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Abstract. The Tech United Eindhoven Middle Size League (MSL) team
achieved a first place at RoboCup 2018. This paper presents a short
evaluation of the tournament and describes the most notable develop-
ments made in preparation of the tournament. One development in the
robot’s hardware is presented: the realization of our eight-wheeled soccer
player. The following developments in software will be presented: a new
approach to ball state estimation and the human-alike dribble. Addition-
ally, research towards the application of artificial intelligence in opponent
action prediction and opponent recognition will be presented.

Keywords: RoboCup soccer · Middle size league · Multi-robot ·
Ball handling

1 Introduction

Tech United Eindhoven represents the Eindhoven University of Technology in
the RoboCup competitions. The team started participating in the Middle Size
League in 2006. In 2011 the service robot AMIGO was added to the team to par-
ticipate in the RoboCup@Home league. In the Middle Size League competitions,
the team has been playing the final for 11 years now, while achieving the first
place four times: 2012, 2014, 2016 and 2018. Before RoboCup 2018, the Middle
Size League team consists of 4 PhD’s, 1 PDEng, 8 MSc, 4 BSc, 5 former TU/e
students, 3 TU/e staff members and one member not related to TU/e.

This paper describes the major scientific improvements of our soccer robots
over the past year, and elaborates on some of the main improvements or develop-
ments in preparation of the RoboCup 2018 tournament. Additionally, in Sect. 3
some statistics concerning the past tournament will be presented. First in Sect. 2,
an introduction on the hardware and software of our fifth generation soccer robot
is given. The developments in design and control towards our sixth generation
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soccer robot, the eight-wheeled robot, are presented in Sect. 4. Improvements to
the skills of our robots are presented in Sect. 5. Our progress on including con-
cepts from artificial intelligence into the robot software are presented in Sect. 6.
In Sect. 7, we give some insights into one of our main strengths: passing. Section 8
gives concluding remarks and presents our outlook on the coming years.

2 Robot Platform

Our robots have been named TURTLEs (acronym for Tech United RoboCup
Team: Limited Edition). Currently, we are using our fifth generation TURTLE
while we are developing the sixth generation, which is presented in Sect. 4. In this
section we will however treat the fifth generation, which makes up the biggest
part of our team. Subsect. 2.1 will treat the hardware of this platform, whereas
Subsect. 2.2 will treat the software.

2.1 Hardware

Development of the TURTLEs started in 2005. Through tournaments and
numerous demonstrations, these platforms have evolved into the fifth genera-
tion TURTLE, a very robust platform. For an outline of our robot design the
reader is referred to the schematic representation published in the second section
of our team description paper of 2014 [1]. In 2016, a redesign of the upper body
of the robot was made to integrate Kinect V2 cameras and create a more robust
frame for the omni-vision unit on top of the robot. This prevents the need for
recalibration of mirror parameters when the top of the robot is hit by a ball. A
detailed list of hardware specifications, along with CAD files of the base, upper-
body, ball handling and shooting mechanism, has been published on a ROP
wiki.1

2.2 Software

The software controlling the robots is divided into three main processes: Vision,
Worldmodel and Motion. These processes communicate with each other through
a real-time database (RTDB) designed by the CAMBADA team [2]. The vision
process is responsible for environment perception using omni-vision images and
provides the location of the ball, obstacles and the robot itself. The worldmodel
combines the ball, obstacle and robot position information provided by vision
with data acquired from other team members to get a unified representation of
the world. The motion process is based on a layered software model. The highest
level is strategy. Strategy defines actions which are executed by roles deployed
on the TURTLEs. These actions consist of a limited set of basic skills such as
shooting and dribbling, which require motion control of relevant actuators, the
lowest level of the software. More detailed information on the software can be
found in [3] or in the flow charts part of the qualification package.
1 http://www.roboticopenplatform.org/wiki/TURTLE.

http://www.roboticopenplatform.org/wiki/TURTLE
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Fig. 1. Fifth generation TURTLE robots, with on the left-handside the goalkeeper
robot. (Photo: Bart van Overbeeke)

3 RoboCup 2018 Statistics

Five teams participated in the Middle Size League tournament of RoboCup
2018, two teams from China, one team from Portugal and two teams from The
Netherlands. A total of 34 matches have been played, of which Tech United
played 14 matches. During those 14 matches, Tech United scored 88 goals, an
average of over 6 goals per match. The semi-final resulted in a 10-0 score, the
final match resulted in a 1-0 score.

By analysing the actions of the TURTLE’s, we found 240 attempts for a shot
on goal, resulting in a success rate of approximately 37%. During the tournament
15 goals were scored by other teams in our goal. Our goalkeeper, even though
always being positioned in the goal, drove 2008 m during all the matches, based
on odometry data. The field players on average drove 13 km, with TURTLE
2 driving almost 20 km during the tournament. While driving, the TURTLEs
managed to localize in almost 90% of the time, where TURTLE 4 managed to
localize 98% of the total time. These numbers are lower than previous tourna-
ments (usually 96%), this is due to the increase in field size. These statistics
differ per TURTLE, even though the TURTLEs are similar in hardware and
software, this can be due to role, calibration accuracy or total playing time.

4 Eight-Wheeled Platform

This section elaborates on the design of the eight-wheeled platform. Subsect. 4.1
will elaborate on some of the design features of the eight-wheeled platform.
The challenges faced during the low-level motion control design are presented in
Subsect. 4.2.
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4.1 Design of the Eight-Wheeled Platform

The current platform is equipped with three omni-directional wheels rigidly con-
nected to the base, achieving holonomicity which makes our platform potentially
agile. In this configuration, however, not all the torque delivered by the motors
is used in the desired movement. Moreover, high forward acceleration causes the
front wheels to slip, removing the ability to apply torque from the motors to
the field. These drawbacks form the main motivation for the development of the
eight-wheeled platform, also presented in [3].

The challenge in designing a platform with four or more wheels is resolving
the over-actuated system. The eight-wheeled platform, presented in Figs. 2(a)
and (c), has three degrees-of-freedom and is five times over-actuated. To allow
five internal movements, each of the wheel combinations is suspended with the
rotation point below the ground and the back wheels are suspended over a hing-
ing axle. In this way, the wheels are always in contact with the ground to transfer
the torque from the motors to the ground.

4.2 Low-Level Control of the Eight-Wheeled Platform

The setup of the platform is graphically represented in Fig. 2(b). In this figure
it can be seen that this platform consists of four sets each having two hub-
drive wheels. Each pair of wheels can rotate around its suspension by actuating
the corresponding wheels in opposite direction. As a result, strictly speaking the
platform is non-holonomic, but due to the ability of each pair of wheels to rotate,
in a relatively short time-intervals compared to the motion of the platform, a
kind of semi-holonomicity is achieved.

In order to manipulate the position x, y and orientation φ of the center C
of the platform, the control strategy of Fig. 3 has been designed. Based on the
desired velocity of the platform, q̇r = [ẋ ẏ φ̇]T , both the reference velocity for
each of the eight wheels vw,r ∈ R

[8×1] and the desired pivot-angle δr ∈ R
[4×1]

can be determined in a feedforward fashion using the inverse kinematics of the
platform. As three degrees of freedom are controlled using eight actuators, the
system is over-actuated. Therefore, an error in the pivot δ of each wheelpair leads
to undesired internal forces and slip. As a result, if the pivot-error is not within
reasonable bounds, the pivot-controller is prioritized over the platform controller,
meaning that the wheels are re-oriented before the platform is actuated. In order
to correct for this pivot-error, via a feedback controller, a compensation is added
to the wheel velocities. The magnitude of this correction term is equal for both
wheels in each wheelpair, but they have opposite direction. Finally, by measuring
both the wheel velocities vw ∈ R

[8×1] and the pivot angle δ ∈ R
[4×1], the velocity

of the platform can be determined using the forward kinematics of the system.

4.3 Results During RoboCup 2018

Unfortunately, we did not manage to employ the eight-wheeled platform during
one of the games of RoboCup 2018. The low-level motion control did not meet the
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Fig. 2. The eight-wheeled platform with four suspended wheel combinations which are
able to rotate around its center hinge.

performance requirements for being able to play, resulting in a too low maximum
velocity of the platform being. Right after the tournament work reconvened and
promising results will ensure playing time for the eight-wheeled platform next
year.
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Fig. 3. Low-level control architecture of the eight-wheeled platform.

5 TURTLE Skills

This section focuses on two developments regarding the skills of the TURTLEs.
Subsect. 5.1 focuses on improving ball state estimation (position and velocity).
The focus of Subsect. 5.2 is on the implementation of the “human-alike drib-
ble”, a dribble where the TURTLEs softly push the ball forward using the ball
handling.

5.1 Improved Ball State Estimate

A correct ball position and velocity estimate is crucial for the TURTLEs. The
performance of the present method is not satisfactory any longer in all situations.
The current estimator buffers detections of the ball and fits this with a state
trajectory in a least squares sense. In a highly dynamic environment, such as
a MSL soccer field, the filter needs to adapt quickly to changing situations. A
standard Extended Kalman filter would respond slow on a maneuvering ball
depending on the process and measurement noise covariance matrices. To make
sure the Kalman filter is able to adapt fast on a changing ball velocity, an
Extended Kalman Filter with Inflatable Noise Variance (EKF with InNoVa) [4]
is proposed.

Figure 4 presents a comparison between the response of the EKF and the
EKF with InNoVa for a disturbance. One can observe from this comparison that
the EKF with InNoVa converges to the actual velocity in x direction faster than
the EKF. As similar performance is observed in other test cases, the proposed
EKF with InNoVa will replace our present algorithm.

5.2 Human-Alike Dribble

Within the Middle Size League, robots have a confined dribble space defined as
a 3 m radius around the point where the robot intercepted the ball. Currently,
the TURTLEs shoot or pass to let go of the ball. However, significant strategical
advantages could be gained by softly pushing the ball forward and regaining it
again. Previously, our robots had to shoot or give a pass to let go of the ball,
therefore a controlled push was implemented.

Before giving a controlled push, the robot has to be aligned and the ball
handling levers need to be in a predefined position. In the 70m/s the wheels have
contact with the ball, the wheels ramp up the speed of the ball to about 0.5m/s
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Fig. 4. A comparison between the EKF and EKF with InNoVa for a wallbounce, the
ball (V0 = 1 m/s) bounces off a wall at t = 2 s, the wall is not included in the model.

relative to the robot, to give a controlled push. Slip measurements are performed
to determine the maximum acceleration before the ball handling wheels lose grip
on the ball. Slip was found not to affect the velocity of the ball below 1.5m/s
which is thus large enough. The proposed control strategy consists of the existing
feedback controller combined with a feedforward controller. This control strategy
has been found to yield sufficient accuracy for executing the human-dribble.

5.3 Results During RoboCup 2018

The human-alike dribble has not been integrated in the software during RoboCup
2018, manpower was distributed to other, higher priority, tasks.

6 Artificial Intelligence

We are exploring the possibilities of Artificial Intelligence for this league in two
ways. Subsect. 6.1 will elaborate on using Artificial Intelligence (AI) for detailed
analysis of the omni-vision images. Another approach, where AI is used to predict
the next action of the opponent is presented in Subsect. 6.2.

6.1 Detailed Opponent Detection

In last years team description paper we reported on a detection method for
opponent label detection using neural networks. Due to the new rule allowing
robots to wear shirts, the presented approach was no longer practical. Therefore,
we adopted the procedure: first we take pictures of every robot with a normal
digital camera, the images are then distorted to resemble the images from the
omni-vision system. A normal digital camera will be used to speed up the pro-
cedure of taking pictures from opponent robots and prevent us from having to
use one of the TURTLEs for this time-consuming task. Every image undergoes
additional augmentations in the form of rotations, scaling, color variations and
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distortions. Recognition of robots is now done on three levels. The first level
classifies the robot’s team. The second level classifies the robot’s orientation
in front, left, right or back. The third level is, then again, the number on the
number plate.

In last years team description paper [3] we reported on a method for oppo-
nent label detection using neural networks. Due to the new rule allowing robots
to wear shirts, the presented approach was no longer practical. Therefore, we
adopted the following procedure: four pictures are taken for each robot from
front, back, left and right with a standard camera and then distorted to resem-
ble the robot images in the omni-directional camera image. This is done using
an affine transform of the input picture of which the corner points are mapped
onto a corresponding image of the robot in the omni-directional camera. Using
rotations, color - and scale variations, the 16 input images per team for each
match are augmented to 32.000 28 × 28 color images. These form the input to a
three-layer fully convolutional neural network, which is trained to classify single
robots to team membership or orientation. The last convolutional layer is fed
into a Global Average Pooling Layer, which is used to generate a Class Activa-
tion Map. We achieve a 95% accuracy on single robot team classification, against
a validation set consisting of single robot images, lifted from omni-directional
camera images, shot during test matches. The orientation classification is less
reliable since it is depending on the color and shape of the shirts and the pro-
truding ball handling unit, which is not always clearly visible.

This single robot network is then used on the entire omni-directional image
by creating a class-activation map in which the highest activation points of each
class indicate the position of a robot in the image. We are still working on
solving the problem of recognizing our own robots in both classes as a result of
the bottom leds.

The entire process of making pictures, augmenting them and training the neu-
ral network is completed in 30 min. Using omni-directional images from a robot
directly would be better but involves getting both teams on the field, transferring
these images, selecting individual robots from them and then train the network.
This is not feasible during an actual competition, hence the described approach,
which simplifies getting the data in the time available between matches.

To understand the performance of the recognition, a visualization of the
feature kernels and activation layers, additionally allowing the fine tuning of the
network hyper-parameters. At the moment of writing the first level (team) has
a reliability better than 95%, the second level achieves a performance around
80%. Work on the third level did not yield any valuable results yet. Results of
the first level have been included here. An omni-vision image as in Fig. 5(a) is
input to the neural network, per team(color) a class activated map (CAM) is
compiled which shows where certain features are present in the input image, see
Figs. 5(b) and (c).
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(a) Omni-vision image (b) CAM features belong-
ing to cyan team

(c) CAM features belong-
ing to orange team

Fig. 5. Class activated maps for the detection of robot team, results for the cyan team
and orange team are presented. (Color figure online)

6.2 Opponent Action Prediction

Being able to predict the opponents action grants a strategical lead with respect
to the opponent. To train a network capable of this, the world state information
of previous tournaments will be used. The world state information is spatially
represented as three 8-bit occupancy grid maps of 28×40 pixels, the information
on opponents, peers and the ball is each stored in a different map. Temporal
information is included in the value of the pixel, the longer ago an e.g. opponent
arrived at a certain pixel, the lower the value. The three 8-bit occupancy grid
maps can be represented as a single RGB image, as in Fig. 6, the ball, opponents
and peers are represented by green, red and blue, respectively.

Currently, the achievable performance of an convolutional neural network
is determined with an indicative experiment, by recognizing the refbox tasks
from this occupancy map. The network was able to classify the correct refbox
tasks with an accuracy of 98.5%, a promising result. With this promising result,
research will proceed to predicting the opponents action. The neural network
operated offline and used data collected during the match as input.

6.3 Results During RoboCup 2018

The results presented in this section are proof of concepts, these methods have
not been integrated in the software before RoboCup 2018. After the tournament
the focus shifted to the actual integration of these algorithms into the current
software and into the current processing units.

7 Passing

Dynamic teamplay is one of the strengths of Tech United. When in possession
of the ball, there are always two robots without the ball (possible pass receivers)
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Fig. 6. Occupancy grid maps for a specific time instant, from left to right: peer posi-
tions, opponent positions and ball position. (Color figure online)

trying to reach a position on the field that is optimal for receiving a pass, con-
tinuously trying to avoid opponents blocking any free line between them and the
robot with the ball (the pass giver). These passes do not have to be direct, i.e.
the ball can be shot into an open area in the field, where the pass receiver will
try to dynamically intercept it. This poses additional difficulty for the opponent
to block a pass. This section will explain how the robots decide where and who
to pass to, and how this pass is handled.

7.1 Where and Who to Pass To?

Every robot has a set of cost functions that are evaluated on a grid of positions
on the soccer field. For the possible pass receivers, these cost functions combine
penalties for being too close to or behind opponents, penalties for being at a
position that has a low scoring chance, penalties for being at a position that
has no free line for a next pass, penalties for being at a certain illegal position
on the field, and a driving cost. These penalties are weighted for two different
optimization problems, one for receiving a pass and shooting at goal, and one
for receiving a pass and passing to the next robot. E.g. the latter one has zero
cost on the penalties for being at a position that has a low scoring chance. The
point in the grid with the lowest combined cost, is the position on the field that
has the highest probability for receiving a successful pass with corresponding
consecutive action (shoot at goal or pass to the next robot). These positions
and the corresponding costs are communicated to the pass giver. The pass giver
then compares these costs and decides who to pass to. The pass target is the
corresponding position. The number of the robot that will receive the pass, and
the pass target are then communicated to the rest of the team. The receiving
robot will decide for itself what to do next. This way of deciding who and where
to pass to is new since RoboCup 2018. Before, the only reason to pass to a robot
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was that this pass receiving robot had a better chance at scoring. Using this
new method, more passes back occur with the intention of passing to the next
robot that has a good scoring position. Therefore, in general, more passes occur,
letting the ball do the work and making it harder for the opponent to defend.

7.2 Pass Handler

When the robots have determined where and who to pass to, the so-called “pass
handler” handles the execution of the pass. This is a synchronized state machine
between the pass giver and the pass receiver, that has been fully redesigned
for RoboCup 2018. The new pass handler has as little states as possible and
has a cleaner way to synchronize states, leading to less synchronization issues
and more successful passes. The pass giver calculates how long the pass receiver
takes to drive (treceiver) to the pass target (xpass) and adjusts the passing speed
(vpass) accordingly:

vpass =
||xpass − x0||2

treceiver + tmargin
(1)

Here, x0 is the current position of the pass giver and tmargin is some positive
time margin to allow for inaccuracies in positioning of the receiver and the actual
achieved shooting velocity of the pass giver. To avoid passing too hard and ensure
that the ball does not bounce of the ball handling of the pass receiver, the passing
speed is limited.

7.3 Result During RoboCup 2018

The new pass handler and improved decision making has resulted in dynamic
teamplay during RoboCup 2018. Compared to previous years, there were more
passes and a higher percentage of successful passes. By having multiple possible
pass receivers and giving passes with the intention to directly pass to the next
robot, the game became more dynamic and harder to defend for the opponent.
This ultimately resulted in the World Title.

8 Conclusions

In this paper we have described the major scientific improvements of our soccer
robots in preparation of the RoboCup 2018 tournament. Not all of the develop-
ments have actively contributed to the result, but the methods developed will
be integrated in preparation of future tournaments. The sixth generation TUR-
TLE is a robot with 8-wheels, designed for improved agility on the field. The
ball state estimation of the TURTLEs has been improved by means of and EKF
with InNoVa, achieving better performance for the different dynamic situations.
As our current focus is on integrating neural networks into our software, the
researches presented towards the application of AI in our software will soon be
put to the test. One of our main strengths is passing, which is based on a syn-
chronized state machine between pass giver and receiver. Altogether we hope our
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progress contributes to an even higher level of dynamic and scientifically chal-
lenging robot soccer. The latter, of course, while maintaining the attractiveness
of our competition for a general audience. We are determined to create a new
generation of TURTLEs with improved agility and ball handling. Meanwhile,
our efforts in implementing a configurable strategy framework and applications
of artificial intelligence in software will continue. In this way we hope to go with
the top in Middle-size league for some more years and contribute to our goal in
2050!
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