
Training a RoboCup Striker Agent via
Transferred Reinforcement Learning

Warren Blair Watkinson II(B) and Tracy Camp

Department of Computer Science, Colorado School of Mines, Golden, CO 80401, USA
{wwatkinson,tcamp}@mines.edu

Abstract. Recent developments in reinforcement learning algorithms have made
it possible to train agents in highly complex state and action spaces, including
action spaces with continuous parameters. Advancements such as the Deep-Q
Network and the Deep Deterministic Policy Gradient were a critical step in mak-
ing reinforcement learning a feasible option for training agents in real world sce-
narios. The viability of these technologies has previously been demonstrated in
training a RoboCup Soccer agent with no prior domain knowledge to success-
fully score goals; however, this work required an engineered intermediate reward
system to direct the agent in its exploration of the environment. We introduce
the use of transfer learning rather than engineered rewards. Our results are posi-
tive, showing that it is possible to train an agent through a series of increasingly
difficult tasks with fewer training iterations than with an engineered reward. How-
ever, when the agent’s likelihood of success in a task is low, it may be necessary to
reintroduce an engineered reward or to provide extended training and exploration
using simpler tasks.

Keywords: Reinforcement learning · Transfer learning ·
Multiagent systems

1 Introduction

An elusive goal in artificial intelligence is the training of a robotic agent to solve prob-
lems or to act within a domain without being specifically programmed, modeled, or
provided with heuristics to direct its behavior. Reinforcement learning techniques, in
which an agent can explore and develop an understanding of its environment on its
own, have the potential to realize that goal. The most interesting applications of rein-
forcement learning are in domains having extremely large or continuous state or action
spaces. Despite several recent advances that have yielded excellent results in these types
of domains, reinforcement learning continues to have challenges in domains where an
agent must follow a long sequence of actions before it achieves a goal. These chal-
lenges are especially pronounced when the actions available to an agent have contin-
uous parameters. The compounding effect of the long action sequence along with the
infinite number of actions available to the agent at each step in the sequence may make
it impossible for the agent to successfully explore the environment to reach a goal state.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 109–121, 2019.
https://doi.org/10.1007/978-3-030-27544-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_9&domain=pdf
http://orcid.org/0000-0002-4830-3890
http://orcid.org/0000-0002-8570-7966
https://doi.org/10.1007/978-3-030-27544-0_9


110 W. B. Watkinson II and T. Camp

The most common way to deal with the divide between an agent’s initial state and
a goal state is with intermediate rewards. Some domains have naturally occurring inter-
mediate rewards, such as video games, where points might be earned for destroying
enemies. Using reinforcement learning, an agent will explore its options within the
game and quickly learn the value of actions that destroy enemies. If destroying ene-
mies eventually leads to winning the game, the intermediate rewards will help direct
the agent toward a winning goal state. Where the domain does not have naturally occur-
ring intermediate rewards, the reinforcement learning scenario designer might engineer
intermediate rewards that he or she believes will lead an agent toward an ultimate goal
state. For example, in a video game where an agent starts on the extreme “left side” of a
world with the goal of reaching the extreme “right side,” such as in Super Mario Broth-
ers on the 8-bit Nintendo Entertainment System (NES), an intermediate reward might
be given every time the agent successfully advances toward the right. While these inter-
mediate rewards address the lack of feedback between an agent’s initial state and goal
state, this approach will be suboptimal since the agent would likely not take shortcuts
or other optimizations along the way. As an alternative to this intermediate reward app-
roach, we explore a method of transfer learning in the RoboCup Soccer domain.

Transfer learning is the idea that the experience an agent gains while learning one
task can help it successfully learn a different task. In this paper, we explore the viability
of using transfer learning to train a robotic soccer striker agent to successfully score
a goal. A striker agent has the problem we described previously. Specifically, from
a random start state, the number of actions the agent must correctly select in order
to score a goal, including moving to the ball, dribbling the ball toward the goal, and
eventually scoring, is extremely large, and at each new state, the agent has nearly an
infinite number of actions from which to choose. In order to overcome this challenge of
exploration, we first train an agent on a simple goal scoring task followed by a series of
increasingly difficult tasks.

In the sections that follow, we summarize background on reinforcement learning
using Markov Decision Processes (MDPs) and recent advances that have seen success
in the application of reinforcement learning approaches in large and continuous domain
and action spaces, such as in RoboCup Soccer. We also provide an overview of the app-
roach we took to train a RoboCup Soccer striker agent in 2d simulation and the results
of our simulations. Lastly, we discuss our conclusions and future research opportunities.

2 Background

2.1 Reinforcement Learning and Markov Decision Processes

The most common approach in reinforcement learning problems is to model the domain
as an MDP [14]. In an MDP, an agent perceives that it is in some state s ∈ S within
the environment where s is a feature vector: s = 〈x1, x2, . . . , xn〉. The agent chooses
an action a ∈ A, which causes the agent to enter a new state according to a transition
function T : S × A → S , a probability distribution mapping each state and action pair
to the resulting state of the environment after the action is executed. The agent receives
a numerical reward according to a reward function R : S → � which is a mapping of
each state to the instantaneous numerical award for arriving in that state. Usually, the



Transferred Reinforcement Learning 111

MDP is designed such that most states yield a reward of 0 and the goal state yields a
positive reward. An agent’s policy π : S → A is a probability distribution that governs
which action the agent will choose from a particular state.

Table 1. Approximate state and action
space for various games
Game State space Action space

Tic-tac-toe 103 4.5

Checkers [2] 1018 2.8

Backgammon [16] 1020 20

Chess [4] 1046 35

Go [18] 10127 181

RoboCup Soccera 10408 10320

Starcraft 2 [10] 101685 [1050 , 10200]
aThe RoboCup Soccer state space is a lower-bound
estimate using 22 players, their positions and velocities, and
individual stamina. To calculate the RoboCup state space,
we assume the ball and each of the 22 players can be in one
of 680 × 1050 positions on the field with a velocity in one
of 360◦ and a magnitude as one of 10 values. Furthermore,
each player has a stamina [0, 8000]. When we consider that
these features are actually continuous and that each player
may have many different player characteristics, the state
space is far greater than this estimate. The actions used to
calculate the action space is the subset of RoboCup actions
available to the agents in our simulations.

In a typical reinforcement learning problem,
the agent can observe (or partially observe) its
state s and is aware of the set of actions A
available, but it does not know R or T . Some
reinforcement learning approaches attempt to
directly learn the model R and T . Other
approaches seek to estimate the action-value or
the state-value, which is the discounted value
of a present action or state in earning a future
reward according to a discount factor γ. The
effectiveness of an agent is determined by how
well its policy obtains rewards over the long
run. The goal of reinforcement learning is to
find an optimal policy π∗ that maximizes future
rewards. When the state or action space is rela-
tively small, developing such a policy is trivial
(as the entire environment could be explored by
the agent). On the other hand, many domains,
such as RoboCup Soccer, have such vast state and action spaces that it would be impos-
sible to directly explore every possible state and action sequence. For example, see
Table 1 for the state and action space complexity of various domains. In such domains,
it is helpful to use reinforcement learning techniques that approximate an action-value
or state-value by inferring similarities between various states. These action-value or
state-value functions can then be used to discover an optimal policy.

2.2 Large and Continuous State and Action Spaces

Some of the earliest reinforcement learning work in 2D RoboCup Soccer [11] devel-
oped aggressive defensive behaviors in RoboCup defenders. Using a neural network
to optimize the action-value function, Riedmiller et al. saw a significant increase in
the success of an agent using learned behavior over hand-coded behavior. This success
relied on significant reductions in the state and action space. For example, the learning
agents used only the dash and turn commands and the parameters were discretized such
that only 76 actions were available to each agent. The state space was also significantly
reduced, as the set of starting states was limited to 5,000, and an episode would proceed
for 35 time steps. While this seminal work was significant, to fully realize reinforcement
learning in the large state and action space of RoboCup soccer, algorithmic advances
were necessary.

In 2015, Mnih et al. developed the Deep-Q Network (DQN), an Artificial Neural
Network (ANN) to estimate the action-value function [9], and demonstrated that an
agent could learn to play Atari games, which involve highly complex state spaces. The
DQN developed by Mnih et al. received game state information in the form of screen
pixels. The DQN would output one of 18 discrete joystick commands that directed



112 W. B. Watkinson II and T. Camp

the agent’s behavior, and the agent received the change in game score as reward. The
DQN uses an experience replay, a stored vector of experiences et = 〈st, at, rt, st+1〉, at
each time step t. All previous experiences are pooled together and sampled randomly
during the gradient-descent update of the ANN. This experience replay has several
advantages when approximating the action-value function. First, each sample can be
reused many times to update the ANN, increasing the efficiency of data collected as
the agent explores the environment. Second, because sequential states tend to be very
similar, sampling from the experience replay avoids using highly correlated experiences
to update the network. Finally, the experience replay approach provides an off-policy
mechanism for developing an action policy. This is advantageous because samples in
an on-policy mechanism can become saturated with states dictated by the current action
policy. This saturation could lead to limited exploration of the state space and a policy
that stagnates at a local optimum. The DQN also utilized a target network that would
follow the actual ANN at a rate of tau 	 1. The target network generated the tar-
get action-values used to update the network, thereby stabilizing learning. These ben-
efits combine to make DQNs effective in high-dimensional state spaces. Mnih et al.
demonstrated the success of the DQN in reinforcement learning on 49 Atari games;
their trained agent learned to play Atari games at a human-expert level of performance
with only the raw frames from the Atari game as input.

Another significant advancement in reinforcement learning [12] concerns the Deep
Deterministic Policy Gradient (DDPG). In DQN, the policy gradient is estimated
stochastically over an integration of both the action and state spaces, and it was believed
that a deterministic policy gradient could not be found without a model-based learning
approach. Silver et al. proved that a deterministic descent policy gradient can be inte-
grated over state spaces alone in model-free learning. Lillicrap et al. incorporated the
deterministic descent policy gradient into DQN in 2016 [8] creating the DDPG. This
key advancement extended DQNs to allow agents to select actions with continuous
parameters.

The DDPG is an actor-critic network where both the actor and critic is an ANN.
The input to the actor network is the state feature vector. The actor network has two
linear output layers. The first output layer selects discrete actions, and the second output
layer provides continuous parameter values that correspond with the actions. The actor’s
outputs are then provided as inputs to the critic network with the state feature vector.
The critic network generates an estimate of the action-value. Back-propagation of the
critic network calculates the gradients of the action-value function with respect to the
action. These gradients are provided as input to the actor for back-propagation, and the
actor updates the agent’s policy.

Hausknecht and Stone extended the DDPG actor-critic network by implement-
ing an inverting gradients technique that reduces the magnitude of the gradient as it
approaches its bounds and then inverts the gradient when the parameter exceeds its
bounds. The inverting gradients method reduces the tendency of the critic to demand
that the actor push the continuous parameters outside the parameter bounds [5]. They
also introduced other enhancements to the DDPG algorithm including a hyperparameter
β as a ratio of on-policy and off-policy learning updates. These enhancements stabilized
the learning of the agent and yielded more consistent results from the DDPG algorithm.



Transferred Reinforcement Learning 113

Their results are impressive; after approximately 3 million iterations, they trained a
RoboCup Soccer striker agent to score a goal against an expert goalie. As it would be
impossible for an agent to discover the correct sequence of actions leading to a goal
state in such a large and continuous state and action space, Hausknecht and Stone used
an engineered intermediate reward. To direct the exploration of the agent within the
soccer domain, the intermediate rewards provided up to one point for approaching the
ball, up to three points for moving the ball toward the goal, and finally, five points for
scoring a goal.

2.3 Transfer Learning

Despite extensive use of transfer learning techniques in reinforcement learning [15],
we are aware of only one instance where transfer learning has been used in RoboCup
Soccer. Torrey et al. [17] trained agents in RoboCup Keepaway [13] and transferred the
knowledge gained to agents in Half-Field Offense [6]. Keepaway is a RoboCup part-task
simulator in which M keepers keep the ball away from N takers. Half-Field Offense is a
game in which M attackers attempt to score against N defenders. In their experiments,
the authors of [17] initialized the reinforcement learning keepers with advice such as
“when a taker is close, pass the ball to a teammate.” Over a series of Keepaway games,
the learning keeper agents refined the advice. A human user then mapped the refined
advice learned in the Keepaway task to appropriate scenarios in the Half-Field Offense
task. Thus, the learning attacker agents in Half-Field Offense benefited from the refined
advice learned in Keepaway. Torrey et al. discovered that, initially, Half-Field Offense
attackers without advice outperformed attackers receiving advice; however as learn-
ers continued learning and refining the advice over many games, the attackers which
received advice outperformed attackers with no advice.

In [17], agents started with domain awareness. In particular, agents understood the
meaning of state features, such as the distance to the ball, and they had the ability to
perform fairly high level tasks, such as kick the ball to a distant teammate. We are
not aware of any other use of transfer learning to support reinforcement learning in
RoboCup Soccer, and certainly none where the agents are starting tabula rasa. In the
following section, we describe an approach using transfer learning to train a RoboCup
Soccer striker agent to score on a goal with no prior domain knowledge.

3 Methodology

3.1 Overview

Our experiments leveraged the idea of learning from easy missions [3,15]. To train
a striker agent, we used a DDPG actor-critic network similar to the one used in [5].
Previous work used reward shaping, or an engineered intermediate reward, which is
an artificial reward signal rather than a reward based directly on the actual goal. In our
work, we trained an agent over a series of successively difficult learning phases. The
action-value function approximation learned in previous phases, along with the replay
memory, was preserved in the transfer, and allowed the agent to “jump start” its learning



114 W. B. Watkinson II and T. Camp

Table 2. Agent learning phases

in the new phase. Through reinforcement and transfer learning, we trained agents to
perform in two different experiments in Half-Field Offense: an empty goal experiment
(Experiment 1) and a defended goal experiment (Experiment 2).

In the empty goal experiment, we trained an agent to start from somewhere on the
right half of the soccer field, run to the ball positioned randomly on the same side of the
field, and then kick the ball into an undefended goal. In the defended goal experiment,
we also trained an agent to run to the ball and kick it into a goal, but this time the goal
was defended by an Agent2d [1] hand-coded expert goalie. Agents in Experiment 1
used 59 egocentric features such as distance and angle to the goal, ball, and other land-
marks on the field. Each feature was a scalar value ranging from [−1, 1]. The game state
was fully observable to the agent. As a low-level feature set, these features represented
a fundamentally basic viewpoint in the agent’s frame of reference and did not include
synthesized features, such as the direction of the largest angle between the goalie and
a goal post, which a programmer might synthesize for the agent based on an under-
standing of how to successfully score. Agents in Experiment 2 had an additional nine
features representing information about the goalie. The agents had four discrete actions
and a total of six continuous parameters: dash, with continuous parameters of power
and degrees; turn, with a continuous parameter of degrees; tackle, with a continuous
parameter of degrees; and kick, with continuous parameters of power and degrees.

We trained the agents using a simple reward, i.e., five points for a goal. Since the
agent received no other feedback for positive behavior, such as advancing the ball to the
goal or attempting a shot on the goal, we used a series of increasingly difficult learning
phases, transferring the agent’s learning from one phase to the next.

3.2 Training Experiences

The series of learning phases listed in Table 2 represent our attempt to train the agent to
understand how its behavior affects the environment and how it can score goals. Exper-
iment 1, Phase1 is a simple task in which the agent and ball are placed at a random



Transferred Reinforcement Learning 115

(a) Phase1 (b) Phase2 (c) Phase3 (d) Phase4

Fig. 1. Sample starting positions of Learning Phases 1 through 4

position directly in front of the goal. To be successful, the agent simply needs to kick
the ball with any amount of power in the direction of the goal. By the end of this task,
the agent should understand the effect of kicking the ball, with a marginal understanding
of kick direction and power. Building on its former experience, Phase2 places the agent
with the ball at a random position near the penalty line in order to have the agent develop
a greater understanding of kick direction and power. In Phase3, the ball is placed at a
random position near the penalty line, but the agent is placed just outside its kickable
range from the ball. In this phase, the agent learns to move toward the ball in order to
kick it, thus it learns about movement and direction of movement. Phase4 keeps the
ball at a random position near the penalty line, but the agent is moved further away
from the ball. This phase requires the agent to sustain a movement direction over time
to approach and kick the ball. Phase5 places both the ball and the agent at a random
position on the field. This phase brings all of the previous learning of the agent together
as the agent is expected to run across the field and, through a series of kicks, score on
an empty goal. In Phases 1 through 5 the agent is able to fully observe its state without
noise (full-state information is used), regardless of what its sensors actually perceive.
Phase6 has the agent observe its environment through noisy and limited sensors (stan-
dard view used in RoboCup competitions). This phase demonstrates how effectively an
agent, having learned in a fully observable simulation, can transfer its knowledge to a
partially observable and noisy version of the same task. To assist with limited and noisy
sensors, the agent has an underlying layer which updates an approximate world model
by integrating information over multiple observations. This layer also governs the focus
and direction of the visual sensor so that the agent can update and maintain its world
model. This layer was not controlled by our DDPG (Fig. 1).

The first five phases are common to both experiments, with the exception of the
addition of a goalie in the defended goal experiment. In Phases 1 through 5 of the
defended goal experiment, the goalie is stationary in the center of the goal. In these
phases, the goalie makes no attempt to intercept the ball, but if the ball hits the goalie,
the ball is “captured” and no goal is scored. In Phase6, the goalie is permitted to move,



116 W. B. Watkinson II and T. Camp

but because the hand-coded goalie possesses significant skill, we restrict the goalie’s
ability so it can move in only 10% of the server iterations. In Phases 7, 8, and 9, the
goalie is allowed to move more frequently in 25%, 50%, and 75% of server iterations,
respectively, and in Phase10, the goalie defends the goal at full capacity.

3.3 Training Implementation

In a given learning phase, an agent would explore its environment and learn to per-
form a task by executing multiple simulation episodes. An episode begins with starting
positions as described in the previous section and ends under one of the following con-
ditions: (1) the agent scores a goal, (2) the goalie captures the ball, (3) the ball goes out
of bounds, or (4) more than 50 real world seconds have elapsed. The agent evaluates its
environment and executes an action every 1/10 of a real world second, which we refer
to as an iteration. Thus, a single episode can have up to 500 iterations, though many
episodes are much shorter.

We trained four agents in each of our two experiments, for a total of eight agents.
In Experiment 1, Agent1 and Agent2 progressed from one learning phase to the next
immediately after demonstrating a 96% success rate against the goal. Agent3 and Agent4
progressed to the next learning phase after completing 500,000 iterations of the current
learning phase. Similarly, in Experiment 2, Agent5 and Agent6 progressed to the next
learning phase after demonstrating a 96% success rate, and Agent7 and Agent8 pro-
gressed after completing 500,000 iterations.

3.4 DDPG Architecture Details

We employed a similar actor-critic network as in [5]. Both the actor and critic had the
same network architecture consisting of four fully connected layers with 1024, 512,
256, and 128 units. Inputs to the actor network were the 59 or 68 (if a goalie is present)
state features. Inputs to each neuron in the hidden layers were first processed through a
leaky rectified linear unit (ReLU) with a negative slope of 0.01. The actor network had
two linear output layers. The first was for the four discrete actions, and the second was
for the six continuous parameters. These outputs were provided as inputs to the critic
network, in addition to the 59 or 68 state features. The critic had the same hidden layer
architecture as the actor network, and provided a scalar representing the approximated
action-value. The actor used the feedback from the critic to update the agent’s policy.
The critic’s update to the actor regarding the parameter gradient was bound according
to the inverting gradients algorithm.

We used the Caffe Deep Learning Framework by Berkeley Artificial Intelligence
Research with the Adam [7] solver using the hyperparameters identified in [5] that
yielded the best results through experimentation: a 10−5 learning rate for the actor and
10−3 for the critic; 20% on-policy updates, and 80% off-policy updates; and τ of 0.001
to temper the rate of change in learning. At initialization, the agent selected all actions
at random, and over the first 10,000 actions we anneal this stochastic selection linearly
to 10%, favoring the best action according to our trained policy 90% of the time. We
use a reward discount rate γ of 0.99.



Transferred Reinforcement Learning 117

Table 3. Performance of each agent in the empty goal experiment

Full observability Partial observability

Iter (103) Goal rate Iter (103) Goal rate

[5] ∼1500 1.00 N/A N/A

Agent1 710 1.00 980 1.00

Agent2 820 1.00 890 1.00

Agent3 2290 1.00 2620 1.00

Agent4 2300 1.00 2580 1.00
We estimate that it was approximately 1,500,000 iter-
ations to train the agent in [5] after which it was able
to consistently score against an empty goal. We note
the authors of [5] did not present results for a sce-
nario with partial observability.

4 Results

Overall, the agents trained in the empty goal experiment performed exceedingly well.
Alas, those trained against the defended goal ultimately stopped learning and failed
when the goalie was allowed to move more quickly (i.e., in Phases 6–10). We found it
necessary to reintroduce a shaped reward to assist the agent’s learning. Figure 2 shows
the change in the agents’ performance (with respect to goal percentage) as the agents
experienced additional iterations. For the sake of space, the figures depict only the odd-
numbered agents; the even-numbered agents had a similar performance compared to
their odd-numbered counterpart. The following sections discuss our results in more
depth.

4.1 Empty Goal Experiment

In the empty goal experiment, we found that our transfer learning phases provided a
responsive learning opportunity from one phase to the next. In general, Agent1 and
Agent2, which transferred to the next phase immediately after demonstrating success in
the current phase, had an initial significant drop in performance when assigned to the
new phase. These agents, however, returned to an acceptable degree of performance in
the course of training (see Fig. 2a, transitions from Phase1 to Phase2 and from Phase2
to Phase3). In Phase5 and Phase6, we continued training the agents until they reached
flawless performance. The iterations required to reach this level of performance are
reported in Table 3. Despite the early struggles with a new phase, Agent1 and Agent2
learned the empty goal task more quickly than any previous benchmark. Moreover,
all four agents learned the empty goal task in the fully observable scenario (Phase5)
and were able to transfer that learning successfully to the partially observable scenario
(Phase6).



118 W. B. Watkinson II and T. Camp

Fig. 2. Performance of agents in empty and defended goal experiments

4.2 Defended Goal Experiment

In contrast, the agents learning in the defended goal experiment had a much more dif-
ficult time. Agent5 and Agent6, which transitioned immediately to the next phase after
becoming an expert in the current phase, initially struggled with the new phase (similar
to Agent1 and Agent2) but were able to eventually learn the skills necessary to advance
in the first five phases (see Fig. 2c). Agent7 and Agent8, which continued to practice
the phase for a full 500,000 iterations before advancing, adapted more quickly to the
new phase. After completing the first five phases in which the goalie was immobile,
all four agents had significant difficulties as the goalie’s capabilities increased. Agent5
and Agent6 struggled with the goalie at 25% capacity and were not able to continue to
the next phase. Agent7 and Agent8 performed slightly better, but stopped learning with
a goalie at 50% capacity. All four agents, when faced with a goalie that would block
their goal attempts, would eventually stop attempting to score and simply run off the
field. We suspect this result occurred because the agents prefer exploration behaviors
when prior experience indicates the likelihood of success using previous strategies is
marginal.



Transferred Reinforcement Learning 119

Table 4. Performance of each agent with
shaped reward

Iter (103) Goal rate

Agent5 2950 0.97

Agent6 2730 1.00

Agent7 5210 0.96

Agent8 4370 0.92

Agent2D N/A 0.96

HELIOS N/A 0.98

In summary, as the goalie’s ability increased,
the agents stopped attempting a shot in favor of
exploring other avenues for earning a reward.
We, therefore, experimented with reward shap-
ing [15]. After training agents in Phase5, we
provided agents with a proportional reward for
moving the ball toward the goal, up to a max of
three points. This artificial reward encouraged
the agents to move the ball toward the goal. With
this modification, all agents eventually learned
to score against a skilled goalie at full ability.
Table 4 summarizes the number of iterations required for each of these modified agents
to reach a performance threshold, using transfer learning for Phases 5–10 and shaped
rewards for Phases 6–10. Remarkably, the agents quickly learned how to defeat the
hand-coded goalie. The performance of most of the agents equaled or exceeded that of
both the Agent2D base and the 2016 championship team HELIOS attacker (Table 4).
With this alternative, we duplicated some of the efforts of [5], but demonstrate that
shaped rewards can work alongside transfer learning.

4.3 Other Observations

Early performance in a learning experiment was not a consistent indicator for how well
the agents would ultimately succeed in that learning phase. For instance, the initial
performance of Agent7 and Agent8 in Phase5 was around 1% in terms of successful
goals (Fig. 2d), but over time, their performance improved such that they were eventu-
ally scoring in over 90% of the scenarios. On the other hand, when Agent7 and Agent8
started Phase8, they were scoring 30% and 40% of the time; within 500,000 iterations,
however, the performance dropped to zero, and the agents stopped attempting shots on
the goal.

We also observed that more practice with a phase did not create a disadvantage when
transitioning to the next phase. Indeed, those agents having more experience adapted to
the new task more quickly.

We now consider our ad-hoc experiment using the shaped reward signal. After the
agents learned how to successfully score consistently against the goalie, we removed
the reward for advancing the ball towards the goal. Our preliminary results indicate that
the agents continued to attempt goals against the goalie, and, despite no incentive for
unsuccessful shots on the goal, they maintained a high level of performance.

Overall, there appears to be promise in utilizing the transferred learning approach
in complex domains with large and continuous action and state spaces. Our approach,
however, does introduce additional variables. For example, we believe the success and
rate of learning is dependent upon the specific learning phase tasks chosen. If the gap
between phases is too great, or if the learning phase tasks were performed in a different
order, we expect the results would be different, e.g., agents either failing to learn the task
or learning the task more quickly. With respect to the defended goal task, we suspect
one issue is the learning phases have too large a gap between them. That is, in our
experiment the goalie develops skill more quickly than the striker can learn. If we could



120 W. B. Watkinson II and T. Camp

improve the skill of the goalie more gradually, perhaps the striker would learn to score
through successive learning phases.

5 Conclusions and Future Work

We have applied a novel approach of transfer learning in the RoboCup Soccer domain
by training agents via a series of learning phases of increasing difficulty. Using a DDPG
with replay memory, we are able to select optimal actions in continuous action param-
eter space to meet a simple, single objective: score on a goal.

We found the agents exhibit no negative transfer in the range of iterations we’re
using for training. In fact, agents with more experience in the environment adapted
more quickly to novel tasks than agents with less experience. On the empty goal task,
our agents exceeded previous benchmarks in reinforcement learning, suggesting that
transfer learning of increasingly complex tasks can reduce learning time when com-
pared to all other known techniques. In addition, skills learned in a fully observable state
are transferable to a partially observable state when the agent maintains an approximate
world model integrated over several observations.

Our results with the defended goal task are less positive. Specifically, when the
rewards received were too scarce, the agents stopped attempting to earn the reward and
instead turned to exploring the model. We found that in those situations, it may be nec-
essary to introduce reward shaping to help direct the agent’s behavior toward successful
strategies. After the agent has learned a policy which yields a higher probability of suc-
cess, it appears as though we can remove the “training wheels” without ill-effect. That
is, after the agent develops a policy yielding a higher probability of success, the agent
continues to learn, successfully scoring while it improves its performance, even without
the shaped reward.

As for future research, we would like to explore whether longer training times
beyond 500,000 iterations would prove effective in the defended goal task. We would
also like to adapt our transfer and reinforcement learning approach to train a striker
agent and a goalie in tandem. After some initial orientation to the state and action space,
we would like to see if it is possible to bring both a novice attacker and a novice goalie
online together to learn as they compete against one another.

Further development toward principled methods for determining whether an agent
can successfully learn via learning phases would be valuable to the reinforcement learn-
ing community. As it is, early performance in a target learning task provides little to no
indication as to whether or not the agent will demonstrate continued learning over the
long term. Finally, we’d like to explore other domains for reinforcement learning in con-
tinuous parameter action space. Pushing the DDPG model into more complex domains
will help to further our understanding of the opportunities and limitations of the DDPG
reinforcement learning model.



Transferred Reinforcement Learning 121

References

1. Akiyama, H.: Agent 2D Base Code 3.1.1 (2012). https://osdn.net/projects/rctools/releases/
p4887

2. Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence. Ponsen and Looijen,
Wageningen (1994)

3. Asada, M., Noda, S., Tawaratsumida, S., Hosoda, K.: Vision-based behavior acquisition for
a shooting robot by using a reinforcement learning. In: IAPR/IEEE Workshop on Visual
Behaviors, Seattle, Washington, June 1994

4. Chinchalkar, S.: An upper bound for the number of reachable positions. Int. Comput. Chess
Assoc. J. 19, 181–183 (1996)

5. Hausknecht, M., Stone, P.: Deep reinforcement learning in parameterized action space, pp.
1–12. arXiv preprint arXiv:1312.5602, February 2016. arXiV:1511.04143v4

6. Kalyanakrishnan, S., Liu, Y., Stone, P.: Half field offense in RoboCup soccer: a multiagent
reinforcement learning case study. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi,
T. (eds.) RoboCup 2006. LNCS, vol. 4434, pp. 72–85. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74024-7 7

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412:6908, December 2014

8. Lillicrap, T., et al.: Continuous control with deep reinforcement learning. In: Proceedings of
the International Conference on Learning Representations, San Juan, Puerto Rico, May 2016

9. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

10. Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A survey
of real-time strategy game AI research and competition in StarCraft. IEEE Trans. Comput.
Intell. AI Games 5(4), 293–311 (2013)

11. Riedmiller, M., Gabel, T., Hafner, R., Lange, S.: Reinforcement learning for robot soccer.
Auton. Robots 27(1), 55–73 (2009)

12. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy
gradient algorithms. In: International Conference on Machine Learning, June 2014

13. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup soccer keep-
away. Adapt. Behav. 13(3), 165–188 (2005). 0301

14. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

15. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a survey. J.
Mach. Learn. Res. 10, 1633–1685 (2009)

16. Tesauro, G.: Temporal difference learning and TD-Gammon. Commun. ACM 38(3), 58–68
(1995)

17. Torrey, L., Walker, T., Shavlik, J., Maclin, R.: Using advice to transfer knowledge acquired in
one reinforcement learning task to another. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge,
A.M., Torgo, L. (eds.) ECML 2005. LNCS, vol. 3720, pp. 412–424. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564096 40

18. Tromp, J., Farnebäck, G.: Combinatorics of go. In: van den Herik, H.J., Ciancarini, P.,
Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 84–99. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-75538-8 8

https://osdn.net/projects/rctools/releases/p4887
https://osdn.net/projects/rctools/releases/p4887
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1511.04143v4
https://doi.org/10.1007/978-3-540-74024-7_7
https://doi.org/10.1007/978-3-540-74024-7_7
http://arxiv.org/abs/1412:6908
https://doi.org/10.1007/11564096_40
https://doi.org/10.1007/978-3-540-75538-8_8

	Training a RoboCup Striker Agent via Transferred Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Reinforcement Learning and Markov Decision Processes
	2.2 Large and Continuous State and Action Spaces
	2.3 Transfer Learning

	3 Methodology
	3.1 Overview
	3.2 Training Experiences
	3.3 Training Implementation
	3.4 DDPG Architecture Details

	4 Results
	4.1 Empty Goal Experiment
	4.2 Defended Goal Experiment
	4.3 Other Observations

	5 Conclusions and Future Work
	References




