-oriented approach [169] applies circular Gabor filters and iterated
spatial anisotropic smoothing with subsequent application of SIFT key point detec-
tion and matching. A Harris corner detector is used to detect feature points [54],
and phase-only correlation is used to determine and compensate for rotation before
comparing the detected feature points.

All the techniques described in the following rely on an accurate determination
of the vascular network as first stage. In a hybrid approach, [261] combine vas-
cular and non-vascular features (i.e. texture–structure information) for retina-based
recognition. The entire retinal vessel network is extracted, registered and finally
subject to similarity assessment [85], and a strong focus on a scale, rotation and
translation compensating comparison of retinal vascular network is set by [127]. In
[13], an angular and radial partitioning of the vascular network is proposed where
the number of vessel pixels is recorded in each partition and the comparison of the
resulting feature vector is done in Fourier space. In [66], retinal vessels are detected
by an unsupervised method based on direction information. The vessel structures are
co-registered via a point set alignment algorithm and employed features also exploit
directional information as also used for vessel segmentation. In [182], not the vessels
but the regions surrounded by vessels are used and characterised as discriminating
entities. Features of the regions are compared, ranging from simple statistical ones
to more sophisticated characteristics in a hierarchical similarity assessment process.

All subsequent techniques rely on the extraction of retinal minutiae, i.e. vessel
bifurcations, crossings and endings, respectively. In most cases, the vascular pattern
is extracted from the green channel after some preprocessing stages, with subse-
quent scanning of the identified vessel skeleton for minutiae [145, 191, 285] and
a final minutiae comparison stage. An important skeleton post-processing stage is
the elimination of spurs, breakages and short vessels as described in [61]. The pure
location of minutiae is augmented by also considering relative angles to four neigh-
bouring minutiae in [207]. Biometric Graph Matching, relying on the spatial graph
connecting two vessel minutiae points by a straight line of certain length and angle,
has also been applied to retinal data [134]. In [22], only minutiae points from major
blood vessels are considered (to increase robustness). Features generated from these
selected minutiae are invariant to rotation, translation and scaling as inherited from
the applied geometric hashing. A graph-based feature points’ comparison followed
by pruning of wrongly matched feature points is proposed in [190]. Pruning is done
based on a Least-Median-Squares estimator that enforces an affine transformation
geometric constraint.

The actual information content of retinal data has been investigated in some
detail [232], with particular focus set on minutiae-type [103, 232] and vessel-
representation-type templates [7], respectively.
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1.3.6 Sclera Recognition Toolchain

An excellent survey of sclera recognition techniques published up to 2012 can be
found in [44]. Sclera recognition is the most difficult vascular trait as explained sub-
sequently. While imaging can be done with traditional cameras, even from a distance
and on the move, there are distinct difficulties in the processing toolchain: (i) sclera
segmentation involves very different border types and non-homogeneous texture and
is thus highly non-trivial especially when considering off-angle imagery and (ii) the
fine-grained nature of the vascular pattern and its movement in several layers when
the eye ismovingmakes feature extraction difficult in case of sensitivity against these
changes. As a consequence, rather sophisticated and involved techniques have been
developed and the recognition accuracy, in particular under unconstraint conditions,
is lower as compared to other vascular traits. Compared to other vascular traits, a
small number of research groups have published on sclera recognition only. This
book contains a chapter on using deep learning techniques in sclera segmentation
and recognition, respectively [229].

A few papers deal with a restricted part of the recognition toolchain. As gaze
detection is of high importance for subsequent segmentation and the determination
of the eventual off-angle extent, [3] cover this topic based on the relative position of
iris and sclera pixels. This relative position is determined on a scan line connecting
the two eye corners. After pupil detection, starting from the iris centre, flesh-coloured
pixels are scanned to detect eyelids. Additionally, a Harris corner detector is applied
and the centroid of detected corners is considered. Fusing the information about
corners and flesh-coloured pixels in a way to look for the points with largest distance
to the pupil leads to the eye corners.

Also, sclera segmentation (as covered in the corresponding challenges/
competitions, see Sect. 1.4) has been investigated in isolated manner. Three different
feature extractors, i.e. local colour-space pixel relations in various colour spaces as
used in iris segmentation, Zernike moments, and HOGs, are fused into a two-stage
classifier consisting of three parallel classifiers in the first stage and a shallow neural
net as second stage in [217]. Also, deep-learning-based semantic segmentation has
been used by combining conditional randomfields and a classical CNN segmentation
strategy [170].

Subsequent papers comprise the entire sclera recognition toolchain. Crihalmeanu
and Ross [37] introduce a novel algorithm for segmentation based on a normalised
sclera indexmeasure. In the stage following segmentation, line filters are used for ves-
sel enhancement before extracting SURF key points and vesselminutiae. Aftermulti-
scale elastic registration using these landmarks, direct correlation between extracted
sclera areas is computed as biometric comparison. Both [2, 4] rely on gaze detection
[3] to guide the segmentation stage, which applies a classical integro-differential
operator for iris boundary detection, while for the sclera–eyelid boundary the first
approach relies on fusing a non-skin and low saturation map, respectively. After
this fusion, which involves an erosion of the low saturation map, the convex hull
is computed for the final determination of the sclera area. The second approach
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fuses multiple colour space skin classifiers to overcome the noise factors introduced
through acquiring sclera images such as motion, blur, gaze and rotation. For coping
with template rotation and distance scaling alignment, the sclera is divided into two
sections and Harris corner detection is used to compute four internal sclera corners.
The angles among those corners are normalised to compensate for rotation, and the
area is resized to a normalised number of pixels. For feature extraction, CLAHE
enhancement is followed by Gabor filtering. The down-sampled magnitude infor-
mation is subjected to kernel Fisher discriminant analysis, and the resulting data
are subjected to Mahalanobis cosine similarity determination for biometric template
comparison. Alkassar et al. [5] set the focus on applying sclera recognition on the
move at a distance by applying the methodology of [2, 4] to corresponding datasets.
Fuzzy C-means clustering sclera segmentation is proposed by [43]. For enhance-
ment, high-frequency emphasis filtering is done followed by applying a discrete
Meyer wavelet filtering. Dense local directional patterns are extracted subsequently
and fed into a bag of features template construction. Also, active contour techniques
have been applied in the segmentation stage as follows. A sclera pixel candidate
selection is done after iris and glare detection by looking for pixels which are of non-
flesh type and exhibit low saturation. Refinement of sclera region boundaries is done
based on Fourier active contours [322]. A binary vessel mask image is obtained after
Gabor filtering of the sclera area. The extracted skeleton is used to extract data for a
line descriptor (using length and angle to describe line segments). After sclera region
registration using RANSAC, the line segment information is used in the template
comparison process. Again, [6] use the integro-differential operator to extract the iris
boundary. After a check for sufficient sclera pixels (to detect eventually closed eyes)
by determination of the number of non-skin pixels, an active contours approach is
used for the detection of the sclera-eyelid boundary. For feature extraction, Harris
corner and edge detections are applied and the phase of LogGabor filtering of a patch
centred around the Harris points is used as template information. For biometric com-
parison, alignment is conducted to the centre of the iris and by applying RANSAC
to the Harris points.

Ohet al. [188] propose amulti-trait fusionbasedon score-level fusionof periocular
and binary sclera features, respectively.

1.4 Datasets, Competitions and Open-Source Software

1.4.1 Hand-Based Vascular Traits

Finger vein recognition has been the vascular modality that has been researched
most intensively in the last years, resulting in the largest set of public datasets avail-
able for experimentation and reproducible research as displayed in Table1.5. The
majority is acquired in palmar view, but especially in more recent years also dorsal
view is available. All datasets are imaged using the transillumination principle. As a
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Table 1.5 Finger vein datasets available for research (typically upon written request)

Name Dors/palm Subjects Fingers Images Sess. Year Scanner

THU-FVFDT
[302]

Palmar 610 2 6540 2 2009 Tsinghua
Proto

SDUMLA-HMT
[305]

Palmar 106 6 3816 1 2010 Wuhan
Proto

HKPU-FID [130] Palmar 156 4 6264 2 2011 HKPU
Proto

UTFVP [255] Palmar 60 6 1440 2 2013 Twente
Proto

MMCBNU_6000
[152]

Palmar 100 6 6000 1 2013 Chonbuk
Proto

CFVD [313] Palmar 13 6 1345 2 2013 Shandong
Proto

FV-USM [10] Palmar 123 4 5940 2 2013 Sains Proto

VERA FV
Spoof [254]

Palmar+spoof 110 2 440 2 2014 Twente
Proto

PMMDB-FV
[233]

Dorsal 20 4 240 1 2017 PLUSVein-
V2

PLUSVein-V3
[111]

Dorsal+palmar 60 6 7200 1 2018 PLUS
OpenVein

SCUT-SFVD
[213]

Palmar+spoof 100 6 7200 1 2018 SCUT-FV
Proto

significant limitation, the largest number of individuals that is reflected in all these
datasets is 610 (THU-FVFDT), while all the others do not even surpass 156 individ-
uals. This is not enough for predicting behaviour when applied to large-scale or even
medium-scale populations.

There are also “Semi-public” datasets, i.e. these can only be analysed in the context
of a visit at the corresponding institutions, including GUC45 [81], GUC-FPFV-DB
[225] and GUC-Dors-FV-DB [219] (where the former are palmar and the latter is
a dorsal dataset, respectively). A special case is the (large-scale) datasets of Peking
University, which are only partially available, but can be interfaced by the RATE6

(Recognition Algorithm Test Engine), which has also been used in the series of
(International) Finger Vein Recognition Contests (ICFVR/FVRC/PFVR) [281, 282,
303, 312]. This series of contests demonstrated the advances made in this field, e.g.
the winner of 2017 improved the EER from 2.64 to 0.48% compared to the winner
of 2016 [312].

The datasets publicly available for hand vein recognition are more diverse as
shown in Table1.6. Palmar, dorsal and wrist datasets are available, and we also find
reflected light as well as transillumination imaging being applied. However, again,

6http://rate.pku.edu.cn/.

http://rate.pku.edu.cn/
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Table 1.6 Hand vein datasets available for research (typically upon written request)
Name Images Subjects Img/hand Dors/palm/wrist Resolution Illumination Camera

CIE/PUT [107] 2400 50 12 Palmar/wrist 1280 × 960 Reflected
light

Low-cost
USB

UC3M [194] 348 29 6 Wrist 640 × 480 Reflected
light

NIR low
cost

Vera Palm
Vein [252]

2200 110 5 Palmar 580 × 680 Reflected
light

No details given

Bosphorus Hand
Vein [307]

1575 100 3 Dorsal 300 × 240 Reflected
light

Monochrome
NIR CCD

CASIA Multispectral
[79]

7200 100 18 Palmar 660 × 550 Reflected
light

Multispectral
device

Tecnocampus Hand
Image [62]

6000 100 12 Palmar/dorsal 640 × 480 Reflected
light

NIR, VIS and
thermal

PROTECTVein [115] 2400 40 15 Palmar/dorsal 3264 ×
2448

Refl. and
transill.

Nexus 5
smartphone

PROTECTVein [115] 2400 40 15 Palmar/dorsal 720 × 720 Refl. and
transill.

NIR IDS

the maximal number of subjects covered in these datasets is 110, and thus the same
limitations as with finger vein data do apply.

VeinPLUS [73] is a semi-public hand vein dataset (reflected light and transillu-
mination, resolution of 2784 × 1856 pixels with RoI of 500 × 500 pixels). To the
best of the authors’ knowledge, no public open competition has been organised in
this area.

1.4.2 Eye-Based Vascular Traits

For retina recognition, the availability of public fundus image datasets is very lim-
ited as shown in Table1.7. Even worse, there are only two datasets (i.e. VARIA and
RIDB) which contain more than a single image per subject. The reason is that the
other datasets originate from a medical background and are mostly used to inves-
tigate techniques for vessel segmentation (thus, the availability of corresponding
segmentation ground truth is important). The low number of subjects (20 for RIDB)
and low number of images per subjects (233 images from 139 subjects for VARIA)
makes the modelling of intra-class variability a challenging task (while this is not
possible at all for the medical datasets, for which this has been done by introducing
distortions to the images to simulate intra-class variability [67]).

The authors are not aware of any open or public competition for retina biometrics.
For sclera-based biometrics, sclera segmentation (and recognition) competitions

have been organised 2015–20187 (SSBC’15 [45], SSRBC’16 [46], SSERBC’17 [48],
SSBC’18 [47]) based on the SSRBCDataset (2 eyes of 82 individuals, RGB, 4 angles)

7https://sites.google.com/site/ssbc2k18/.

https://sites.google.com/site/ssbc2k18/
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Table 1.7 Retina datasets (fundus imagery) available for research (typically upon written request)

Name Subjects Eyes Images Resolution Biometric/medical Seg. ground tr. Year Scanner

VARIA
[191]

139 139 233 768 × 584 Biometric No 2006 TopCon
NW-100

RIDB
[261]

20 20 100 1504 × 1000 Biometric No 2016 TopCon
TRC 50EX

DRIVE
[245]

40 40 40 768 × 584 Medical 20 imgs 2004 Canon CR5

STARE
[90]

400 400 400 605 × 700 Medical 40 imgs 2003 TopCon
TRV-50

HRF
[26]

45 45 45 3504 × 2336 Medical Yes 2013 Canon CR-1

for which segmentation ground truth is being prepared. However, this dataset is not
public and only training data aremade available to participants of these competitions.
Apart from this dataset, no dedicated sclera data are available and consequently,
most experiments are conducted on the VIS UBIRIS datasets: UBIRIS v1 [201] and
UBIRIS v2 [202].

Synthetic sample data has been generated for several biometric modalities includ-
ing fingerprints (generated by SFinGe [160] and included as an entire synthetic
dataset in FVC2004 [159]) and iris (generated from iris codes using genetic algo-
rithms [69] or entirely synthetic [38, 327]), for example. The background is to gen-
erate (large-scale) realistic datasets without the requirements of human enrollment
avoiding all eventual pitfalls with respect to privacy regulations and consent forms.
Also, for vascular structures, synthetic generation has been discussed and some inter-
esting results have been obtained. The general synthesis of blood vessels (more from
a medical perspective) is discussed in [276] where Generative Adversarial Networks
(GANs) are employed. The synthesis of fundus imagery is discussed entirely with a
medical background [24, 36, 64, 75] where again the latter two papers rely on GAN
technology. Within the biometric context, finger vein [87] as well as sclera [42] data
synthesis has been discussed and rather realistic results have been achieved.

Open-source or free software is a scarce resource in the field of vascular biomet-
rics, a fact that we aim to improve on with this book project. In the context of the
(medical) analysis of retinal vasculature, retinal vessel extraction software based on
wavelet-domain techniques has been provided: The ARIAMatlab package based on
[12] and a second MATLAB software package termed mlvessel8 based on the
methods described in [241].

For finger vein recognition, B. T. Ton9 provides MATLAB implementations of
Repeated Line Tracking [174],MaximumCurvature [175], and theWide LineDetec-
tor [94] (see [255] for results) and a collection of related preprocessing techniques

8http://www.retina.iv.fapesp.br.
9available on MATLAB Central: http://www.mathworks.nl/matlabcentral/fileexchange/authors/
57311.

http://www.retina.iv.fapesp.br
http://www.mathworks.nl/matlabcentral/fileexchange/authors/57311
http://www.mathworks.nl/matlabcentral/fileexchange/authors/57311
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(e.g. region detection [139] and normalisation [94]). These implementations are the
nucleus for both of the subsequent libraries/SDKs.

The “Biometric Vein Recognition Library10” is an open-source tool consisting
of a series of plugins for bob.bio.base, IDIAP’s open-source biometric recognition
platform.With respect to (finger) vein recognition, this library implements Repeated
Line Tracking [174],MaximumCurvature [175] and theWide Line Detector [94], all
with the Miura method used for template comparison. For palm vein recognition,11

a local binary pattern-based approach is implemented.
Finally, the “PLUS OpenVein Finger- and Hand-Vein SDK12” is currently the

largest open-source toolbox for vascular-related biometric recognition and is a feature
extraction and template comparison/evaluation framework for finger and hand vein
recognition implemented in MATLAB. A chapter in this book [116] is dedicated to
a detailed description of this software.

1.5 Template Protection

Template protection schemes are of high relevance when it comes to the security
of templates in biometric databases, especially in case of database compromise. As
protection of biometric templates by classical encryption does not solve all associated
security concerns (as the comparison has to be done after the decryption of templates
and thus, these are again exposed to eventual attackers), a large variety of template
protection schemes has been developed. Typically, these techniques are categorised
into Biometric Crypto Systems (BCS), which ultimately target on the release of
a stable cryptographic key upon presentation of a biometric trait and Cancelable
Biometrics (CB), where biometric sample or template data are subjected to a key-
dependent transformation such that it is possible to revoke a template in case it
has been compromised [227]. According to [99], each class of template protection
schemes can be further divided into two subclasses. BCS can either be key binding (a
key is obtained upon presentation of the biometric trait which has before been bound
to the biometric features) or key generating (the key is generated directly from the
biometric features often using informed quantisation techniques). CB (also termed
feature transformation schemes) can be subdivided into salting and non-invertible
transformations [99]. If an adversary gets access to the key used in the context of the
salting approach, the original data can be restored by inverting the salting method.
Thus, the key needs to be handled with special care and stored safely. This drawback
of the salting approaches can be solved by using non-invertible transformations as
they are based on the application of one-way functions which cannot be reversed. In
this handbook, two chapters are devoted to template protection schemes for finger
vein recognition [121, 129] and both fall into the CB category.

10https://www.idiap.ch/software/bob/docs/bob/bob.bio.vein/stable/index.html.
11https://pypi.org/project/bob.palmvein/.
12http://www.wavelab.at/sources/OpenVein-SDK/.

https://www.idiap.ch/software/bob/docs/bob/bob.bio.vein/stable/index.html
https://pypi.org/project/bob.palmvein/
http://www.wavelab.at/sources/OpenVein-SDK/
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Vein-based biometrics subsumes some of the most recent biometric traits. It is
therefore not surprising that template protection ideas which have been previously
developed for other traits are now being applied to vascular biometric traits, without
developments specific for the vascular context. For example, in case we consider
vascular minutiae points as features, techniques developed for fingerprint minutiae
can be readily applied, like the fuzzy vault approach or techniques relying on fixed-
length feature descriptors like spectral minutiae and minutiae cylinder codes. In case
binary data representing the layout of the vascular network are being used as feature
data, the fuzzy commitment scheme approach is directly applicable.

1.5.1 Hand-Based Vascular Traits

Starting the discussion with finger vein recognition, we find classical signal-domain
CB schemes being applied, like block re-mapping and image warping [199]. Spec-
tral minutiae representations [82] are subjected to binarisation and subsequently
fed into Bloom filters to result in a CB scheme, thereby avoiding position correction
during template comparison as required bymany techniques based on vascular struc-
ture representation [71]. We find techniques, which apply both CB and BCS: After
applying a set of Gabor filters for feature extraction and subsequent dimensionality
reduction using PCA, a CB scheme close to Bio-Hashing is used employing ran-
dom projections. The obtained coefficients are binarised and subjected to a Fuzzy
Commitment Scheme (FCS), which is a particular CBS approach based on helper
data. This approach is used to secure medical data on a smart card [294]. A sec-
ond approach combining CB and BCS is suggested in [296], where bio-hashing is
applied to features generated by applying Gabor filters and subsequent LDA. The
binary string is then subjected to FCS and also to a fuzzy vault scheme (where the
binary string is somewhat artificially mapped into points used in the vault). Another
approach to combine CB and BCS is proposed in [149], where finger vein minutiae
are extracted and random projections are used to achieve revocability and dimen-
sionality reduction. Afterwards, a so-called deep belief network architecture learns
irreversible templates. Minutiae-based feature representations suffer from the draw-
back that they are no fixed-length representations (which is a prerequisite for the
application of several template protection schemes)—techniques developed in the
context of fingerprint minutiae representations have been transferred to vein minu-
tiae representations, i.e. vein minutiae cylinder codes [84] and vein spectral minutiae
representations [82].

A direct application of FCS to finger vein binary data is demonstrated in [83]. In a
similar approach, [63] also apply theFCS, but they tackle the issue of bias in the binary
data (as non-vein pixels are in clear majority as compared to vein pixels) by applying
no vein detection but a simple thresholding scheme using the median. For FCS error
correction, this approach applies product codes. A BCS approach based on quantisa-
tion is proposed in [278]: Based on multiple samples per subject (i.e. class), features
with low intra-class scatter and high inter-class scatter (found by Fisher Discriminant
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Analysis (FDA)) are generated, which are finally subjected to a quantisation-based
key generation where the quantisation parameters (helper data) depend on the distri-
bution of the generated stable features. Another quantisation-based BCS is proposed
in [29], where vein intersection points are located by considering a neighbourhood
connectivity criteria, after Gabor-based enhancement with subsequent thresholding.
However, the generation of a stable key is not discussed as it is just suggested to use
a subset of the identified feature points as key material.

A multimodal CB scheme combining fingerprint and finger vein features uses
a minutiae-based fingerprint feature set and an image-based finger vein feature set
(obtained after Gabor filtering and subsequent application of LDA) [295]. Those
features are fused in three variants and subjected to bio-hashing. An enhanced par-
tial discrete Fourier transform (EP-DFT, omitting key-controlled parts of the DFT
transform matrix) ensures non-invertability of the transform.

For palm vein recognition, in [34], palmprint templates are hashed with a set of
pseudo-random keys to obtain a unique code called palmhash (basically the CB bio-
hashing approach). FDA is applied to palm vein images; the FDA data are projected
to a randomly generated orthogonal basis (Gram-Schmidt orthogonalisation) and
subsequent thresholding results in a binary vector. A template-free key generation
framework is suggested in [80], where local derivative patterns are used for feature
extraction and a quantisation-based approach is used to generate keys, although a
sufficiently detailed description is missing. An alternative approach being discussed
is based on PalmSecure templates, which are processed in cooperation with iCognize
GmbH. In [200], the palm vein data itself act as a key to encrypt a template database
of independent biometric traits—however, no information about used vein features
or how stability is achieved is given.

A multimodal template protection approach involving both hand and palm vein
data suggests to fuse feature sets of both modalities [135, 136] (where stable vein
points extracted from multiple enrollment samples act as feature sets) to create a
fuzzy vault where chaff points are added as in the original scheme. However, the use
of dual encryption involving both AES and DES in the second paper remains entirely
unclear.

1.5.2 Eye-Based Vascular Traits

For eye-based vascular traits, not many template protection schemes have been pro-
posed so far. For retina recognition, [167] applies a fuzzy vault scheme to secure
retina minutiae. To account for weaknesses revealed in the fuzzy vault scheme due
to non-uniformities in biometric data, a two-factor authentication is proposed using
an additional password, to harden the BCS. In [192], minutiae of retina vessels are
transformed in polar representation which have been computed from the gradient
of intensity and eigenvalues of second-order derivatives. A quantisation-based BCS
is applied to have only a single minutia in a spatial tile. These data are used as
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an encryption key, while the template is a random nonce—the encrypted data are
generated by applying the quantised polar minutiae data as the key.

In the context of sclera recognition, [189] proposes aCB scheme based on a region
indicator matrix which is generated using an angular grid reference frame. For binary
feature template generation, a random matrix and a Local Binary Pattern (LBP)
operator are utilised. Subsequently, the template is manipulated by user-specific
random sequence attachment and bit shifting which enables normalised Hamming
distance comparison to be used in the comparison stage.

1.6 Presentation Attacks and Detection, and Sample
Quality

1.6.1 Presentation Attack Detection

One advantage of hand-based veins over other biometric traits is the fact that they are
embedded inside the human body, as opposed to traits like fingerprints or faces.More-
over, vein images cannot be acquired from a distance without the subject noticing the
capturing process. However, despite the claims of being resistant against inserting
artefacts into the sensor to mimic real users, vein-based authentication turned out
to be vulnerable to Presentation Attacks (PA) (experimentally shown using printed
artefacts [252, 254]). Also, [27] presents some examples of how to produce spoofing
artefacts for a dorsal hand vein scanner, however, without giving any quantitative
results. Still, this work is the first one addressing this issue.

These demonstrated attacks triggered work on PA Detection (PAD) techniques
and consequently in 2015, the first competition on countermeasures to finger vein
spoofing attacks took place [253] (providing the IDIAP finger vein Spoofing-Attack
FingerVeinDatabase consisting of real and fake finger vein images). The competition
baseline algorithm looks at the frequency domain of finger vein images, exploiting the
bandwidth of the vertical energy signal of real finger vein images, which is different
for fakes ones. Three teams participated in this competition. The first team (GUC)
uses Binarised Statistical Image Features (BSIF) [253]. They represent each pixel
as a binary code. This code is obtained by computing the pixel’s response to a filter
that is learned using statistical properties of natural images [253]. The second team
(B-Lab) uses monogenic-scale space-based global descriptors employing the Riesz
transform. This is motivated by the fact that local object appearance and shape within
an image can be represented as a distribution of local energy and local orientation
information. The best approach (team GRIP-PRIAMUS) utilises local descriptors,
i.e. Local Binary Patterns (LBP), and Local-Phase Quantisation (LPQ) and Weber
Local Descriptors (WLD). They distinguish between full and cropped images. LBPs
and LPQ/WLD are used to classify full and cropped images, respectively.

However, countermeasures to finger vein PA were/are already developed prior
or independent to this competition. In 2013, the authors of [183] introduced a fake
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finger vein image detection based upon Fourier, and Haar and Daubechies wavelet
transforms. For each of these features, the score of spoofing detection was computed.
To decide whether a given finger vein image is fake or real, an SVM was used to
combine the three features.

The authors of [251] proposewindowed dynamicmode decomposition (W-DMD)
to be used to identify spoofed finger vein images. DMD is a mathematical method
to extract the relevant modes from empirical data generated by non-linear complex
fluid flows. While DMD is classically used to analyse a set of image sequences,
the W-DMD method extracts local variations as low-rank representation inside a
single still image. It is able to identify spoofed images by capturing light reflections,
illuminations and planar effects.

Texture-based PAD techniques have been proven to be applicable to the imagery in
the FV-Spoofing-Attack database [253] independent of the above-referenced com-
petition, in particular, baseline LBP [220]. Inspired by the success of basic LBP
techniques [181, 253] in finger vein PAD and the availability of a wide variety of
LBP extensions and generalisations in the literature, [123] has empirically evaluated
different features obtained by using these more recent LBP-related feature extraction
techniques for finger vein spoofing detection. Additionally, the steerable pyramid is
used to extract features subsequently used for FV spoofing detection [220].

Steerable pyramids are a set of filters in which a filter of arbitrary orientation
is synthesised as a linear combination of a set of basis functions. This enables the
steerable pyramids scheme to compute the filter response at different orientations.
This scheme shows consistent high performance for the finger vein spoofing detection
problem and outperforms many other texture-classification-based techniques. The
approach is compared to techniques from [252], including two LBP variants, and
to quality-based approaches computing block-wise entropy, sharpness and standard
deviation. Qiu et al. [213] employ total variation regularisation to decompose original
finger vein images into structure and noise components, which represent the degrees
of blurriness and the noise distribution. Subsequently, a block local binary pattern
descriptor is used to encode both structure and noise information in the decomposed
components, the histograms of which are fed into an SVM classifier.

Finally, image quality measures have been proposed for finger vein PAD. A detec-
tion framework based onSingularValueDecomposition (SVD) is proposed in a rather
confused paper [181]. The authors utilise the fact that one is able to extract geomet-
rical finger edge information from infrared finger images. Finger vein images are
classified based on Image Quality Assessment (IQA) without giving any clear indi-
cation about the actual IQA used and any experimental results. In [21], the authors
successfully apply general-purpose non-reference image quality metrics to discrim-
inate real finger vein images from fake ones. Subsequent work [242] additionally
applies natural scene statistics and looks into the issue of cross-sensor and cross-
subject finger vein presentation attack detection. However, it is often cumbersome to
identify and/or design texture descriptors suited for a specific task in this context. As
a consequence, generative techniques like deep learning employing Convolutional
Neural Networks (CNNs) have been successfully applied to discriminate real from
spoofed biometric finger vein data [185, 214, 223, 224].
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In contrast to all finger vein PAD techniques reviewed so far (which are based on
still images and exploit corresponding texture properties), [27] already realise that
analysing single still images is not able to exploit liveness signs. Thus, in this work, it
is suggested to look into differences of features in adjacent frames, however, without
giving any concrete features or experimental results. A custom-designed 2D transil-
lumination NIR-laser scanner [142] is used for finger vein liveness detection based
on extracting parameters from laser speckle image sequences (e.g. average speckle
intensity). The technique proposed by [218] aims also at liveness detection and relies
on LED-NIR video data. In this approach, motionmagnification is employed tomag-
nify the subtle motion of finger veins caused by blood flow. A motion magnitude
derived from the optical flow between the first and the last frame in the captured
video is used to determine liveness of the subject. This book contains a chapter [125]
on using finger vein PAD to secure fingerprint sensors.

In addition to the publicly available IDIAPVERAFinger Vein Spoofing Database
used in the competition mentioned above, we have another finger vein spoofing
dataset available: The SCUT-SFVD: A Finger Vein Spoofing/Presentation Attack
Database.13

There is less work on PAD for hand vein-based systems. PCA and power spectrum
estimation of an autoregressivemodel are used [269] to detect artefacts resulting from
printouts and fromwearing coloured gloves. A dorsal hand vein dataset with artefacts
produced by acquiring vein imagery with a smartphone camera has been created
where the smartphones’ display has been inserted into the sensor [196]. Histogram
ofOrientedGradients (HOG) turned out to deliver good results for discriminating real
from fake samples [20]. The same group has also established the PALMSpoof dataset
including three different types of palm vein artefacts including such generated by
display and print attacks. In [18], a noise residual image is obtained by subtracting
the denoised image from the acquired image. The local texture features extracted
from the noise residual image are then used to detect the presentation attack by
means of a trained binary support vector machine classifier. Additionally, in [19],
statistical features computed from the distributions of pixel intensities, sub-band
wavelet coefficients, and the grey-level co-occurrencematrix are used to discriminate
original and fake samples. In addition to these private PAD datasets, the publicly
available IDIAP VERA Spoofing Palm Vein dataset14 is available to assess PAD
technology.

Liveness detection based on speckle analysis in retinal imagery is proposed in
[235], but we actually doubt that there is really a corresponding realistic threat vector
in retinal imaging (except for mobile self-capturing). For sclera-based recognition,
neither PAD techniques nor liveness detection has been addressed so far.

13https://github.com/BIP-Lab/SCUT-SFVD.
14https://www.idiap.ch/dataset/vera-spoofingpalmvein.

https://github.com/BIP-Lab/SCUT-SFVD
https://www.idiap.ch/dataset/vera-spoofingpalmvein


1 State of the Art in Vascular Biometrics 37

1.6.2 Biometric Sample Quality—Hand-Based Vascular
Traits

Biometric sample quality is important in many aspects. The probably most important
application case is to request another sample data capturing in case sample quality
turns out to be too low. Moreover, quality is important for various types of fusion
approaches by rating authentication based on low-quality samples as less reliable.
There are strong connections to presentation attacks, as the quality of PA artefacts
is often questionable, as also illustrated by the use of quality measures to counter
PA. ISO/IEC 29794 standard contains definitions for face, fingerprint and iris bio-
metric sample quality. However, for vascular biometrics, no such standardisation
exists yet. Thus, in the following, we review the available literature on this topic
for vascular biometric traits. It is clear that quality assessment techniques applicable
in the targeted biometric context need to be non-reference, i.e. without considering
any “original” image in the assessment (as this original not even exists). An issue
specific to vascular biometrics is the distinction among techniques being applied to
the sample image as it is (we denote those as “a priori”) from techniques which
analyse the vascular network after extraction (denoted as “a posteriori”, as for these
techniques the vessels need to be segmented first, thus imposing significantly higher
computational cost, and being feature extraction specific moreover).

We start the discussion by reviewing work on finger vein image quality assess-
ment. A non-vein specific extension of SNR incorporating human visual system
properties is proposed in [165] and combined with a contrast score and finger vein
specific measures like area and finger shifting score [156]. It is not really obvious
why the evaluation is done with respect to human inspection. Highly vein specific
(and applicable in principle to most vein-based biometric traits) is a suggested qual-
ity measure based on the curvature in Radon space [212] (which is applied a priori),
which is later combined with an assessment of connectivity, smoothness and reli-
ability of the binary vein structures (applied a posteriori) [210]. Based on the NIR
sample images, [305] use image contrast, information content and capacity to filter
out low-quality finger vein images, and a very similar approach is taken by [291].
These entities are also combined in a fusion scheme termed “triangular norm” [198]
combining these a priori measures into a single (weighted) one.

Another a posteriori approach is proposed by [283], in which, after extracting
vessels using a Gabor filter, thick major vessels and short minor vessels construct
the hierarchical structure of the finger vein network. This structure is modelled by
a hierarchical Gaussian energy distribution which is used to assess the hierarchical
quality of the vessel network. Also, [184] is based on an a posteriori approach,
in which the quality of a finger vein image is measured by using the number of
detected vein points in relation to the depth of the vein profile,which allows individual
variations of vein density to be considered for quality assessment.

Learning-based schemes are employed to binary vessel structure images (so to
be applied a posteriori) both by [321] and [208, 211], where the former is based on
support vector regression and the latter on a CNN approach. Both approaches share
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the disadvantage of requiring a significant amount of (manually labelled) training
data. A quality-driven fusion approach for vein structure and skin texture is suggested
by [96].

For palm and hand vein image quality, respectively, the available literature is less
extensive. However, most approaches suggested for finger vein quality assessment as
discussed before can be transferred to palm and hand vein imagery. A fusion of clarity
and brightness uniformity is suggested for palm vein data in [274]. Another quality
notion for palm vein images [104], being much more specific, addresses one of the
problems in contactless acquisition, i.e. the differences in camera–object distance
and the resulting defocus blur. Corresponding quality is assessed by combining the
Tenengrad sharpness measure [158] with a classical image quality metric (SSIM
[265]), which is applied to pairs of images of different distances. Authors were able
to show a clear relation of the assessment results with recognition accuracy. Natural
scene statistics have also been used to assess the quality of palm vein imagery [272].
For dorsal hand vein images, [264] introduces a quality-specific vein recognition
system, which uses the “CFISH score” in adaptively selecting LBP-based feature
extraction according to high or low quality of the samples. The CFISH score is
computed as weighted average from wavelet detail sub-bands’ mean energy and
variance, thus representing image sharpness.

1.6.3 Biometric Sample Quality—Eye-Based Vascular Traits

In the context of retina images’ quality (quality of fundus images), work has exclu-
sively been done in a medical context. Thus, it is important to discriminate among
techniques addressing general quality (and thus potentially relevant for biometrics’
use) and techniques which specifically address quality related to the detection of cer-
tain diseases (which might not be suited in a biometric context). For example “…, an
image with dark regions might be considered of good quality for detecting glaucoma
but of bad quality for detecting diabetic retinopathy” [70]. However, it turns out that
the quality measures considered are not really pathology-specific and could be all
employed in retina biometrics in principle.

Without stating a clear diagnostic aim, local sharpness as well as illumination
measures are combined into a four-stage measure [16] which has been validated on
a ground truth provided by three ophthalmologists and three ophthalmic nurses with
special training in and considerable experience of fundus photography, respectively.

In [70], fundus image quality is defined as “characteristics of an image that allow
the retinopathy diagnosis by a human or software expert” (thus, it is focused on
the vasculature of the retina). In this work, a thorough discussion of retina quality
measures developed until 2009 is given. Authors propose a scale-invariant measure
based on the density of extracted vessels; thus, it is only applicable after vascular
structure has been detected (so it is an a posteriori measure). These features are
combined with RGB histograms used in earlier work on retinal image quality. The
work in [306], being quite similar, aims to determine, whether the quality of a retinal
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image is sufficient for computer-based diabetic retinopathy screening. Authors com-
bine vessel density, histogram, co-occurrence matrix as well as local edge width and
gradient magnitude-based features, respectively. Evaluation is done with respect to
the ground truth (four quality grades) as provided by two optometrists.

As diagnostic aims, [197] define glaucoma and diabetic retinopathy. The proposed
technique maps diagnosis-relevant criteria—inspired by diagnosis procedures based
on the advise of an eye expert—to quantitative and objective features related to
image quality. Independent from segmentation methods, global clustering and the
consideration of inter-cluster differences are used to determine structural contrast
which implies the recognisability of distinct anatomical structures. This measure is
combined with local sharpness based on gradient magnitude and texture features
(three Haralick features are used) for classification. Ground truth for quality staging
is provided by three human observers including one eye expert.

In [257], first it is determined if the clinicallymost relevant area (the region around
the macula) is distorted by areas of very dark and/or very light areas. Subsequently, if
the image exhibits sufficient clinically relevant context, three different types of focus
measures, i.e. wavelet-based ones, Chebyshev moment-based focus features, and
a measure based on computing the difference between the original and a median-
filtered version of the image, are fused into a common feature representation and
classified (the Matlab Fuzzy Logic Toolbox is used).

Köhler et al. [124] present a quality metric to quantify image noise and blur and its
application to fundus image quality assessment. The proposedmetric takes the vessel
tree visible on the retina (as determined by the Frangi’s vesselness criterion) as guid-
ance to determine an image quality score. Vessel-containing patches are weighted
more strongly in this scheme. The performance of this approach is demonstrated
by correlation analysis with the full-reference metrics Peak-Signal-to-Noise Ratio
(PSNR) and structural similarity (SSIM) for artificially degraded data. For real data,
the metric correlates reasonably to a human observer. Finally, a deep learning frame-
work has been applied recently to train a network [230] to rate fundus images into
“accept” and “reject” classes, based on a set of 3428 fundus images labelled corre-
spondingly by three human experts and evaluated on 3572 other images leading to
perfect separation.

For sclera image quality grading, the major focus of work done so far is on
image sharpness/edge clarity. After a blink detection approach based on a Sobel
filter, [324] evaluates the strength of responses to a spatial domain high-pass filter
for the detection of blurred images, while [5] introduces a four-class quality grading
scheme based on the response to a Laplacian edge operator. An a posteriori approach
also involving segmentation and feature quality is introduced in [323].

1.7 Mobile and On-the-Move Acquisition

The application of biometric recognition systems inmobile scenarios and acquisition
of sample data on-the-move raises some problems compared to the stationary use of
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such systems. This is true in general and thus also applies to vascular biometrics. First
of all, mobile devices are typically restricted in terms of available resources, e.g. in
terms of power provision and available computational capacity. Therefore, applied
algorithms need to be low-cost and have to be executed on embedded systems typ-
ically. In addition, the acquisition process in both settings is more unconstrained
(more degrees of freedom for the placement of the biometric trait and varying envi-
ronmental conditions) compared to the stationary case, causing several recognition
performance issues (see e.g. challenges in contactless hand vein systems [65, 109,
179]). Eventually, the authentication process is unsupervised, enabling presentation
attacks [162]. Furthermore, the mobile system might not be a trusted platform, espe-
cially if the authentication is performed on the user’s smartphone. This opens the
door for all kinds of insertion and replay attacks to the biometric system. Hence,
there is a need for presentation attack detection systems as well as methods to prove
the authenticity and integrity of the biometric sample that has been captured.

1.7.1 Hand-Based Vascular Traits

In medical imaging, vein visualisation using mobile devices is a current topic of
research. In [106], the available technology for subcutaneous vein detection is
reviewed and low-cost mobile health solution using near-infrared spectroscopy is
proposed.

Several papers deal with low-power and low-complexity implementationswithout
looking into the sample acquisition process. Thus, no mobile capturing is foreseen,
and the focus is on an implementation potentially suited for a mobile deployment. A
low-complexity finger vein recognition algorithm is reported to be implemented on a
DSP platform [147], but while actual power consumption is reported, the actual DSP
system is not revealed. A modified thermal webcam is used for image acquisition
in the three papers subsequently listed. FPGA implementations of hand vein [58] as
well as finger vein [117, 118] recognition algorithms are reported, where the latter
paper uses an NIR LED array for transillumination imaging, while the other two use
the same device for reflected light acquisition.

However, work has been done to develop custom devices for mobile vein captur-
ing: A device almost the size of an SLR camera has been constructed which enables
both fingerprint and finger vein capturing [140]. Also, the concept of using smart-
watches or similar devices for vein capturing has been suggested, i.e. Samsung has
presented an idea involving a smartwatch with built-in NIR illumination15 and asso-
ciated capturing of dorsal hand veins, while the startup BioWatchID16 acquire wrist
veins with their bracelet technology.

15https://www.patentlymobile.com/2016/02/samsung-invents-a-new-user-id-system-for-
smartwatches-using-hand-vein-patterns.html.
16https://biowatchid.com/wrist-vein-biometric-technology/.

https://www.patentlymobile.com/2016/02/samsung-invents-a-new-user-id-system-for-smartwatches-using-hand-vein-patterns.html
https://www.patentlymobile.com/2016/02/samsung-invents-a-new-user-id-system-for-smartwatches-using-hand-vein-patterns.html
https://biowatchid.com/wrist-vein-biometric-technology/
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Of course, smartphones have been considered as potential authentication devices
for hand-related vascular biometrics. However, we face significant challenges. First,
smartphones typically do not operate in the NIR domain (although sensors are able to
capture NIR rays). Second, smartphones do not offer NIR-type illumination required
for reflected light illumination as well as transillumination. In the VIS domain, recent
work [14] reports on using current smartphones to capture hand imagery and using
geometrical features for authentication. While this does not seem to be possible for
vein-related authentication, still we find work pointing into this direction. In fact,
Hitachi17 claims to be able to enable “high-precision finger vein authentication”
based on the RGB images users take with their smartphone. Also, the mobile App
VeinSeek18 claims to emphasise vein structure using a common smartphone. Personal
experience shows that some benefits can be observed for dorsal hand veins, while
for palmar veins we were not able to observe a positive effect when using this tool.
While the entire idea seems to be slightly obscure at first sight, there is indeed work
[243] which explains RGB-based vein visualisation enhancement from RGB images
by exact RGB reflection modelling, Wiener filtering and additional post-processing.
However, this idea can be only applied to superficial vascular structures. Wrist vein
recognition using VIS smartphone imagery is proposed in [132], where shallow
neural network structures and PCA are applied to the RoI. However, experiments are
restricted to a small dataset consisting of Caucasian ethnicity subjects only.

When looking at NIR smartphone-based capturing, there are different approaches
to solve the issues discussed before. The first observation is that Fujitsu managed
to minimise their PalmSecure sensor significantly, so that the F-pro sensor variant
can be used as authentication device for the Fujitsu V535 tablet. Thus, we might
expect the deployment of this sensor generation in smartphones. In the context of
finger vein recognition, reflected light illumination has been investigated [308] as it is
clear that transillumination cannot be implemented in smartphones. As expected, this
illumination variant decreases the recognition accuracy for finger vein biometrics.

In amedical patient identification context, several variants to visualise dorsal hand
veins have been investigated in [65]. In any case, external NIR illumination is used,
image acquisition is done eitherwith a smartphone (withNIR-blocking filter in place)
or an external night-vision webcam used as a smartphone plug-in. Contrasting to this
simple solution, a custom-built plug-on finger vein acquisition device [239] based
on reflection-based imaging has been developed. Experimentation reveals rather low
contrast, especially in difficult lighting conditions. An NIR illumination module
attached to a smartphone with removed NIR-blocking filter19 is proposed [53] to
capture dorsal hand veins. In this context, the authors investigate challenge–response
protocols based on pulsed illumination intensity changes to secure the capturing
process against replay attacks.

Also, dedicated NIR-imaging smartphone prototypes (or components thereof)
including NIR illumination have been developed. SONY already came up with a

17http://social-innovation.hitachi/us/case_studies/finger_vein_smartphone/.
18https://www.veinseek.com/.
19www.eigenimaging.com.

http://social-innovation.hitachi/us/case_studies/finger_vein_smartphone/
https://www.veinseek.com/
www.eigenimaging.com
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finger vein capturing smartphone in 2009 [231], while another research-oriented
prototype has been presented 7 years later [17].

Finally, also 3D imaging was discussed to generate representations involving
vessel structures. Simulating a corresponding smartphone depth sensor, a KinectV2
[319] has been used to capture the dorsal hand side to generate such datasets. How-
ever, the actual processing of the Kinect data and the conducted biometric compar-
isons are not described in sufficient detail. Last but not least, there are rumours that
Apple might go for “Vein ID20” for their next-generation iPhones, which could be
based on depth sensing as well.

The only work suggesting a kind-of on-the-move acquisition for hand-related vas-
cular technology is a prototype proposed by Hitachi [164], who introduce a finger
vein device which captures five fingers concurrently using a kind of side transillu-
mination, where the NIR rays not penetrating the fingers do not directly enter the
camera system. The proposed system is said to operate in a walk-through style, while
this is not entirely clear from the description.21

1.7.2 Eye-Based Vascular Traits

For eye-based vascular biometric techniques, much less work can be identified. With
respect to retina imaging, traditional fundus cameras are large, expensive stationary
medical devices. Only recently, there is a trend to consider also mobile variants. A
prototype of a handheld, portable fundus camera is introduced in [105], where also
the quality of the acquired fundus images is compared to a standard, stationary device.
A commercial solution following the same path is offered by OPTOMED.22 While
the latter devices require a person to operate the portable capturing device, [246]
propose a self-capturing device providing user feedback to optimise the acquired
data.

To reduce costs, also the use of smartphones in fundus imaging has been discussed
(see [77] for an overview of corresponding ideas). A common approach is themanual
positioning of a lens in front of eye and the subsequent capturing of the lens with
a smartphone [119, 146]. More professional though is the direct attachment of an
imaging device to the smartphone (which can be rather large [155]), an approach
for which several commercial solutions do exists, e.g. as provided by Volk23 or
Remidio.24 The D-EYE system excels by its small-scale device being magnetically
attached to an iPhone.25

20https://mobileidworld.com/vein-id-iphone-905154/.
21http://social-innovation.hitachi/us/case_studies/advanced-finger-vein-authentication-
technology-opens-doors-for-you/.
22https://www.optomed.com/.
23https://volk.com/index.php/volk-products/ophthalmic-cameras/volk-inview.html.
24http://remidio.com/nm-fundus-on-phone/.
25https://www.d-eyecare.com/.

https://mobileidworld.com/vein-id-iphone-905154/
http://social-innovation.hitachi/us/case_studies/advanced-finger-vein-authentication-technology-opens-doors-for-you/
http://social-innovation.hitachi/us/case_studies/advanced-finger-vein-authentication-technology-opens-doors-for-you/
https://www.optomed.com/
https://volk.com/index.php/volk-products/ophthalmic-cameras/volk-inview.html
http://remidio.com/nm-fundus-on-phone/
https://www.d-eyecare.com/
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It has to be noted that all these reported solutions for mobile fundus photography
(i.e. retina capturing) have not been discussed in the context of retina biometrics
but in the medical imaging context. Nevertheless, these developments could render
retina biometrics less intrusive and thus more realistic. Capturing on-the-move can
be ruled out for retina biometrics as the illumination of the retina requires a focused
and precise illumination process.

Last but not least, in the context of sclera recognition, the topic ofmobile capturing
has not been sufficiently addressed yet. The only work in this direction that we are
aware of [2] applies sclera segmentation and recognition technology to UBIRIS v2
[202] data and titles this work as “… Captured On-The-Move and At-A-Distance”
as the UBIRIS v2 data have been captured under these conditions. However, it is
out of question that sclera recognition can be performed on datasets acquired by
common smartphones [5] (e.g. when focussing on MICHE I [50, 52] and MICHE II
[51] datasets as done in [5]).

1.8 Disease Impact on Recognition and (Template) Privacy

This section is devoted to a relatively unexplored field. For other modalities, e.g.
fingerprints, it is better known and documented that certain diseases [55] and different
age groups [176, 256] impact on recognition performance.

For hand-based vascular biometric traits, knowledge about certain diseases which
influence the vessels’ position and structure does exist [83], e.g. Arteriovenous Mal-
formation (AVM) and the Hypothenar Hammer Syndrome (HHS). Also, it is known
that certain injuries, including the insertion of small soft plastic tubes (Venflon) into
venous vessels in the context of stationary medicamentation, can cause a change in
the vessels’ layout and thickness. However, there is neither theoretical nor empiri-
cal evidence that these effects might or might not actually degrade vascular-based
recognition performance.

For eye-based vascular biometric traits, the situation is somewhat similar, but the
argumentation ismore indirect.As there exist certain diseaseswhich canbediagnosed
from fundus imagery (see e.g. [41] for a survey including several diseases which
obviously affect retinal vasculature like diabetic retinopathy) and sclera images ([56]
reports a sclera-vessel-based screening for cardiovascular diseases), those diseases
also could eventually impact on corresponding recognition accuracy. Also, in this
area, there is no evidence in favour or against this hypothesis.

Extraction of privacy-related information from biometric templates is one of the
main motivations to establish template protection schemes. For example, it is well
known that gender information can be extracted from facial or gait-related biomet-
ric samples and even templates [74], also fingerprints are known to reveal gender
information.26 Other privacy-related attributes include age, ethnicity and of course
various types of medically relevant information.

26https://www.forensicmag.com/article/2015/11/identifying-gender-fingerprint.

https://www.forensicmag.com/article/2015/11/identifying-gender-fingerprint
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For vascular biometrics, corresponding research is in its infancy. The extent of
privacy-threatening information that can be potentially extracted also significantly
depends on the type of data to be analysed. If we consider sample data (which is
hardly ever stored in an operational biometric system, at least not online, except
for recent deep-learning-based schemes relying on assessment of sample data pairs
or triples), the threat of extracting such information illegitimately is much higher
compared to looking at templates.Also, for templates, a representation of the vascular
network based on the binary structure reveals much more information compared to
a minutiae-based or even texture-property-based representation.

Having discussed diseases affecting the vascular layout above, it is obvious that
information about these diseases can/could/might be extracted from corresponding
sample data or templates, respectively. For finger vein sample data, it has been addi-
tionally shown [39] that gender as well as 2–4 age classes can be determined with
high accuracy (>95%) based on typical preprocessing and the application of LBP.
For dorsal hand vein data, [273] reports that feature representation based on vessel
structure, PCA, LBP and SIFT do not allow to correctly discriminatemale and female
subjects. However, the authors propose to apply a feature learning scheme based on
an unsupervised sparse feature learning model and achieve a classification accuracy
of up to 98%.

One important aspect to be considered in this area is the lack of public datasets
with metadata suited for corresponding analyses as well as reproducible research
work. This should be considered when establishing datasets in the future.

1.9 Conclusion and Outlook

The structure of human vasculature is a suited identifier to be used in biometric
systems. Currently, we have seen exploitation of this observation in the context of
hand- and eye-oriented vascular biometric recognition.

For the hand-orientedmodalities (i.e. finger vein, palmvein, (dorsal) handvein and
wrist vein recognition), several undisputed advantages over fingerprint recognition
do exist; however, we still see several open issues being present, also inhibiting
further widespread deployments. For example, the promise of contactless operation
has been made, but many current system (especially in finger vein recognition) users
need to touch the capturing devices, often for good reasons. Furthermore, contrasting
to other biometric modalities, current commercial sensors do not allow to output
captured sample data, which prohibits further progress and open competition in
the area. Potential users planning a deployment cannot rely on large-scale public
evaluation of the technology, and they have to rely on data provided by the companies
producing sensors and corresponding recognition software—public evaluationwould
certainly increase trust in this technology. Last but not least, there is a huge gap
in the quality of extracted vascular structures comparing currently used biometric
technology (reflected light or transillumination NIR imaging) and techniques that are
used in medical imaging for similar purposes (e.g. magnetic resonance angiography
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or similar). Thus, a further increase in sample quality while keeping sensor costs low
is still an important challenge.

For the eye-oriented modalities (i.e. retina and sclera recognition), future does
not seem to be as promising as many obstacles still exist. Retina recognition suffers
from the highly intrusive sample acquisition process (while the quality of the acquired
vascular structures is the best of all vascular modalities considered, allowing for very
accurate recognition) and the high cost of (medical) stationary sensors. Eventually,
recent developments in mobile retina capturing might become game changers for
this modality. Sclera recognition does not have obvious advantages as compared to
face recognition in terms of applicability and security, and good quality sample data
are difficult to acquire from a distance or on the move. Eventually, similar as for
periocular recognition, there is potential to be employed in a multimodal setting of
facial biometric characteristics, as acquisition can be done in the visible domain.
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